1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
|
// ==========================================================
// Bitmap rotation using B-Splines
//
// Design and implementation by
// - Philippe Thévenaz (philippe.thevenaz@epfl.ch)
// Adaptation for FreeImage by
// - Hervé Drolon (drolon@infonie.fr)
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
/*
==========================================================
This code was taken and adapted from the following reference :
[1] Philippe Thévenaz, Spline interpolation, a C source code
implementation. http://bigwww.epfl.ch/thevenaz/
It implements ideas described in the following papers :
[2] Unser M., Splines: A Perfect Fit for Signal and Image Processing.
IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November 1999.
[3] Unser M., Aldroubi A., Eden M., B-Spline Signal Processing: Part I--Theory.
IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, February 1993.
[4] Unser M., Aldroubi A., Eden M., B-Spline Signal Processing: Part II--Efficient Design and Applications.
IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, February 1993.
==========================================================
*/
#include <float.h>
#include "FreeImage.h"
#include "Utilities.h"
#define PI ((double)3.14159265358979323846264338327950288419716939937510)
#define ROTATE_QUADRATIC 2L // Use B-splines of degree 2 (quadratic interpolation)
#define ROTATE_CUBIC 3L // Use B-splines of degree 3 (cubic interpolation)
#define ROTATE_QUARTIC 4L // Use B-splines of degree 4 (quartic interpolation)
#define ROTATE_QUINTIC 5L // Use B-splines of degree 5 (quintic interpolation)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Prototypes definition
static void ConvertToInterpolationCoefficients(double *c, long DataLength, double *z, long NbPoles, double Tolerance);
static double InitialCausalCoefficient(double *c, long DataLength, double z, double Tolerance);
static void GetColumn(double *Image, long Width, long x, double *Line, long Height);
static void GetRow(double *Image, long y, double *Line, long Width);
static double InitialAntiCausalCoefficient(double *c, long DataLength, double z);
static void PutColumn(double *Image, long Width, long x, double *Line, long Height);
static void PutRow(double *Image, long y, double *Line, long Width);
static bool SamplesToCoefficients(double *Image, long Width, long Height, long spline_degree);
static double InterpolatedValue(double *Bcoeff, long Width, long Height, double x, double y, long spline_degree);
static FIBITMAP * Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, long spline_degree, BOOL use_mask);
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Coefficients routines
/**
ConvertToInterpolationCoefficients
@param c Input samples --> output coefficients
@param DataLength Number of samples or coefficients
@param z Poles
@param NbPoles Number of poles
@param Tolerance Admissible relative error
*/
static void
ConvertToInterpolationCoefficients(double *c, long DataLength, double *z, long NbPoles, double Tolerance) {
double Lambda = 1;
long n, k;
// special case required by mirror boundaries
if(DataLength == 1L) {
return;
}
// compute the overall gain
for(k = 0L; k < NbPoles; k++) {
Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
}
// apply the gain
for (n = 0L; n < DataLength; n++) {
c[n] *= Lambda;
}
// loop over all poles
for (k = 0L; k < NbPoles; k++) {
// causal initialization
c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
// causal recursion
for (n = 1L; n < DataLength; n++) {
c[n] += z[k] * c[n - 1L];
}
// anticausal initialization
c[DataLength - 1L] = InitialAntiCausalCoefficient(c, DataLength, z[k]);
// anticausal recursion
for (n = DataLength - 2L; 0 <= n; n--) {
c[n] = z[k] * (c[n + 1L] - c[n]);
}
}
}
/**
InitialCausalCoefficient
@param c Coefficients
@param DataLength Number of coefficients
@param z Actual pole
@param Tolerance Admissible relative error
@return
*/
static double
InitialCausalCoefficient(double *c, long DataLength, double z, double Tolerance) {
double Sum, zn, z2n, iz;
long n, Horizon;
// this initialization corresponds to mirror boundaries
Horizon = DataLength;
if(Tolerance > 0) {
Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
}
if(Horizon < DataLength) {
// accelerated loop
zn = z;
Sum = c[0];
for (n = 1L; n < Horizon; n++) {
Sum += zn * c[n];
zn *= z;
}
return(Sum);
}
else {
