1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
|
// ==========================================================
// Bitmap rotation by means of 3 shears.
//
// Design and implementation by
// - Hervé Drolon (drolon@infonie.fr)
// - Thorsten Radde (support@IdealSoftware.com)
// - Mihail Naydenov (mnaydenov@users.sourceforge.net)
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
/*
============================================================
References :
[1] Paeth A., A Fast Algorithm for General Raster Rotation.
Graphics Gems, p. 179, Andrew Glassner editor, Academic Press, 1990.
[2] Yariv E., High quality image rotation (rotate by shear).
[Online] http://www.codeproject.com/bitmap/rotatebyshear.asp
[3] Treskunov A., Fast and high quality true-color bitmap rotation function.
[Online] http://anton.treskunov.net/Software/doc/fast_and_high_quality_true_color_bitmap_rotation_function.html
============================================================
*/
#include "FreeImage.h"
#include "Utilities.h"
#define RBLOCK 64 // image blocks of RBLOCK*RBLOCK pixels
// --------------------------------------------------------------------------
/**
Skews a row horizontally (with filtered weights).
Limited to 45 degree skewing only. Filters two adjacent pixels.
Parameter T can be BYTE, WORD of float.
@param src Pointer to source image to rotate
@param dst Pointer to destination image
@param row Row index
@param iOffset Skew offset
@param dWeight Relative weight of right pixel
@param bkcolor Background color
*/
template <class T> void
HorizontalSkewT(FIBITMAP *src, FIBITMAP *dst, int row, int iOffset, double weight, const void *bkcolor = NULL) {
int iXPos;
const unsigned src_width = FreeImage_GetWidth(src);
const unsigned dst_width = FreeImage_GetWidth(dst);
T pxlSrc[4], pxlLeft[4], pxlOldLeft[4]; // 4 = 4*sizeof(T) max
// background
const T pxlBlack[4] = {0, 0, 0, 0 };
const T *pxlBkg = static_cast<const T*>(bkcolor); // assume at least bytespp and 4*sizeof(T) max
if(!pxlBkg) {
// default background color is black
pxlBkg = pxlBlack;
}
// calculate the number of bytes per pixel
const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
// calculate the number of samples per pixel
const unsigned samples = bytespp / sizeof(T);
BYTE *src_bits = FreeImage_GetScanLine(src, row);
BYTE *dst_bits = FreeImage_GetScanLine(dst, row);
// fill gap left of skew with background
if(bkcolor) {
for(int k = 0; k < iOffset; k++) {
memcpy(&dst_bits[k * bytespp], bkcolor, bytespp);
}
AssignPixel((BYTE*)&pxlOldLeft[0], (BYTE*)bkcolor, bytespp);
} else {
if(iOffset > 0) {
memset(dst_bits, 0, iOffset * bytespp);
}
memset(&pxlOldLeft[0], 0, bytespp);
}
for(unsigned i = 0; i < src_width; i++) {
// loop through row pixels
AssignPixel((BYTE*)&pxlSrc[0], (BYTE*)src_bits, bytespp);
// calculate weights
for(unsigned j = 0; j < samples; j++) {
pxlLeft[j] = static_cast<T>(pxlBkg[j] + (pxlSrc[j] - pxlBkg[j]) * weight + 0.5);
}
// check boundaries
iXPos = i + iOffset;
if((iXPos >= 0) && (iXPos < (int)dst_width)) {
// update left over on source
for(unsigned j = 0; j < samples; j++) {
pxlSrc[j] = pxlSrc[j] - (pxlLeft[j] - pxlOldLeft[j]);
}
AssignPixel((BYTE*)&dst_bits[iXPos*bytespp], (BYTE*)&pxlSrc[0], bytespp);
}
// save leftover for next pixel in scan
AssignPixel((BYTE*)&pxlOldLeft[0], (BYTE*)&pxlLeft[0], bytespp);
// next pixel in scan
src_bits += bytespp;
}
// go to rightmost point of skew
iXPos = src_width + iOffset;
if((iXPos >= 0) && (iXPos < (int)dst_width)) {
dst_bits = FreeImage_GetScanLine(dst, row) + iXPos * bytespp;
// If still in image bounds, put leftovers there
AssignPixel((BYTE*)dst_bits, (BYTE*)&pxlOldLeft[0], bytespp);
// clear to the right of the skewed line with background
dst_bits += bytespp;
if(bkcolor) {
for(unsigned i = 0; i < dst_width - iXPos - 1; i++) {
memcpy(&dst_bits[i * bytespp], bkcolor, bytespp);
}
} else {
memset(dst_bits, 0, bytespp * (dst_width - iXPos - 1));
}
}
}
/**
Skews a row horizontally (with filtered weights).
