summaryrefslogtreecommitdiff
path: root/plugins/Libs/FastMM4.pas
blob: 8e02a3a1c9fd6191caa49afae91ff19777e32a62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
(*

Fast Memory Manager 4.99

Description:
 A fast replacement memory manager for Embarcadero Delphi Win32 applications
 that scales well under multi-threaded usage, is not prone to memory
 fragmentation, and supports shared memory without the use of external .DLL
 files.

Homepage:
 http://fastmm.sourceforge.net

Advantages:
 - Fast
 - Low overhead. FastMM is designed for an average of 5% and maximum of 10%
   overhead per block.
 - Supports up to 3GB of user mode address space under Windows 32-bit and 4GB
   under Windows 64-bit. Add the "$SetPEFlags $20" option (in curly braces)
   to your .dpr to enable this.
 - Highly aligned memory blocks. Can be configured for either 8-byte or 16-byte
   alignment.
 - Good scaling under multi-threaded applications
 - Intelligent reallocations. Avoids slow memory move operations through
   not performing unneccesary downsizes and by having a minimum percentage
   block size growth factor when an in-place block upsize is not possible.
 - Resistant to address space fragmentation
 - No external DLL required when sharing memory between the application and
   external libraries (provided both use this memory manager)
 - Optionally reports memory leaks on program shutdown. (This check can be set
   to be performed only if Delphi is currently running on the machine, so end
   users won't be bothered by the error message.)
 - Supports Delphi 4 (or later), C++ Builder 4 (or later), Kylix 3.

Usage:
 Delphi:
  Place this unit as the very first unit under the "uses" section in your
  project's .dpr file. When sharing memory between an application and a DLL
  (e.g. when passing a long string or dynamic array to a DLL function), both the
  main application and the DLL must be compiled using this memory manager (with
  the required conditional defines set). There are some conditional defines
  (inside FastMM4Options.inc) that may be used to tweak the memory manager. To
  enable support for a user mode address space greater than 2GB you will have to
  use the EditBin* tool to set the LARGE_ADDRESS_AWARE flag in the EXE header.
  This informs Windows x64 or Windows 32-bit (with the /3GB option set) that the
  application supports an address space larger than 2GB (up to 4GB). In Delphi 6
  and later you can also specify this flag through the compiler directive
  {$SetPEFlags $20}
  *The EditBin tool ships with the MS Visual C compiler.
 C++ Builder 6:
  Refer to the instructions inside FastMM4BCB.cpp.

License:
 This work is copyright Professional Software Development / Pierre le Riche. It
 is released under a dual license, and you may choose to use it under either the
 Mozilla Public License 1.1 (MPL 1.1, available from
 http://www.mozilla.org/MPL/MPL-1.1.html) or the GNU Lesser General Public
 License 2.1 (LGPL 2.1, available from
 http://www.opensource.org/licenses/lgpl-license.php). If you find FastMM useful
 or you would like to support further development, a donation would be much
 appreciated. My banking details are:
   Country: South Africa
   Bank: ABSA Bank Ltd
   Branch: Somerset West
   Branch Code: 334-712
   Account Name: PSD (Distribution)
   Account No.: 4041827693
   Swift Code: ABSAZAJJ
 My PayPal account is:
   bof@psd.co.za

Contact Details:
 My contact details are shown below if you would like to get in touch with me.
 If you use this memory manager I would like to hear from you: please e-mail me
 your comments - good and bad.
 Snailmail:
   PO Box 2514
   Somerset West
   7129
   South Africa
 E-mail:
   plr@psd.co.za

Support:
 If you have trouble using FastMM, you are welcome to drop me an e-mail at the
 address above, or you may post your questions in the BASM newsgroup on the
 Embarcadero news server (which is where I hang out quite frequently).

Disclaimer:
 FastMM has been tested extensively with both single and multithreaded
 applications on various hardware platforms, but unfortunately I am not in a
 position to make any guarantees. Use it at your own risk.