// full loop
zn = z;
iz = 1.0 / z;
z2n = pow(z, (double)(DataLength - 1L));
Sum = c[0] + z2n * c[DataLength - 1L];
z2n *= z2n * iz;
for (n = 1L; n <= DataLength - 2L; n++) {
Sum += (zn + z2n) * c[n];
zn *= z;
z2n *= iz;
}
return(Sum / (1.0 - zn * zn));
}
}
/**
GetColumn
@param Image Input image array
@param Width Width of the image
@param x x coordinate of the selected line
@param Line Output linear array
@param Height Length of the line
*/
static void
GetColumn(double *Image, long Width, long x, double *Line, long Height) {
long y;
Image = Image + x;
for(y = 0L; y < Height; y++) {
Line[y] = (double)*Image;
Image += Width;
}
}
/**
GetRow
@param Image Input image array
@param y y coordinate of the selected line
@param Line Output linear array
@param Width Length of the line
*/
static void
GetRow(double *Image, long y, double *Line, long Width) {
long x;
Image = Image + (y * Width);
for(x = 0L; x < Width; x++) {
Line[x] = (double)*Image++;
}
}
/**
InitialAntiCausalCoefficient
@param c Coefficients
@param DataLength Number of samples or coefficients
@param z Actual pole
@return
*/
static double
InitialAntiCausalCoefficient(double *c, long DataLength, double z) {
// this initialization corresponds to mirror boundaries
return((z / (z * z - 1.0)) * (z * c[DataLength - 2L] + c[DataLength - 1L]));
}
/**
PutColumn
@param Image Output image array
@param Width Width of the image
@param x x coordinate of the selected line
@param Line Input linear array
@param Height Length of the line and height of the image
*/
static void
PutColumn(double *Image, long Width, long x, double *Line, long Height) {
long y;
Image = Image + x;
for(y = 0L; y < Height; y++) {
*Image = (double)Line[y];
Image += Width;
}
}
/**
PutRow
@param Image Output image array
@param y y coordinate of the selected line
@param Line Input linear array
@param Width length of the line and width of the image
*/
static void
PutRow(double *Image, long y, double *Line, long Width) {
long x;
Image = Image + (y * Width);
for(x = 0L; x < Width; x++) {
*Image++ = (double)Line[x];
}
}
/**
SamplesToCoefficients.<br>
Implement the algorithm that converts the image samples into B-spline coefficients.
This efficient procedure essentially relies on the three papers cited above;
data are processed in-place.
Even though this algorithm is robust with respect to quantization,
we advocate the use of a floating-point format for the data.
@param Image Input / Output image (in-place processing)
@param Width Width of the image
@param Height Height of the image
@param spline_degree Degree of the spline model
@return Returns true if success, false otherwise
*/
static bool
SamplesToCoefficients(double *Image, long Width, long Height, long spline_degree) {
double *Line;
double Pole[2];
long NbPoles;
long x, y;
// recover the poles from a lookup table
switch (spline_degree) {
case 2L:
NbPoles = 1L;
Pole[0] = sqrt(8.0) - 3.0;
break;
case 3L:
NbPoles = 1L;
Pole[0] = sqrt(3.0) - 2.0;
break;
case 4L:
NbPoles = 2L;
Pole[0] = sqrt(664.0 - sqrt(438976.0)) + sqrt(304.0) - 19.0;
Pole[1] = sqrt(664.0 + sqrt(438976.0)) - sqrt(304.0) - 19.0;
break;
case 5L:
NbPoles = 2L;
Pole[0] = sqrt(135.0 / 2.0 - sqrt(17745.0 / 4.0)) + sqrt(105.0 / 4.0)
- 13.0 / 2.0;
Pole[1] = sqrt(135.0 / 2.0 + sqrt(17745.0 / 4.0)) - sqrt(105.0 / 4.0)
- 13.0 / 2.0;
break;
default:
// Invalid spline degree
return false;
}
// convert the image samples into interpolation coefficients
// in-place separable process, along x
Line = (double *)malloc(Width * sizeof(double));
if (Line == NULL) {
// Row allocation failed
return false;
}
for (y = 0L; y < Height; y++) {
GetRow(Image, y, Line, Width);
ConvertToInterpolationCoefficients(Line, Width, Pole, NbPoles, DBL_EPSILON);
PutRow(Image, y, Line, Width);
}
free(Line);
// in-place separable process, along y
Line = (double *)malloc(Height * sizeof(double));
if (Line == NULL) {
// Column allocation failed
return false;
}
for (x = 0L; x < Width; x++) {
GetColumn(Image, Width, x, Line, Height);
ConvertToInterpolationCoefficients(Line, Height, Pole, NbPoles, DBL_EPSILON);
PutColumn(Image, Width, x, Line, Height);
}
free(Line);
return true;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Interpolation routines
/**
Perform the bidimensional interpolation of an image.
Given an array of spline coefficients, return the value of
the underlying continuous spline model, sampled at the location (x, y).