Limited to 45 degree skewing only. Filters two adjacent pixels.
@param src Pointer to source image to rotate
@param dst Pointer to destination image
@param row Row index
@param iOffset Skew offset
@param dWeight Relative weight of right pixel
@param bkcolor Background color
*/
static void
HorizontalSkew(FIBITMAP *src, FIBITMAP *dst, int row, int iOffset, double dWeight, const void *bkcolor) {
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
switch(image_type) {
case FIT_BITMAP:
switch(FreeImage_GetBPP(src)) {
case 8:
case 24:
case 32:
HorizontalSkewT<BYTE>(src, dst, row, iOffset, dWeight, bkcolor);
break;
}
break;
case FIT_UINT16:
case FIT_RGB16:
case FIT_RGBA16:
HorizontalSkewT<WORD>(src, dst, row, iOffset, dWeight, bkcolor);
break;
case FIT_FLOAT:
case FIT_RGBF:
case FIT_RGBAF:
HorizontalSkewT<float>(src, dst, row, iOffset, dWeight, bkcolor);
break;
}
}
/**
Skews a column vertically (with filtered weights).
Limited to 45 degree skewing only. Filters two adjacent pixels.
Parameter T can be BYTE, WORD of float.
@param src Pointer to source image to rotate
@param dst Pointer to destination image
@param col Column index
@param iOffset Skew offset
@param dWeight Relative weight of upper pixel
@param bkcolor Background color
*/
template <class T> void
VerticalSkewT(FIBITMAP *src, FIBITMAP *dst, int col, int iOffset, double weight, const void *bkcolor = NULL) {
int iYPos;
unsigned src_height = FreeImage_GetHeight(src);
unsigned dst_height = FreeImage_GetHeight(dst);
T pxlSrc[4], pxlLeft[4], pxlOldLeft[4]; // 4 = 4*sizeof(T) max
// background
const T pxlBlack[4] = {0, 0, 0, 0 };
const T *pxlBkg = static_cast<const T*>(bkcolor); // assume at least bytespp and 4*sizeof(T) max
if(!pxlBkg) {
// default background color is black
pxlBkg = pxlBlack;
}
// calculate the number of bytes per pixel
const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
// calculate the number of samples per pixel
const unsigned samples = bytespp / sizeof(T);
const unsigned src_pitch = FreeImage_GetPitch(src);
const unsigned dst_pitch = FreeImage_GetPitch(dst);
const unsigned index = col * bytespp;
BYTE *src_bits = FreeImage_GetBits(src) + index;
BYTE *dst_bits = FreeImage_GetBits(dst) + index;
// fill gap above skew with background
if(bkcolor) {
for(int k = 0; k < iOffset; k++) {
memcpy(dst_bits, bkcolor, bytespp);
dst_bits += dst_pitch;
}
memcpy(&pxlOldLeft[0], bkcolor, bytespp);
} else {
