summaryrefslogtreecommitdiff
path: root/plugins/FreeImage/Source/FreeImageToolkit/Resize.cpp
blob: c98fe97391bc77820fc66a4c7713edac1673741a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// ==========================================================
// Upsampling / downsampling classes
//
// Design and implementation by
// - Hervé Drolon (drolon@infonie.fr)
// - Detlev Vendt (detlev.vendt@brillit.de)
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================

#include "Resize.h"

/**
  Filter weights table.
  This class stores contribution information for an entire line (row or column).
*/
CWeightsTable::CWeightsTable(CGenericFilter *pFilter, DWORD uDstSize, DWORD uSrcSize) {
	DWORD u;
	double dWidth;
	double dFScale = 1.0;
	double dFilterWidth = pFilter->GetWidth();

	// scale factor
	double dScale = double(uDstSize) / double(uSrcSize);

	if(dScale < 1.0) {
		// minification
		dWidth = dFilterWidth / dScale; 
		dFScale = dScale; 
	} else {
		// magnification
		dWidth= dFilterWidth; 
	}

	// allocate a new line contributions structure
	//
	// window size is the number of sampled pixels
	m_WindowSize = 2 * (int)ceil(dWidth) + 1; 
	m_LineLength = uDstSize; 
	 // allocate list of contributions 
	m_WeightTable = (Contribution*)malloc(m_LineLength * sizeof(Contribution));
	for(u = 0 ; u < m_LineLength ; u++) {
		// allocate contributions for every pixel
		m_WeightTable[u].Weights = (double*)malloc(m_WindowSize * sizeof(double));
	}

	// offset for discrete to continuous coordinate conversion
	double dOffset = (0.5 / dScale) - 0.5;


	for(u = 0; u < m_LineLength; u++) {
		// scan through line of contributions
		double dCenter = (double)u / dScale + dOffset;   // reverse mapping
		// find the significant edge points that affect the pixel
		int iLeft = MAX (0, (int)floor (dCenter - dWidth)); 
		int iRight = MIN ((int)ceil (dCenter + dWidth), int(uSrcSize) - 1); 

		// cut edge points to fit in filter window in case of spill-off
		if((iRight - iLeft + 1) > int(m_WindowSize)) {
			if(iLeft < (int(uSrcSize) - 1 / 2)) {
				iLeft++; 
			} else {
				iRight--; 
			}
		}

		m_WeightTable[u].Left = iLeft; 
		m_WeightTable[u].Right = iRight;

		int iSrc = 0;
		double dTotalWeight = 0;  // zero sum of weights
		for(iSrc = iLeft; iSrc <= iRight; iSrc++) {
			// calculate weights
			double weight = dFScale * pFilter->Filter(dFScale * (dCenter - (double)iSrc));
			m_WeightTable[u].Weights[iSrc-iLeft] = weight;
			dTotalWeight += weight;
		}
		if((dTotalWeight > 0) && (dTotalWeight != 1)) {
			// normalize weight of neighbouring points
			for(iSrc = iLeft; iSrc <= iRight; iSrc++) {
				// normalize point
				m_WeightTable[u].Weights[iSrc-iLeft] /= dTotalWeight; 
			}
			// simplify the filter, discarding null weights at the right
			iSrc = iRight - iLeft;
			while(m_WeightTable[u].Weights[iSrc] == 0){
				m_WeightTable[u].Right--;
				iSrc--;
				if(m_WeightTable[u].Right == m_WeightTable[u].Left)
					break;
			}

		}
   } 
}

CWeightsTable::~CWeightsTable() {
	for(DWORD u = 0; u < m_LineLength; u++) {
		// free contributions for every pixel
		free(m_WeightTable[u].Weights);
	}
	// free list of pixels contributions
	free(m_WeightTable);
}

// ---------------------------------------------

/**
 CResizeEngine<br>
 This class performs filtered zoom. It scales an image to the desired dimensions with 
 any of the CGenericFilter derived filter class.<br>
 It works with 8-, 24- and 32-bit buffers.<br><br>

 <b>References</b> : <br>
 [1] Paul Heckbert, C code to zoom raster images up or down, with nice filtering. 
 UC Berkeley, August 1989. [online] http://www-2.cs.cmu.edu/afs/cs.cmu.edu/Web/People/ph/heckbert.html
 [2] Eran Yariv, Two Pass Scaling using Filters. The Code Project, December 1999. 
 [online] http://www.codeproject.com/bitmap/2_pass_scaling.asp