The model degree can be 2 (quadratic), 3 (cubic), 4 (quartic), or 5 (quintic).
@param Bcoeff Input B-spline array of coefficients
@param Width Width of the image
@param Height Height of the image
@param x x coordinate where to interpolate
@param y y coordinate where to interpolate
@param spline_degree Degree of the spline model
@return Returns the value of the underlying continuous spline model,
sampled at the location (x, y)
*/
static double
InterpolatedValue(double *Bcoeff, long Width, long Height, double x, double y, long spline_degree) {
double *p;
double xWeight[6], yWeight[6];
double interpolated;
double w, w2, w4, t, t0, t1;
long xIndex[6], yIndex[6];
long Width2 = 2L * Width - 2L, Height2 = 2L * Height - 2L;
long i, j, k;
// compute the interpolation indexes
if (spline_degree & 1L) {
i = (long)floor(x) - spline_degree / 2L;
j = (long)floor(y) - spline_degree / 2L;
for(k = 0; k <= spline_degree; k++) {
xIndex[k] = i++;
yIndex[k] = j++;
}
}
else {
i = (long)floor(x + 0.5) - spline_degree / 2L;
j = (long)floor(y + 0.5) - spline_degree / 2L;
for (k = 0; k <= spline_degree; k++) {
xIndex[k] = i++;
yIndex[k] = j++;
}
}
// compute the interpolation weights
switch (spline_degree) {
case 2L:
/* x */
w = x - (double)xIndex[1];
xWeight[1] = 3.0 / 4.0 - w * w;
xWeight[2] = (1.0 / 2.0) * (w - xWeight[1] + 1.0);
xWeight[0] = 1.0 - xWeight[1] - xWeight[2];
/* y */
w = y - (double)yIndex[1];
yWeight[1] = 3.0 / 4.0 - w * w;
yWeight[2] = (1.0 / 2.0) * (w - yWeight[1] + 1.0);
yWeight[0] = 1.0 - yWeight[1] - yWeight[2];
break;
case 3L:
/* x */
w = x - (double)xIndex[1];
xWeight[3] = (1.0 / 6.0) * w * w * w;
xWeight[0] = (1.0 / 6.0) + (1.0 / 2.0) * w * (w - 1.0) - xWeight[3];
xWeight[2] = w + xWeight[0] - 2.0 * xWeight[3];
xWeight[1] = 1.0 - xWeight[0] - xWeight[2] - xWeight[3];
/* y */
w = y - (double)yIndex[1];
yWeight[3] = (1.0 / 6.0) * w * w * w;
yWeight[0] = (1.0 / 6.0) + (1.0 / 2.0) * w * (w - 1.0) - yWeight[3];
yWeight[2] = w + yWeight[0] - 2.0 * yWeight[3];
yWeight[1] = 1.0 - yWeight[0] - yWeight[2] - yWeight[3];
break;
case 4L:
/* x */
w = x - (double)xIndex[2];
w2 = w * w;
t = (1.0 / 6.0) * w2;
xWeight[0] = 1.0 / 2.0 - w;
xWeight[0] *= xWeight[0];
xWeight[0] *= (1.0 / 24.0) * xWeight[0];
t0 = w * (t - 11.0 / 24.0);
t1 = 19.0 / 96.0 + w2 * (1.0 / 4.0 - t);
xWeight[1] = t1 + t0;
xWeight[3] = t1 - t0;
xWeight[4] = xWeight[0] + t0 + (1.0 / 2.0) * w;
xWeight[2] = 1.0 - xWeight[0] - xWeight[1] - xWeight[3] - xWeight[4];
/* y */
w = y - (double)yIndex[2];
w2 = w * w;
t = (1.0 / 6.0) * w2;
yWeight[0] = 1.0 / 2.0 - w;
yWeight[0] *= yWeight[0];
yWeight[0] *= (1.0 / 24.0) * yWeight[0];
t0 = w * (t - 11.0 / 24.0);
t1 = 19.0 / 96.0 + w2 * (1.0 / 4.0 - t);
yWeight[1] = t1 + t0;
yWeight[3] = t1 - t0;
yWeight[4] = yWeight[0] + t0 + (1.0 / 2.0) * w;
yWeight[2] = 1.0 - yWeight[0] - yWeight[1] - yWeight[3] - yWeight[4];
break;
case 5L:
/* x */
w = x - (double)xIndex[2];
w2 = w * w;
xWeight[5] = (1.0 / 120.0) * w * w2 * w2;
w2 -= w;
w4 = w2 * w2;
w -= 1.0 / 2.0;
t = w2 * (w2 - 3.0);
xWeight[0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - xWeight[5];
t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0);
t1 = (-1.0 / 12.0) * w * (t + 4.0);
xWeight[2] = t0 + t1;
xWeight[3] = t0 - t1;
t0 = (1.0 / 16.0) * (9.0 / 5.0 - t);
t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0);
xWeight[1] = t0 + t1;
xWeight[4] = t0 - t1;
/* y */
w = y - (double)yIndex[2];
w2 = w * w;
yWeight[5] = (1.0 / 120.0) * w * w2 * w2;
w2 -= w;
w4 = w2 * w2;
w -= 1.0 / 2.0;
t = w2 * (w2 - 3.0);
yWeight[0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - yWeight[5];
t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0);
t1 = (-1.0 / 12.0) * w * (t + 4.0);
yWeight[2] = t0 + t1;
yWeight[3] = t0 - t1;
t0 = (1.0 / 16.0) * (9.0 / 5.0 - t);
t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0);
yWeight[1] = t0 + t1;
yWeight[4] = t0 - t1;
break;
default:
// Invalid spline degree
return 0;
}
// apply the mirror boundary conditions
for(k = 0; k <= spline_degree; k++) {
xIndex[k] = (Width == 1L) ? (0L) : ((xIndex[k] < 0L) ?