for(int k = 0; k < iOffset; k++) {
memset(dst_bits, 0, bytespp);
dst_bits += dst_pitch;
}
memset(&pxlOldLeft[0], 0, bytespp);
}
for(unsigned i = 0; i < src_height; i++) {
// loop through column pixels
AssignPixel((BYTE*)(&pxlSrc[0]), src_bits, bytespp);
// calculate weights
for(unsigned j = 0; j < samples; j++) {
pxlLeft[j] = static_cast<T>(pxlBkg[j] + (pxlSrc[j] - pxlBkg[j]) * weight + 0.5);
}
// check boundaries
iYPos = i + iOffset;
if((iYPos >= 0) && (iYPos < (int)dst_height)) {
// update left over on source
for(unsigned j = 0; j < samples; j++) {
pxlSrc[j] = pxlSrc[j] - (pxlLeft[j] - pxlOldLeft[j]);
}
dst_bits = FreeImage_GetScanLine(dst, iYPos) + index;
AssignPixel(dst_bits, (BYTE*)(&pxlSrc[0]), bytespp);
}
// save leftover for next pixel in scan
AssignPixel((BYTE*)(&pxlOldLeft[0]), (BYTE*)(&pxlLeft[0]), bytespp);
// next pixel in scan
src_bits += src_pitch;
}
// go to bottom point of skew
iYPos = src_height + iOffset;
if((iYPos >= 0) && (iYPos < (int)dst_height)) {
dst_bits = FreeImage_GetScanLine(dst, iYPos) + index;
// if still in image bounds, put leftovers there
AssignPixel((BYTE*)(dst_bits), (BYTE*)(&pxlOldLeft[0]), bytespp);
// clear below skewed line with background
if(bkcolor) {
while(++iYPos < (int)dst_height) {
dst_bits += dst_pitch;
AssignPixel((BYTE*)(dst_bits), (BYTE*)(bkcolor), bytespp);
}
} else {
while(++iYPos < (int)dst_height) {
dst_bits += dst_pitch;
memset(dst_bits, 0, bytespp);
}
}
}
}
/**
Skews a column vertically (with filtered weights).
Limited to 45 degree skewing only. Filters two adjacent pixels.
@param src Pointer to source image to rotate
@param dst Pointer to destination image
@param col Column index
@param iOffset Skew offset
@param dWeight Relative weight of upper pixel
@param bkcolor Background color
*/
static void
VerticalSkew(FIBITMAP *src, FIBITMAP *dst, int col, int iOffset, double dWeight, const void *bkcolor) {
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
switch(image_type) {
case FIT_BITMAP:
switch(FreeImage_GetBPP(src)) {
case 8:
case 24:
case 32:
VerticalSkewT<BYTE>(src, dst, col, iOffset, dWeight, bkcolor);
break;
}
break;
case FIT_UINT16:
case FIT_RGB16:
case FIT_RGBA16:
VerticalSkewT<WORD>(src, dst, col, iOffset, dWeight, bkcolor);
break;
case FIT_FLOAT:
case FIT_RGBF:
case FIT_RGBAF:
VerticalSkewT<float>(src, dst, col, iOffset, dWeight, bkcolor);
break;
}
}
/**
Rotates an image by 90 degrees (counter clockwise).