*/

FIBITMAP* CResizeEngine::scale(FIBITMAP *src, unsigned dst_width, unsigned dst_height) { 
	DWORD src_width  = FreeImage_GetWidth(src); 
	DWORD src_height = FreeImage_GetHeight(src);

	unsigned redMask	= FreeImage_GetRedMask(src);
	unsigned greenMask	= FreeImage_GetGreenMask(src);
	unsigned blueMask	= FreeImage_GetBlueMask(src);

	unsigned bpp = FreeImage_GetBPP(src);
	if(bpp == 1) {
		// convert output to 8-bit
		bpp = 8;
	}

	FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);

	// allocate the dst image
	FIBITMAP *dst = FreeImage_AllocateT(image_type, dst_width, dst_height, bpp, redMask, greenMask, blueMask);
	if(!dst) return NULL;
	
	if(bpp == 8) {
		if(FreeImage_GetColorType(src) == FIC_MINISWHITE) {
			// build an inverted greyscale palette
			RGBQUAD *dst_pal = FreeImage_GetPalette(dst);
			for(int i = 0; i < 256; i++) {
				dst_pal[i].rgbRed = dst_pal[i].rgbGreen =
					dst_pal[i].rgbBlue = (BYTE)(255 - i);
			}
		} else {
			// build a greyscale palette
			RGBQUAD *dst_pal = FreeImage_GetPalette(dst);
			for(int i = 0; i < 256; i++) {
				dst_pal[i].rgbRed = dst_pal[i].rgbGreen =
					dst_pal[i].rgbBlue = (BYTE)i;
			}
		}
	}

	// decide which filtering order (xy or yx) is faster for this mapping by
	// counting convolution multiplies

	if(dst_width*src_height <= dst_height*src_width) {
		// xy filtering
		// -------------

		// allocate a temporary image
		FIBITMAP *tmp = FreeImage_AllocateT(image_type, dst_width, src_height, bpp, redMask, greenMask, blueMask);
		if(!tmp) {
			FreeImage_Unload(dst);
			return NULL;
		}

		// scale source image horizontally into temporary image
		horizontalFilter(src, src_width, src_height, tmp, dst_width, src_height);

		// scale temporary image vertically into result image    
		verticalFilter(tmp, dst_width, src_height, dst, dst_width, dst_height);

		// free temporary image
		FreeImage_Unload(tmp);

	} else {
		// yx filtering
		// -------------

		// allocate a temporary image
		FIBITMAP *tmp = FreeImage_AllocateT(image_type, src_width, dst_height, bpp, redMask, greenMask, blueMask);
		if(!tmp) {
			FreeImage_Unload(dst);
			return NULL;
		}

		// scale source image vertically into temporary image
		verticalFilter(src, src_width, src_height, tmp, src_width, dst_height);

		// scale temporary image horizontally into result image    
		horizontalFilter(tmp, src_width, dst_height, dst, dst_width, dst_height);

		// free temporary image
		FreeImage_Unload(tmp);
	}

	return dst;
} 


/// Performs horizontal image filtering
void CResizeEngine::horizontalFilter(FIBITMAP *src, unsigned src_width, unsigned src_height, FIBITMAP *dst, unsigned dst_width, unsigned dst_height) { 
	if(dst_width == src_width) {
		// no scaling required, just copy
		switch(FreeImage_GetBPP(src)) {
			case 1:
			{
				if(FreeImage_GetBPP(dst) != 8) break;
				for(unsigned y = 0; y < dst_height; y++) {
					// convert each row 
					BYTE *src_bits = FreeImage_GetScanLine(src, y);
					BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
					FreeImage_ConvertLine1To8(dst_bits, src_bits, dst_width);
				}
			}
			break;

			default:
			{
				BYTE *src_bits = FreeImage_GetBits(src);
				BYTE *dst_bits = FreeImage_GetBits(dst);
				memcpy(dst_bits, src_bits, dst_height * FreeImage_GetPitch(dst));
			}
			break;
		}
	}
	else {
		unsigned index;	// pixel index

		// allocate and calculate the contributions
		CWeightsTable weightsTable(m_pFilter, dst_width, src_width); 
		