Acknowledgements (for version 4):
 - Eric Grange for his RecyclerMM on which the earlier versions of FastMM were
   based. RecyclerMM was what inspired me to try and write my own memory
   manager back in early 2004.
 - Primoz Gabrijelcic for helping to track down various bugs.
 - Dennis Christensen for his tireless efforts with the Fastcode project:
   helping to develop, optimize and debug the growing Fastcode library.
 - JiYuan Xie for implementing the leak reporting code for C++ Builder.
 - Sebastian Zierer for implementing the OS X support.
 - Pierre Y. for his suggestions regarding the extension of the memory leak
   checking options.
 - Hanspeter Widmer for his suggestion to have an option to display install and
   uninstall debug messages and moving options to a separate file, as well as
   the new usage tracker.
 - Anders Isaksson and Greg for finding and identifying the "DelphiIsRunning"
   bug under Delphi 5.
 - Francois Malan for various suggestions and bug reports.
 - Craig Peterson for helping me identify the cache associativity issues that
   could arise due to medium blocks always being an exact multiple of 256 bytes.
   Also for various other bug reports and enhancement suggestions.
 - Jarek Karciarz, Vladimir Ulchenko (Vavan) and Bob Gonder for their help in
   implementing the BCB support.
 - Ben Taylor for his suggestion to display the object class of all memory
   leaks.
 - Jean Marc Eber and Vincent Mahon (the Memcheck guys) for the call stack
   trace code and also the method used to catch virtual method calls on freed
   objects.
 - Nahan Hyn for the suggestion to be able to enable or disable memory leak
   reporting through a global variable (the "ManualLeakReportingControl"
   option.)
 - Leonel Togniolli for various suggestions with regard to enhancing the bug
   tracking features of FastMM and other helpful advice.
 - Joe Bain and Leonel Togniolli for the workaround to QC#10922 affecting
   compilation under Delphi 2005.
 - Robert Marquardt for the suggestion to make localisation of FastMM easier by
   having all string constants together.
 - Simon Kissel and Fikret Hasovic for their help in implementing Kylix support.
 - Matthias Thoma, Petr Vones, Robert Rossmair and the rest of the JCL team for
   their debug info library used in the debug info support DLL and also the
   code used to check for a valid call site in the "raw" stack trace code.
 - Andreas Hausladen for the suggestion to use an external DLL to enable the
   reporting of debug information.
 - Alexander Tabakov for various good suggestions regarding the debugging
   facilities of FastMM.
 - M. Skloff for some useful suggestions and bringing to my attention some
   compiler warnings.
 - Martin Aignesberger for the code to use madExcept instead of the JCL library
   inside the debug info support DLL.
 - Diederik and Dennis Passmore for the suggestion to be able to register
   expected leaks.
 - Dario Tiraboschi and Mark Gebauer for pointing out the problems that occur
   when range checking and complete boolean evaluation is turned on.
 - Arthur Hoornweg for notifying me of the image base being incorrect for
   borlndmm.dll.
 - Theo Carr-Brion and Hanspeter Widmer for finding the false alarm error
   message "Block Header Has Been Corrupted" bug in FullDebugMode.
 - Danny Heijl for reporting the compiler error in "release" mode.
 - Omar Zelaya for reporting the BCB support regression bug.
 - Dan Miser for various good suggestions, e.g. not logging expected leaks to
   file, enhancements the stack trace and messagebox functionality, etc.
 - Arjen de Ruijter for fixing the bug in GetMemoryLeakType that caused it
   to not properly detect expected leaks registered by class when in
   "FullDebugMode".
 - Aleksander Oven for reporting the installation problem when trying to use
   FastMM in an application together with libraries that all use runtime
   packages.
 - Kristofer Skaug for reporting the bug that sometimes causes the leak report
   to be shown, even when all the leaks have been registered as expected leaks.
   Also for some useful enhancement suggestions.
 - Günther Schoch for the "RequireDebuggerPresenceForLeakReporting" option.
 - Jan Schlüter for the "ForceMMX" option.
 - Hallvard Vassbotn for various good enhancement suggestions.
 - Mark Edington for some good suggestions and bug reports.