Precise rotation, no filters required.<br>
Code adapted from CxImage (http://www.xdp.it/cximage.htm)
@param src Pointer to source image to rotate
@return Returns a pointer to a newly allocated rotated image if successful, returns NULL otherwise
*/
static FIBITMAP*
Rotate90(FIBITMAP *src) {
const unsigned bpp = FreeImage_GetBPP(src);
const unsigned src_width = FreeImage_GetWidth(src);
const unsigned src_height = FreeImage_GetHeight(src);
const unsigned dst_width = src_height;
const unsigned dst_height = src_width;
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
// allocate and clear dst image
FIBITMAP *dst = FreeImage_AllocateT(image_type, dst_width, dst_height, bpp);
if(NULL == dst) return NULL;
// get src and dst scan width
const unsigned src_pitch = FreeImage_GetPitch(src);
const unsigned dst_pitch = FreeImage_GetPitch(dst);
switch(image_type) {
case FIT_BITMAP:
if(bpp == 1) {
// speedy rotate for BW images
BYTE *bsrc = FreeImage_GetBits(src);
BYTE *bdest = FreeImage_GetBits(dst);
BYTE *dbitsmax = bdest + dst_height * dst_pitch - 1;
for(unsigned y = 0; y < src_height; y++) {
// figure out the column we are going to be copying to
const div_t div_r = div(y, 8);
// set bit pos of src column byte
const BYTE bitpos = (BYTE)(128 >> div_r.rem);
BYTE *srcdisp = bsrc + y * src_pitch;
for(unsigned x = 0; x < src_pitch; x++) {
// get source bits
BYTE *sbits = srcdisp + x;
// get destination column
BYTE *nrow = bdest + (dst_height - 1 - (x * 8)) * dst_pitch + div_r.quot;
for (int z = 0; z < 8; z++) {
// get destination byte
BYTE *dbits = nrow - z * dst_pitch;
if ((dbits < bdest) || (dbits > dbitsmax)) break;
if (*sbits & (128 >> z)) *dbits |= bitpos;
}
}
}
}
else if((bpp == 8) || (bpp == 24) || (bpp == 32)) {
// anything other than BW :
// This optimized version of rotation rotates image by smaller blocks. It is quite
// a bit faster than obvious algorithm, because it produces much less CPU cache misses.
// This optimization can be tuned by changing block size (RBLOCK). 96 is good value for current
// CPUs (tested on Athlon XP and Celeron D). Larger value (if CPU has enough cache) will increase
// speed somehow, but once you drop out of CPU's cache, things will slow down drastically.
// For older CPUs with less cache, lower value would yield better results.
BYTE *bsrc = FreeImage_GetBits(src); // source pixels
BYTE *bdest = FreeImage_GetBits(dst); // destination pixels
// calculate the number of bytes per pixel (1 for 8-bit, 3 for 24-bit or 4 for 32-bit)
const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
// for all image blocks of RBLOCK*RBLOCK pixels
// x-segment
for(unsigned xs = 0; xs < dst_width; xs += RBLOCK) {
// y-segment
for(unsigned ys = 0; ys < dst_height; ys += RBLOCK) {
for(unsigned y = ys; y < MIN(dst_height, ys + RBLOCK); y++) { // do rotation
const unsigned y2 = dst_height - y - 1;
// point to src pixel at (y2, xs)
BYTE *src_bits = bsrc + (xs * src_pitch) + (y2 * bytespp);
// point to dst pixel at (xs, y)
BYTE *dst_bits = bdest + (y * dst_pitch) + (xs * bytespp);
for(unsigned x = xs; x < MIN(dst_width, xs + RBLOCK); x++) {
// dst.SetPixel(x, y, src.GetPixel(y2, x));
AssignPixel(dst_bits, src_bits, bytespp);
dst_bits += bytespp;
src_bits += src_pitch;
}
}
}
}
}
break;
case FIT_UINT16:
case FIT_RGB16:
case FIT_RGBA16:
case FIT_FLOAT:
case FIT_RGBF:
case FIT_RGBAF:
{
BYTE *bsrc = FreeImage_GetBits(src); // source pixels
BYTE *bdest = FreeImage_GetBits(dst); // destination pixels
// calculate the number of bytes per pixel
const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
for(unsigned y = 0; y < dst_height; y++) {
BYTE *src_bits = bsrc + (src_width - 1 - y) * bytespp;
BYTE *dst_bits = bdest + (y * dst_pitch);
for(unsigned x = 0; x < dst_width; x++) {
AssignPixel(dst_bits, src_bits, bytespp);
src_bits += src_pitch;
dst_bits += bytespp;
}
}
}
break;
}
return dst;
}
/**
Rotates an image by 180 degrees (counter clockwise).
Precise rotation, no filters required.