		// step through rows
		switch(FreeImage_GetImageType(src)) {
			case FIT_BITMAP:
			{
				switch(FreeImage_GetBPP(src)) {
					case 1:
					{
						// scale and convert to 8-bit
						if(FreeImage_GetBPP(dst) != 8) break;

						for(unsigned y = 0; y < dst_height; y++) {
							// scale each row 
							BYTE *src_bits = FreeImage_GetScanLine(src, y);
							BYTE *dst_bits = FreeImage_GetScanLine(dst, y);

							for(unsigned x = 0; x < dst_width; x++) {
								// loop through row
								double value = 0;
								int iLeft = weightsTable.getLeftBoundary(x);    // retrieve left boundary
								int iRight = weightsTable.getRightBoundary(x);  // retrieve right boundary

								for(int i = iLeft; i <= iRight; i++) {
									// scan between boundaries
									// accumulate weighted effect of each neighboring pixel
									double weight = weightsTable.getWeight(x, i-iLeft);
									
									BYTE pixel = (src_bits[i >> 3] & (0x80 >> (i & 0x07))) != 0;
									value += (weight * (double)pixel);
								} 
								value *= 255;

								// clamp and place result in destination pixel
								dst_bits[x] = (BYTE)MIN(MAX((int)0, (int)(value + 0.5)), (int)255);
							} 
						}
					}
					break;

					case 8:
					case 24:
					case 32:
					{
						// Calculate the number of bytes per pixel (1 for 8-bit, 3 for 24-bit or 4 for 32-bit)
						unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);

						for(unsigned y = 0; y < dst_height; y++) {
							// scale each row 
							BYTE *src_bits = FreeImage_GetScanLine(src, y);
							BYTE *dst_bits = FreeImage_GetScanLine(dst, y);

							for(unsigned x = 0; x < dst_width; x++) {
								// loop through row
								double value[4] = {0, 0, 0, 0};					// 4 = 32bpp max
								int iLeft = weightsTable.getLeftBoundary(x);    // retrieve left boundary
								int iRight = weightsTable.getRightBoundary(x);  // retrieve right boundary

								for(int i = iLeft; i <= iRight; i++) {
									// scan between boundaries
									// accumulate weighted effect of each neighboring pixel
									double weight = weightsTable.getWeight(x, i-iLeft);
									
									index = i * bytespp;
									for (unsigned j = 0; j < bytespp; j++) {
										value[j] += (weight * (double)src_bits[index++]); 
									}
								} 

								// clamp and place result in destination pixel
								for (unsigned j = 0; j < bytespp; j++) {
									dst_bits[j] = (BYTE)MIN(MAX((int)0, (int)(value[j] + 0.5)), (int)255);
								}

								dst_bits += bytespp;
							} 
						}
					}
					break;
				}
			}
			break;

			case FIT_UINT16:
			case FIT_RGB16:
			case FIT_RGBA16:
			{
				// Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
				unsigned wordspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(WORD);

				for(unsigned y = 0; y < dst_height; y++) {
					// scale each row 
					WORD *src_bits = (WORD*)FreeImage_GetScanLine(src, y);
					WORD *dst_bits = (WORD*)FreeImage_GetScanLine(dst, y);

					for(unsigned x = 0; x < dst_width; x++) {
						// loop through row
						double value[4] = {0, 0, 0, 0};					// 4 = 64bpp max
						int iLeft = weightsTable.getLeftBoundary(x);    // retrieve left boundary
						int iRight = weightsTable.getRightBoundary(x);  // retrieve right boundary

						for(int i = iLeft; i <= iRight; i++) {
							// scan between boundaries
							// accumulate weighted effect of each neighboring pixel
							double weight = weightsTable.getWeight(x, i-iLeft);
							
							index = i * wordspp;
							for (unsigned j = 0; j < wordspp; j++) {
								value[j] += (weight * (double)src_bits[index++]); 
							}
						} 