(-xIndex[k] - Width2 * ((-xIndex[k]) / Width2))
: (xIndex[k] - Width2 * (xIndex[k] / Width2)));
if (Width <= xIndex[k]) {
xIndex[k] = Width2 - xIndex[k];
}
yIndex[k] = (Height == 1L) ? (0L) : ((yIndex[k] < 0L) ?
(-yIndex[k] - Height2 * ((-yIndex[k]) / Height2))
: (yIndex[k] - Height2 * (yIndex[k] / Height2)));
if (Height <= yIndex[k]) {
yIndex[k] = Height2 - yIndex[k];
}
}
// perform interpolation
interpolated = 0.0;
for(j = 0; j <= spline_degree; j++) {
p = Bcoeff + (yIndex[j] * Width);
w = 0.0;
for(i = 0; i <= spline_degree; i++) {
w += xWeight[i] * p[xIndex[i]];
}
interpolated += yWeight[j] * w;
}
return interpolated;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// FreeImage implementation
/**
Image translation and rotation using B-Splines.
@param dib Input 8-bit greyscale image
@param angle Output image rotation in degree
@param x_shift Output image horizontal shift
@param y_shift Output image vertical shift
@param x_origin Output origin of the x-axis
@param y_origin Output origin of the y-axis
@param spline_degree Output degree of the B-spline model
@param use_mask Whether or not to mask the image
@return Returns the translated & rotated dib if successful, returns NULL otherwise
*/
static FIBITMAP *
Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, long spline_degree, BOOL use_mask) {
double *ImageRasterArray;
double p;
double a11, a12, a21, a22;
double x0, y0, x1, y1;
long x, y;
long spline;
bool bResult;
int bpp = FreeImage_GetBPP(dib);
if(bpp != 8) {
return NULL;
}
int width = FreeImage_GetWidth(dib);
int height = FreeImage_GetHeight(dib);
switch(spline_degree) {
case ROTATE_QUADRATIC:
spline = 2L; // Use splines of degree 2 (quadratic interpolation)
break;
case ROTATE_CUBIC:
spline = 3L; // Use splines of degree 3 (cubic interpolation)
break;
case ROTATE_QUARTIC:
spline = 4L; // Use splines of degree 4 (quartic interpolation)
break;
case ROTATE_QUINTIC:
spline = 5L; // Use splines of degree 5 (quintic interpolation)
break;
default:
spline = 3L;
}
// allocate output image
FIBITMAP *dst = FreeImage_Allocate(width, height, bpp);
if (!dst)
return NULL;
// buid a grey scale palette
RGBQUAD *pal = FreeImage_GetPalette(dst);
for(int i = 0; i < 256; i++) {
pal[i].rgbRed = pal[i].rgbGreen = pal[i].rgbBlue = (BYTE)i;
}
// allocate a temporary array
ImageRasterArray = (double*)malloc(width * height * sizeof(double));
if (!ImageRasterArray) {
FreeImage_Unload(dst);
return NULL;
}
// copy data samples
for(y = 0; y < height; y++) {
double *pImage = &ImageRasterArray[y*width];
BYTE *src_bits = FreeImage_GetScanLine(dib, height-1-y);
for(x = 0; x < width; x++) {
pImage[x] = (double)src_bits[x];
}
}
// convert between a representation based on image samples
// and a representation based on image B-spline coefficients
bResult = SamplesToCoefficients(ImageRasterArray, width, height, spline);
if (!bResult) {
FreeImage_Unload(dst);
free(ImageRasterArray);
return NULL;
}
// prepare the geometry
angle *= PI / 180.0;
a11 = cos(angle);
a12 = -sin(angle);
a21 = sin(angle);
a22 = cos(angle);
x0 = a11 * (x_shift + x_origin) + a12 * (y_shift + y_origin);
y0 = a21 * (x_shift + x_origin) + a22 * (y_shift + y_origin);
x_shift = x_origin - x0;
y_shift = y_origin - y0;