@param src Pointer to source image to rotate
@return Returns a pointer to a newly allocated rotated image if successful, returns NULL otherwise
*/
static FIBITMAP*
Rotate180(FIBITMAP *src) {
int x, y, k, pos;
const int bpp = FreeImage_GetBPP(src);
const int src_width = FreeImage_GetWidth(src);
const int src_height = FreeImage_GetHeight(src);
const int dst_width = src_width;
const int dst_height = src_height;
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
FIBITMAP *dst = FreeImage_AllocateT(image_type, dst_width, dst_height, bpp);
if(NULL == dst) return NULL;
switch(image_type) {
case FIT_BITMAP:
if(bpp == 1) {
for(int y = 0; y < src_height; y++) {
BYTE *src_bits = FreeImage_GetScanLine(src, y);
BYTE *dst_bits = FreeImage_GetScanLine(dst, dst_height - y - 1);
for(int x = 0; x < src_width; x++) {
// get bit at (x, y)
k = (src_bits[x >> 3] & (0x80 >> (x & 0x07))) != 0;
// set bit at (dst_width - x - 1, dst_height - y - 1)
pos = dst_width - x - 1;
k ? dst_bits[pos >> 3] |= (0x80 >> (pos & 0x7)) : dst_bits[pos >> 3] &= (0xFF7F >> (pos & 0x7));
}
}
break;
}
// else if((bpp == 8) || (bpp == 24) || (bpp == 32)) FALL TROUGH
case FIT_UINT16:
case FIT_RGB16:
case FIT_RGBA16:
case FIT_FLOAT:
case FIT_RGBF:
case FIT_RGBAF:
{
// Calculate the number of bytes per pixel
const int bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
for(y = 0; y < src_height; y++) {
BYTE *src_bits = FreeImage_GetScanLine(src, y);
BYTE *dst_bits = FreeImage_GetScanLine(dst, dst_height - y - 1) + (dst_width - 1) * bytespp;
for(x = 0; x < src_width; x++) {
// get pixel at (x, y)
// set pixel at (dst_width - x - 1, dst_height - y - 1)
AssignPixel(dst_bits, src_bits, bytespp);
src_bits += bytespp;
dst_bits -= bytespp;
}
}
}
break;
}
return dst;
}
/**
Rotates an image by 270 degrees (counter clockwise).
Precise rotation, no filters required.<br>
Code adapted from CxImage (http://www.xdp.it/cximage.htm)
@param src Pointer to source image to rotate
@return Returns a pointer to a newly allocated rotated image if successful, returns NULL otherwise
*/
static FIBITMAP*
Rotate270(FIBITMAP *src) {
int x2, dlineup;
const unsigned bpp = FreeImage_GetBPP(src);
const unsigned src_width = FreeImage_GetWidth(src);
const unsigned src_height = FreeImage_GetHeight(src);
const unsigned dst_width = src_height;
const unsigned dst_height = src_width;
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
// allocate and clear dst image
FIBITMAP *dst = FreeImage_AllocateT(image_type, dst_width, dst_height, bpp);
if(NULL == dst) return NULL;
// get src and dst scan width
const unsigned src_pitch = FreeImage_GetPitch(src);
const unsigned dst_pitch = FreeImage_GetPitch(dst);
switch(image_type) {
case FIT_BITMAP:
if(bpp == 1) {
// speedy rotate for BW images
BYTE *bsrc = FreeImage_GetBits(src);
BYTE *bdest = FreeImage_GetBits(dst);
BYTE *dbitsmax = bdest + dst_height * dst_pitch - 1;
dlineup = 8 * dst_pitch - dst_width;
for(unsigned y = 0; y < src_height; y++) {
// figure out the column we are going to be copying to
const div_t div_r = div(y + dlineup, 8);
// set bit pos of src column byte
const BYTE bitpos = (BYTE)(1 << div_r.rem);
const BYTE *srcdisp = bsrc + y * src_pitch;
for(unsigned x = 0; x < src_pitch; x++) {
// get source bits
const BYTE *sbits = srcdisp + x;
// get destination column
BYTE *nrow = bdest + (x * 8) * dst_pitch + dst_pitch - 1 - div_r.quot;
for(unsigned z = 0; z < 8; z++) {
// get destination byte
BYTE *dbits = nrow + z * dst_pitch;
if ((dbits < bdest) || (dbits > dbitsmax)) break;
if (*sbits & (128 >> z)) *dbits |= bitpos;
}
}
}
}
else if((bpp == 8) || (bpp == 24) || (bpp == 32)) {
// anything other than BW :
// This optimized version of rotation rotates image by smaller blocks. It is quite
// a bit faster than obvious algorithm, because it produces much less CPU cache misses.