						// clamp and place result in destination pixel
						for (unsigned j = 0; j < wordspp; j++) {
							dst_bits[j] = (WORD)MIN(MAX((int)0, (int)(value[j] + 0.5)), (int)0xFFFF);
						}

						dst_bits += wordspp;
					} 
				}
			}
			break;

			case FIT_FLOAT:
			case FIT_RGBF:
			case FIT_RGBAF:
			{
				// Calculate the number of floats per pixel (1 for 32-bit, 3 for 96-bit or 4 for 128-bit)
				unsigned floatspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(float);

				for(unsigned y = 0; y < dst_height; y++) {
					// scale each row 
					float *src_bits = (float*)FreeImage_GetScanLine(src, y);
					float *dst_bits = (float*)FreeImage_GetScanLine(dst, y);

					for(unsigned x = 0; x < dst_width; x++) {
						// loop through row
						double value[4] = {0, 0, 0, 0};					// 4 = 64bpp max
						int iLeft = weightsTable.getLeftBoundary(x);    // retrieve left boundary
						int iRight = weightsTable.getRightBoundary(x);  // retrieve right boundary

						for(int i = iLeft; i <= iRight; i++) {
							// scan between boundaries
							// accumulate weighted effect of each neighboring pixel
							double weight = weightsTable.getWeight(x, i-iLeft);
							
							index = i * floatspp;
							for (unsigned j = 0; j < floatspp; j++) {
								value[j] += (weight * (double)src_bits[index++]); 
							}
						} 

						// place result in destination pixel
						for (unsigned j = 0; j < floatspp; j++) {
							dst_bits[j] = (float)value[j];
						}

						dst_bits += floatspp;
					} 
				}
			}
			break;

		}
	}
} 

/// Performs vertical image filtering
void CResizeEngine::verticalFilter(FIBITMAP *src, unsigned src_width, unsigned src_height, FIBITMAP *dst, unsigned dst_width, unsigned dst_height) { 
	if(src_height == dst_height) {
		// no scaling required, just copy
		switch(FreeImage_GetBPP(src)) {
			case 1:
			{
				if(FreeImage_GetBPP(dst) != 8) break;
				for(unsigned y = 0; y < dst_height; y++) {
					// convert each row 
					BYTE *src_bits = FreeImage_GetScanLine(src, y);
					BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
					FreeImage_ConvertLine1To8(dst_bits, src_bits, dst_width);
				}
			}
			break;

			default:
			{
				BYTE *src_bits = FreeImage_GetBits(src);
				BYTE *dst_bits = FreeImage_GetBits(dst);
				memcpy(dst_bits, src_bits, dst_height * FreeImage_GetPitch(dst));
			}
			break;
		}

	}
	else {
		unsigned index;	// pixel index

		// allocate and calculate the contributions
		CWeightsTable weightsTable(m_pFilter, dst_height, src_height); 


		// step through columns
		switch(FreeImage_GetImageType(src)) {
			case FIT_BITMAP:
			{
				switch(FreeImage_GetBPP(src)) {
					case 1:
					{
						// scale and convert to 8-bit
						if(FreeImage_GetBPP(dst) != 8) break;

						unsigned src_pitch = FreeImage_GetPitch(src);
						unsigned dst_pitch = FreeImage_GetPitch(dst);

						for(unsigned x = 0; x < dst_width; x++) {

							// work on column x in dst
							BYTE *dst_bits = FreeImage_GetBits(dst) + x;

							// scale each column
							for(unsigned y = 0; y < dst_height; y++) {
								// loop through column
								double value = 0;
								int iLeft = weightsTable.getLeftBoundary(y);    // retrieve left boundary
								int iRight = weightsTable.getRightBoundary(y);  // retrieve right boundary

								BYTE *src_bits = FreeImage_GetScanLine(src, iLeft);

								for(int i = iLeft; i <= iRight; i++) {
									// scan between boundaries
									// accumulate weighted effect of each neighboring pixel
									double weight = weightsTable.getWeight(y, i-iLeft);	
									
									BYTE pixel = (src_bits[x >> 3] & (0x80 >> (x & 0x07))) != 0;
									value += (weight * (double)pixel);

									src_bits += src_pitch;
								}
								value *= 255;

								// clamp and place result in destination pixel
								*dst_bits = (BYTE)MIN(MAX((int)0, (int)(value + 0.5)), (int)255);

								dst_bits += dst_pitch;
							}
						}
					}
					break;

					case 8:
					case 24:
					case 32:
					{
						// Calculate the number of bytes per pixel (1 for 8-bit, 3 for 24-bit or 4 for 32-bit)
						unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);

						unsigned src_pitch = FreeImage_GetPitch(src);
						unsigned dst_pitch = FreeImage_GetPitch(dst);

						for(unsigned x = 0; x < dst_width; x++) {
							index = x * bytespp;