 - Paul Ishenin for reporting the compilation error when the NoMessageBoxes
   option is set and also the missing call stack entries issue when "raw" stack
   traces are enabled, as well as for the Russian translation.
 - Cristian Nicola for reporting the compilation bug when the
   CatchUseOfFreedInterfaces option was enabled (4.40).
 - Mathias Rauen (madshi) for improving the support for madExcept in the debug
   info support DLL.
 - Roddy Pratt for the BCB5 support code.
 - Rene Mihula for the Czech translation and the suggestion to have dynamic
   loading of the FullDebugMode DLL as an option.
 - Artur Redzko for the Polish translation.
 - Bart van der Werf for helping me solve the DLL unload order problem when
   using the debug mode borlndmm.dll library, as well as various other
   suggestions.
 - JRG ("The Delphi Guy") for the Spanish translation.
 - Justus Janssen for Delphi 4 support.
 - Vadim Lopushansky and Charles Vinal for reporting the Delphi 5 compiler
   error in version 4.50.
 - Johni Jeferson Capeletto for the Brazilian Portuguese translation.
 - Kurt Fitzner for reporting the BCB6 compiler error in 4.52.
 - Michal Niklas for reporting the Kylix compiler error in 4.54.
 - Thomas Speck and Uwe Queisser for German translations.
 - Zaenal Mutaqin for the Indonesian translation.
 - Carlos Macao for the Portuguese translation.
 - Michael Winter for catching the performance issue when reallocating certain
   block sizes.
 - dzmitry[li] for the Belarussian translation.
 - Marcelo Montenegro for the updated Spanish translation.
 - Jud Cole for finding and reporting the bug which may trigger a read access
   violation when upsizing certain small block sizes together with the
   "UseCustomVariableSizeMoveRoutines" option.
 - Zdenek Vasku for reporting and fixing the memory manager sharing bug
   affecting Windows 95/98/Me.
 - RB Winston for suggesting the improvement to GExperts "backup" support.
 - Thomas Schulz for reporting the bug affecting large address space support
   under FullDebugMode, as well as the recursive call bug when attempting to
   report memory leaks when EnableMemoryLeakReporting is disabled.
 - Luigi Sandon for the Italian translation.
 - Werner Bochtler for various suggestions and bug reports.
 - Markus Beth for suggesting the "NeverSleepOnThreadContention" option.
 - JiYuan Xie for the Simplified Chinese translation.
 - Andrey Shtukaturov for the updated Russian translation, as well as the
   Ukrainian translation.
 - Dimitry Timokhov for finding two elusive bugs in the memory leak class
   detection code.
 - Paulo Moreno for fixing the AllocMem bug in FullDebugMode that prevented
   large blocks from being cleared.
 - Vladimir Bochkarev for the suggestion to remove some unnecessary code if the
   MM sharing mechanism is disabled.
 - Loris Luise for the version constant suggestion.
 - J.W. de Bokx for the MessageBox bugfix.
 - Igor Lindunen for reporting the bug that caused the Align16Bytes option to
   not work in FullDebugMode.
 - Ionut Muntean for the Romanian translation.
 - Florent Ouchet for the French translation.
 - Marcus Mönnig for the ScanMemoryPoolForCorruptions suggestion and the
   suggestion to have the option to scan the memory pool before every
   operation when in FullDebugMode.
 - Francois Piette for bringing under my attention that
   ScanMemoryPoolForCorruption was not thread safe.
 - Michael Rabatscher for reporting some compiler warnings.
 - QianYuan Wang for the Simplified Chinese translation of FastMM4Options.inc.
 - Maurizio Lotauro and Christian-W. Budde for reporting some Delphi 5
   compiler errors.
 - Patrick van Logchem for the DisableLoggingOfMemoryDumps option.
 - Norbert Spiegel for the BCB4 support code.
 - Uwe Schuster for the improved string leak detection code.
 - Murray McGowan for improvements to the usage tracker.
 - Michael Hieke for the SuppressFreeMemErrorsInsideException option as well
   as a bugfix to GetMemoryMap.
 - Richard Bradbrook for fixing the Windows 95 FullDebugMode support that was
   broken in version 4.94.
 - Zach Saw for the suggestion to (optionally) use SwitchToThread when
   waiting for a lock on a shared resource to be released.
 - Everyone who have made donations. Thanks!
 - Any other Fastcoders or supporters that I have forgotten, and also everyone
   that helped with the older versions.