// This optimization can be tuned by changing block size (RBLOCK). 96 is good value for current
// CPUs (tested on Athlon XP and Celeron D). Larger value (if CPU has enough cache) will increase
// speed somehow, but once you drop out of CPU's cache, things will slow down drastically.
// For older CPUs with less cache, lower value would yield better results.
BYTE *bsrc = FreeImage_GetBits(src); // source pixels
BYTE *bdest = FreeImage_GetBits(dst); // destination pixels
// Calculate the number of bytes per pixel (1 for 8-bit, 3 for 24-bit or 4 for 32-bit)
const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
// for all image blocks of RBLOCK*RBLOCK pixels
// x-segment
for(unsigned xs = 0; xs < dst_width; xs += RBLOCK) {
// y-segment
for(unsigned ys = 0; ys < dst_height; ys += RBLOCK) {
for(unsigned x = xs; x < MIN(dst_width, xs + RBLOCK); x++) { // do rotation
x2 = dst_width - x - 1;
// point to src pixel at (ys, x2)
BYTE *src_bits = bsrc + (x2 * src_pitch) + (ys * bytespp);
// point to dst pixel at (x, ys)
BYTE *dst_bits = bdest + (ys * dst_pitch) + (x * bytespp);
for(unsigned y = ys; y < MIN(dst_height, ys + RBLOCK); y++) {
// dst.SetPixel(x, y, src.GetPixel(y, x2));
AssignPixel(dst_bits, src_bits, bytespp);
src_bits += bytespp;
dst_bits += dst_pitch;
}
}
}
}
}
break;
case FIT_UINT16:
case FIT_RGB16:
case FIT_RGBA16:
case FIT_FLOAT:
case FIT_RGBF:
case FIT_RGBAF:
{
BYTE *bsrc = FreeImage_GetBits(src); // source pixels
BYTE *bdest = FreeImage_GetBits(dst); // destination pixels
// calculate the number of bytes per pixel
const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
for(unsigned y = 0; y < dst_height; y++) {
BYTE *src_bits = bsrc + (src_height - 1) * src_pitch + y * bytespp;
BYTE *dst_bits = bdest + (y * dst_pitch);
for(unsigned x = 0; x < dst_width; x++) {
AssignPixel(dst_bits, src_bits, bytespp);
src_bits -= src_pitch;
dst_bits += bytespp;
}
}
}
break;
}
return dst;
}
/**
Rotates an image by a given degree in range [-45 .. +45] (counter clockwise)
using the 3-shear technique.