// visit all pixels of the output image and assign their value
for(y = 0; y < height; y++) {
BYTE *dst_bits = FreeImage_GetScanLine(dst, height-1-y);
x0 = a12 * (double)y + x_shift;
y0 = a22 * (double)y + y_shift;
for(x = 0; x < width; x++) {
x1 = x0 + a11 * (double)x;
y1 = y0 + a21 * (double)x;
if(use_mask) {
if ((x1 <= -0.5) || (((double)width - 0.5) <= x1) || (y1 <= -0.5) || (((double)height - 0.5) <= y1)) {
p = 0;
}
else {
p = (double)InterpolatedValue(ImageRasterArray, width, height, x1, y1, spline);
}
}
else {
p = (double)InterpolatedValue(ImageRasterArray, width, height, x1, y1, spline);
}
// clamp and convert to BYTE
dst_bits[x] = (BYTE)MIN(MAX((int)0, (int)(p + 0.5)), (int)255);
}
}
// free working array and return
free(ImageRasterArray);
return dst;
}
/**
Image rotation using a 3rd order (cubic) B-Splines.
@param dib Input dib (8, 24 or 32-bit)
@param angle Output image rotation
@param x_shift Output image horizontal shift
@param y_shift Output image vertical shift
@param x_origin Output origin of the x-axis
@param y_origin Output origin of the y-axis
@param use_mask Whether or not to mask the image
@return Returns the translated & rotated dib if successful, returns NULL otherwise
*/
FIBITMAP * DLL_CALLCONV
FreeImage_RotateEx(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, BOOL use_mask) {
int x, y, bpp;
int channel, nb_channels;
BYTE *src_bits, *dst_bits;
FIBITMAP *src8 = NULL, *dst8 = NULL, *dst = NULL;
if (!FreeImage_HasPixels(dib)) return NULL;
try {
bpp = FreeImage_GetBPP(dib);
if(bpp == 8) {
FIBITMAP *dst_8 = Rotate8Bit(dib, angle, x_shift, y_shift, x_origin, y_origin, ROTATE_CUBIC, use_mask);
if(dst_8) {
// copy metadata from src to dst
FreeImage_CloneMetadata(dst_8, dib);
}
return dst_8;
}
if ((bpp == 24) || (bpp == 32)) {
// allocate dst image
int width = FreeImage_GetWidth(dib);
int height = FreeImage_GetHeight(dib);
if ( bpp == 24 ) {
dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK);
} else {
dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK);
}
if (!dst) throw(1);
// allocate a temporary 8-bit dib (no need to build a palette)
src8 = FreeImage_Allocate(width, height, 8);
if (!src8) throw(1);
// process each channel separately
// -------------------------------
nb_channels = (bpp / 8);
for(channel = 0; channel < nb_channels; channel++) {
// extract channel from source dib
for(y = 0; y < height; y++) {
src_bits = FreeImage_GetScanLine(dib, y);
dst_bits = FreeImage_GetScanLine(src8, y);
for(x = 0; x < width; x++) {
dst_bits[x] = src_bits[channel];
src_bits += nb_channels;
}
}
// process channel
dst8 = Rotate8Bit(src8, angle, x_shift, y_shift, x_origin, y_origin, ROTATE_CUBIC, use_mask);
if (!dst8) throw(1);
// insert channel to destination dib
for(y = 0; y < height; y++) {
src_bits = FreeImage_GetScanLine(dst8, y);
dst_bits = FreeImage_GetScanLine(dst, y);
for(x = 0; x < width; x++) {
dst_bits[channel] = src_bits[x];
dst_bits += nb_channels;
}
}
FreeImage_Unload(dst8);
}
FreeImage_Unload(src8);
// copy metadata from src to dst
FreeImage_CloneMetadata(dst, dib);
return dst;
}
} catch(int) {
if(src8) FreeImage_Unload(src8);
if(dst8) FreeImage_Unload(dst8);
if(dst) FreeImage_Unload(dst);
}
return NULL;
}
|