							// work on column x in dst
							BYTE *dst_bits = FreeImage_GetBits(dst) + index;

							// scale each column
							for(unsigned y = 0; y < dst_height; y++) {
								// loop through column
								double value[4] = {0, 0, 0, 0};					// 4 = 32bpp max
								int iLeft = weightsTable.getLeftBoundary(y);    // retrieve left boundary
								int iRight = weightsTable.getRightBoundary(y);  // retrieve right boundary

								BYTE *src_bits = FreeImage_GetScanLine(src, iLeft) + index;

								for(int i = iLeft; i <= iRight; i++) {
									// scan between boundaries
									// accumulate weighted effect of each neighboring pixel
									double weight = weightsTable.getWeight(y, i-iLeft);							
									for (unsigned j = 0; j < bytespp; j++) {
										value[j] += (weight * (double)src_bits[j]);
									}

									src_bits += src_pitch;
								}

								// clamp and place result in destination pixel
								for (unsigned j = 0; j < bytespp; j++) {
									dst_bits[j] = (BYTE)MIN(MAX((int)0, (int)(value[j] + 0.5)), (int)255);
								}

								dst_bits += dst_pitch;
							}
						}
					}
					break;
				}
			}
			break;

			case FIT_UINT16:
			case FIT_RGB16:
			case FIT_RGBA16:
			{
				// Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
				unsigned wordspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(WORD);

				unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(WORD);
				unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(WORD);

				for(unsigned x = 0; x < dst_width; x++) {
					index = x * wordspp;

					// work on column x in dst
					WORD *dst_bits = (WORD*)FreeImage_GetBits(dst) + index;

					// scale each column
					for(unsigned y = 0; y < dst_height; y++) {
						// loop through column
						double value[4] = {0, 0, 0, 0};					// 4 = 64bpp max
						int iLeft = weightsTable.getLeftBoundary(y);    // retrieve left boundary
						int iRight = weightsTable.getRightBoundary(y);  // retrieve right boundary

						WORD *src_bits = (WORD*)FreeImage_GetScanLine(src, iLeft) + index;

						for(int i = iLeft; i <= iRight; i++) {
							// scan between boundaries
							// accumulate weighted effect of each neighboring pixel
							double weight = weightsTable.getWeight(y, i-iLeft);							
							for (unsigned j = 0; j < wordspp; j++) {
								value[j] += (weight * (double)src_bits[j]);
							}

							src_bits += src_pitch;
						}

						// clamp and place result in destination pixel
						for (unsigned j = 0; j < wordspp; j++) {
							dst_bits[j] = (WORD)MIN(MAX((int)0, (int)(value[j] + 0.5)), (int)0xFFFF);
						}

						dst_bits += dst_pitch;
					}
				}
			}
			break;

			case FIT_FLOAT:
			case FIT_RGBF:
			case FIT_RGBAF:
			{
				// Calculate the number of floats per pixel (1 for 32-bit, 3 for 96-bit or 4 for 128-bit)
				unsigned floatspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(float);

				unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(float);
				unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(float);

				for(unsigned x = 0; x < dst_width; x++) {
					index = x * floatspp;

					// work on column x in dst
					float *dst_bits = (float*)FreeImage_GetBits(dst) + index;

					// scale each column
					for(unsigned y = 0; y < dst_height; y++) {
						// loop through column
						double value[4] = {0, 0, 0, 0};					// 4 = 64bpp max
						int iLeft = weightsTable.getLeftBoundary(y);    // retrieve left boundary
						int iRight = weightsTable.getRightBoundary(y);  // retrieve right boundary

						float *src_bits = (float*)FreeImage_GetScanLine(src, iLeft) + index;

						for(int i = iLeft; i <= iRight; i++) {
							// scan between boundaries
							// accumulate weighted effect of each neighboring pixel
							double weight = weightsTable.getWeight(y, i-iLeft);							
							for (unsigned j = 0; j < floatspp; j++) {
								value[j] += (weight * (double)src_bits[j]);
							}

							src_bits += src_pitch;
						}

						// clamp and place result in destination pixel
						for (unsigned j = 0; j < floatspp; j++) {
							dst_bits[j] = (float)value[j];
						}

						dst_bits += dst_pitch;
					}
				}
			}
			break;

		}
	}
}