@param src Pointer to source image to rotate
@param dAngle Rotation angle
@return Returns a pointer to a newly allocated rotated image if successful, returns NULL otherwise
*/
static FIBITMAP*
Rotate45(FIBITMAP *src, double dAngle, const void *bkcolor) {
const double ROTATE_PI = double(3.1415926535897932384626433832795);
unsigned u;
const unsigned bpp = FreeImage_GetBPP(src);
const double dRadAngle = dAngle * ROTATE_PI / double(180); // Angle in radians
const double dSinE = sin(dRadAngle);
const double dTan = tan(dRadAngle / 2);
const unsigned src_width = FreeImage_GetWidth(src);
const unsigned src_height = FreeImage_GetHeight(src);
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
// Calc first shear (horizontal) destination image dimensions
const unsigned width_1 = src_width + unsigned((double)src_height * fabs(dTan) + 0.5);
const unsigned height_1 = src_height;
// Perform 1st shear (horizontal)
// ----------------------------------------------------------------------
// Allocate image for 1st shear
FIBITMAP *dst1 = FreeImage_AllocateT(image_type, width_1, height_1, bpp);
if(NULL == dst1) {
return NULL;
}
for(u = 0; u < height_1; u++) {
double dShear;
if(dTan >= 0) {
// Positive angle
dShear = (u + 0.5) * dTan;
}
else {
// Negative angle
dShear = (double(u) - height_1 + 0.5) * dTan;
}
int iShear = int(floor(dShear));
HorizontalSkew(src, dst1, u, iShear, dShear - double(iShear), bkcolor);
}
// Perform 2nd shear (vertical)
// ----------------------------------------------------------------------
// Calc 2nd shear (vertical) destination image dimensions
const unsigned width_2 = width_1;
unsigned height_2 = unsigned((double)src_width * fabs(dSinE) + (double)src_height * cos(dRadAngle) + 0.5) + 1;
// Allocate image for 2nd shear
FIBITMAP *dst2 = FreeImage_AllocateT(image_type, width_2, height_2, bpp);
if(NULL == dst2) {
FreeImage_Unload(dst1);
return NULL;
}
double dOffset; // Variable skew offset
if(dSinE > 0) {
// Positive angle
dOffset = (src_width - 1.0) * dSinE;
}
else {
// Negative angle
dOffset = -dSinE * (double(src_width) - width_2);
}
for(u = 0; u < width_2; u++, dOffset -= dSinE) {
int iShear = int(floor(dOffset));
VerticalSkew(dst1, dst2, u, iShear, dOffset - double(iShear), bkcolor);
}
// Perform 3rd shear (horizontal)
// ----------------------------------------------------------------------
// Free result of 1st shear
FreeImage_Unload(dst1);
// Calc 3rd shear (horizontal) destination image dimensions
const unsigned width_3 = unsigned(double(src_height) * fabs(dSinE) + double(src_width) * cos(dRadAngle) + 0.5) + 1;
const unsigned height_3 = height_2;
// Allocate image for 3rd shear
FIBITMAP *dst3 = FreeImage_AllocateT(image_type, width_3, height_3, bpp);
if(NULL == dst3) {
FreeImage_Unload(dst2);
return NULL;
}
if(dSinE >= 0) {
// Positive angle
dOffset = (src_width - 1.0) * dSinE * -dTan;
}
else {
// Negative angle
dOffset = dTan * ( (src_width - 1.0) * -dSinE + (1.0 - height_3) );
}
for(u = 0; u < height_3; u++, dOffset += dTan) {
int iShear = int(floor(dOffset));
HorizontalSkew(dst2, dst3, u, iShear, dOffset - double(iShear), bkcolor);
}
// Free result of 2nd shear
FreeImage_Unload(dst2);
// Return result of 3rd shear
return dst3;
}
/**
Rotates a 1-, 8-, 24- or 32-bit image by a given angle (given in degree).
Angle is unlimited, except for 1-bit images (limited to integer multiples of 90 degree).
3-shears technique is used.
@param src Pointer to source image to rotate
@param dAngle Rotation angle
@return Returns a pointer to a newly allocated rotated image if successful, returns NULL otherwise
*/
static FIBITMAP*
RotateAny(FIBITMAP *src, double dAngle, const void *bkcolor) {
if(NULL == src) {
return NULL;
}
FIBITMAP *image = src;
while(dAngle >= 360) {
// Bring angle to range of (-INF .. 360)
dAngle -= 360;
}
while(dAngle < 0) {
// Bring angle to range of [0 .. 360)
dAngle += 360;
}
if((dAngle > 45) && (dAngle <= 135)) {
// Angle in (45 .. 135]
// Rotate image by 90 degrees into temporary image,
// so it requires only an extra rotation angle
// of -45 .. +45 to complete rotation.