Change log:
 Version 1.00 (28 June 2004):
  - First version (called PSDMemoryManager). Based on RecyclerMM (free block
    stack approach) by Eric Grange.
 Version 2.00 (3 November 2004):
  - Complete redesign and rewrite from scratch. Name changed to FastMM to
    reflect this fact. Uses a linked-list approach. Is faster, has less memory
    overhead, and will now catch most bad pointers on FreeMem calls.
 Version 3.00 (1 March 2005):
  - Another rewrite. Reduced the memory overhead by: (a) not having a separate
    memory area for the linked list of free blocks (uses space inside free
    blocks themselves) (b) batch managers are allocated as part of chunks (c)
    block size lookup table size reduced. This should make FastMM more CPU
    cache friendly.
 Version 4.00 (7 June 2005):
  - Yet another rewrite. FastMM4 is in fact three memory managers in one: Small
    blocks (up to a few KB) are managed through the binning model in the same
    way as previous versions, medium blocks (from a few KB up to approximately
    256K) are allocated in a linked-list fashion, and large blocks are grabbed
    directly from the system through VirtualAlloc. This 3-layered design allows
    very fast operation with the most frequently used block sizes (small
    blocks), while also minimizing fragmentation and imparting significant
    overhead savings with blocks larger than a few KB.
 Version 4.01 (8 June 2005):
  - Added the options "RequireDebugInfoForLeakReporting" and
    "RequireIDEPresenceForLeakReporting" as suggested by Pierre Y.
  - Fixed the "DelphiIsRunning" function not working under Delphi 5, and
    consequently no leak checking. (Reported by Anders Isaksson and Greg.)
 Version 4.02 (8 June 2005):
  - Fixed the compilation error when both the "AssumeMultiThreaded" and
    "CheckHeapForCorruption options were set. (Reported by Francois Malan.)
 Version 4.03 (9 June 2005):
  - Added descriptive error messages when FastMM4 cannot be installed because
    another MM has already been installed or memory has already been allocated.
 Version 4.04 (13 June 2005):
  - Added a small fixed offset to the size of medium blocks (previously always
    exact multiples of 256 bytes). This makes performance problems due to CPU
    cache associativity limitations much less likely. (Reported by Craig
    Peterson.)
 Version 4.05 (17 June 2005):
  - Added the Align16Bytes option. Disable this option to drop the 16 byte
    alignment restriction and reduce alignment to 8 bytes for the smallest
    block sizes. Disabling Align16Bytes should lower memory consumption at the
    cost of complicating the use of aligned SSE move instructions. (Suggested
    by Craig Peterson.)
  - Added a support unit for C++ Builder 6 - Add FastMM4BCB.cpp and
    FastMM4.pas to your BCB project to use FastMM instead of the RTL MM. Memory
    leak checking is not supported because (unfortunately) once an MM is
    installed under BCB you cannot uninstall it... at least not without
    modifying the RTL code in exit.c or patching the RTL code runtime. (Thanks
    to Jarek Karciarz, Vladimir Ulchenko and Bob Gonder.)
 Version 4.06 (22 June 2005):
  - Displays the class of all leaked objects on the memory leak report and also
    tries to identify leaked long strings. Previously it only displayed the
    sizes of all leaked blocks. (Suggested by Ben Taylor.)
  - Added support for displaying the sizes of medium and large block memory
    leaks. Previously it only displayed details for small block leaks.
 Version 4.07 (22 June 2005):
  - Fixed the detection of the class of leaked objects not working under
    Windows 98/Me.
 Version 4.08 (27 June 2005):
  - Added a BorlndMM.dpr project to allow you to build a borlndmm.dll that uses
    FastMM4 instead of the default memory manager. You may replace the old
    DLL in the Delphi \Bin directory to make the IDE use this memory manager
    instead.
 Version 4.09 (30 June 2005):
  - Included a patch fix for the bug affecting replacement borlndmm.dll files
    with Delphi 2005 (QC#14007). Compile the patch, close Delphi, and run it
    once to patch your vclide90.bpl. You will now be able to use the