image = Rotate90(src);
dAngle -= 90;
}
else if((dAngle > 135) && (dAngle <= 225)) {
// Angle in (135 .. 225]
// Rotate image by 180 degrees into temporary image,
// so it requires only an extra rotation angle
// of -45 .. +45 to complete rotation.
image = Rotate180(src);
dAngle -= 180;
}
else if((dAngle > 225) && (dAngle <= 315)) {
// Angle in (225 .. 315]
// Rotate image by 270 degrees into temporary image,
// so it requires only an extra rotation angle
// of -45 .. +45 to complete rotation.
image = Rotate270(src);
dAngle -= 270;
}
// If we got here, angle is in (-45 .. +45]
if(NULL == image) {
// Failed to allocate middle image
return NULL;
}
if(0 == dAngle) {
if(image == src) {
// Nothing to do ...
return FreeImage_Clone(src);
} else {
// No more rotation needed
return image;
}
}
else {
// Perform last rotation
FIBITMAP *dst = Rotate45(image, dAngle, bkcolor);
if(src != image) {
// Middle image was required, free it now.
FreeImage_Unload(image);
}
return dst;
}
}
// ==========================================================
FIBITMAP *DLL_CALLCONV
FreeImage_Rotate(FIBITMAP *dib, double angle, const void *bkcolor) {
if(!FreeImage_HasPixels(dib)) return NULL;
if(0 == angle) {
return FreeImage_Clone(dib);
}
// DIB are stored upside down ...
angle *= -1;
try {
unsigned bpp = FreeImage_GetBPP(dib);
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(dib);
switch(image_type) {
case FIT_BITMAP:
if(bpp == 1) {
// only rotate for integer multiples of 90 degree
if(fmod(angle, 90) != 0)
return NULL;
// perform the rotation
FIBITMAP *dst = RotateAny(dib, angle, bkcolor);
if(!dst) throw(1);
// build a greyscale palette
RGBQUAD *dst_pal = FreeImage_GetPalette(dst);
if(FreeImage_GetColorType(dib) == FIC_MINISBLACK) {
dst_pal[0].rgbRed = dst_pal[0].rgbGreen = dst_pal[0].rgbBlue = 0;
dst_pal[1].rgbRed = dst_pal[1].rgbGreen = dst_pal[1].rgbBlue = 255;
} else {
dst_pal[0].rgbRed = dst_pal[0].rgbGreen = dst_pal[0].rgbBlue = 255;
dst_pal[1].rgbRed = dst_pal[1].rgbGreen = dst_pal[1].rgbBlue = 0;
}
// copy metadata from src to dst
FreeImage_CloneMetadata(dst, dib);
return dst;
}
else if((bpp == 8) || (bpp == 24) || (bpp == 32)) {
FIBITMAP *dst = RotateAny(dib, angle, bkcolor);
if(!dst) throw(1);
if(bpp == 8) {
// copy original palette to rotated bitmap
RGBQUAD *src_pal = FreeImage_GetPalette(dib);
RGBQUAD *dst_pal = FreeImage_GetPalette(dst);
memcpy(&dst_pal[0], &src_pal[0], 256 * sizeof(RGBQUAD));
// copy transparency table
FreeImage_SetTransparencyTable(dst, FreeImage_GetTransparencyTable(dib), FreeImage_GetTransparencyCount(dib));
// copy background color
RGBQUAD bkcolor;
if( FreeImage_GetBackgroundColor(dib, &bkcolor) ) {
FreeImage_SetBackgroundColor(dst, &bkcolor);
}
}
// copy metadata from src to dst
FreeImage_CloneMetadata(dst, dib);
return dst;
}
break;
case FIT_UINT16:
case FIT_RGB16:
case FIT_RGBA16:
case FIT_FLOAT:
case FIT_RGBF:
case FIT_RGBAF:
{
FIBITMAP *dst = RotateAny(dib, angle, bkcolor);
if(!dst) throw(1);
// copy metadata from src to dst
FreeImage_CloneMetadata(dst, dib);
return dst;
}
break;
}
} catch(int) {
return NULL;
}
return NULL;
}
|