    replacement borlndmm.dll to speed up the Delphi 2005 IDE as well.
 Version 4.10 (7 July 2005):
  - Due to QC#14070 ("Delphi IDE attempts to free memory after the shutdown
    code of borlndmm.dll has been called"), FastMM cannot be uninstalled
    safely when used inside a replacement borlndmm.dll for the IDE. Added a
    conditional define "NeverUninstall" for this purpose.
  - Added the "FullDebugMode" option to pad all blocks with a header and footer
    to help you catch memory overwrite bugs in your applications. All blocks
    returned to freemem are also zeroed out to help catch bugs involving the
    use of previously freed blocks. Also catches attempts at calling virtual
    methods of freed objects provided the block in question has not been reused
    since the object was freed. Displays stack traces on error to aid debugging.
  - Added the "LogErrorsToFile" option to log all errors to a text file in the
    same folder as the application.
  - Added the "ManualLeakReportingControl" option (suggested by Nahan Hyn) to
    enable control over whether the memory leak report should be done or not
    via a global variable.
 Version 4.11 (7 July 2005):
  - Fixed a compilation error under Delphi 2005 due to QC#10922. (Thanks to Joe
    Bain and Leonel Togniolli.)
  - Fixed leaked object classes not displaying in the leak report in
    "FullDebugMode".
  Version 4.12 (8 July 2005):
  - Moved all the string constants to one place to make it easier to do
    translations into other languages. (Thanks to Robert Marquardt.)
  - Added support for Kylix. Some functionality is currently missing: No
    support for detecting the object class on leaks and also no MM sharing.
    (Thanks to Simon Kissel and Fikret Hasovic).
  Version 4.13 (11 July 2005):
  - Added the FastMM_DebugInfo.dll support library to display debug info for
    stack traces.
  - Stack traces for the memory leak report is now logged to the log file in
    "FullDebugMode".
  Version 4.14 (14 July 2005):
  - Fixed string leaks not being detected as such in "FullDebugMode". (Thanks
    to Leonel Togniolli.)
  - Fixed the compilation error in "FullDebugMode" when "LogErrorsToFile" is
    not set. (Thanks to Leonel Togniolli.)
  - Added a "Release" option to allow the grouping of various options and to
    make it easier to make debug and release builds. (Thanks to Alexander
    Tabakov.)
  - Added a "HideMemoryLeakHintMessage" option to not display the hint below
    the memory leak message. (Thanks to Alexander Tabakov.)
  - Changed the fill character for "FullDebugMode" from zero to $80 to be able
    to differentiate between invalid memory accesses using nil pointers to
    invalid memory accesses using fields of freed objects. FastMM tries to
    reserve the 64K block starting at $80800000 at startup to ensure that an
    A/V will occur when this block is accessed. (Thanks to Alexander Tabakov.)
  - Fixed some compiler warnings. (Thanks to M. Skloff)
  - Fixed some display bugs in the memory leak report. (Thanks to Leonel
    Togniolli.)
  - Added a "LogMemoryLeakDetailToFile" option. Some applications leak a lot of
    memory and can make the log file grow very large very quickly.
  - Added the option to use madExcept instead of the JCL Debug library in the
    debug info support DLL. (Thanks to Martin Aignesberger.)
  - Added procedures "GetMemoryManagerState" and "GetMemoryMap" to retrieve
    statistics about the current state of the memory manager and memory pool.
    (A usage tracker form together with a demo is also available.)
  Version 4.15 (14 July 2005):
  - Fixed a false 4GB(!) memory leak reported in some instances.
  Version 4.16 (15 July 2005):
  - Added the "CatchUseOfFreedInterfaces" option to catch the use of interfaces
    of freed objects. This option is not compatible with checking that a freed
    block has not been modified, so enable this option only when hunting an
    invalid interface reference. (Only relevant if "FullDebugMode" is set.)
  - During shutdown FastMM now checks that all free blocks have not been
    modified since being freed. (Only when "FullDebugMode" is set and
    "CatchUseOfFreedInterfaces" is disabled.)
  Version 4.17 (15 July 2005):
 - Added the AddExpectedMemoryLeaks and RemoveExpectedMemoryLeaks procedures to
   register/unregister expected leaks, thus preventing the leak report from
   displaying if only expected leaks occurred. (Thanks to Diederik and Dennis
   Passmore for the suggestion.) (Note: these functions were renamed in later
   versions.)
 - Fixed the "LogMemoryLeakDetailToFile" not logging memory leak detail to file
   as it is supposed to. (Thanks to Leonel Togniolli.)
 Version 4.18 (18 July 2005):
 - Fixed some issues when range checking or complete boolean evaluation is
   switched on. (Thanks to Dario Tiraboschi and Mark Gebauer.)
 - Added the "OutputInstallUninstallDebugString" option to display a message when
   FastMM is installed or uninstalled. (Thanks to Hanspeter Widmer.)
 - Moved the options to a separate include file. (Thanks to Hanspeter Widmer.)
 - Moved message strings to a separate file for easy translation.
 Version 4.19 (19 July 2005):
 - Fixed Kylix support that was broken in 4.14.
 Version 4.20 (20 July 2005):
 - Fixed a false memory overwrite report at shutdown in "FullDebugMode". If you
   consistently got a "Block Header Has Been Corrupted" error message during
   shutdown at address $xxxx0070 then it was probably a false alarm. (Thanks to
   Theo Carr-Brion and Hanspeter Widmer.}
 Version 4.21 (27 July 2005):
 - Minor change to the block header flags to make it possible to immediately
   tell whether a medium block is being used as a small block pool or not.
   (Simplifies the leak checking and status reporting code.)
 - Expanded the functionality around the management of expected memory leaks.
 - Added the "ClearLogFileOnStartup" option. Deletes the log file during
   initialization. (Thanks to M. Skloff.)
 - Changed "OutputInstallUninstallDebugString" to use OutputDebugString instead
   of MessageBox. (Thanks to Hanspeter Widmer.)
 Version 4.22 (1 August 2005):
 - Added a FastAllocMem function that avoids an unnecessary FillChar call with
   large blocks.
 - Changed large block resizing behavior to be a bit more conservative. Large
   blocks will be downsized if the new size is less than half of the old size
   (the threshold was a quarter previously).
 Version 4.23 (6 August 2005):
 - Fixed BCB6 support (Thanks to Omar Zelaya).
 - Renamed "OutputInstallUninstallDebugString" to "UseOutputDebugString", and
   added debug string output on memory leak or error detection.
 Version 4.24 (11 August 2005):
 - Added the "NoMessageBoxes" option to suppress the display of message boxes,
   which is useful for services that should not be interrupted. (Thanks to Dan
   Miser).
 - Changed the stack trace code to return the line number of the caller and not
   the line number of the return address. (Thanks to Dan Miser).
 Version 4.25 (15 August 2005):
 - Fixed GetMemoryLeakType not detecting expected leaks registered by class
   when in "FullDebugMode". (Thanks to Arjen de Ruijter).
 Version 4.26 (18 August 2005):
 - Added a "UseRuntimePackages" option that allows FastMM to be used in a main
   application together with DLLs that all use runtime packages. (Thanks to
   Aleksander Oven.)
 Version 4.27 (24 August 2005):
 - Fixed a bug that sometimes caused the leak report to be shown even though all
   leaks were registered as expected leaks. (Thanks to Kristofer Skaug.)
 Version 4.29 (30 September 2005):
 - Added the "RequireDebuggerPresenceForLeakReporting" option to only display
   the leak report if the application is run inside the IDE. (Thanks to Günther
   Schoch.)
 - Added the "ForceMMX" option, which when disabled will check the CPU for
   MMX compatibility before using MMX. (Thanks to Jan Schlüter.)
 - Added the module name to the title of error dialogs to more easily identify
   which application caused the error. (Thanks to Kristofer Skaug.)
 - Added an ASCII dump to the "FullDebugMode" memory dumps. (Thanks to Hallvard
   Vassbotn.)
 - Added the option "HideExpectedLeaksRegisteredByPointer" to suppress the
   display and logging of expected memory leaks that were registered by pointer.
   (Thanks to Dan Miser.) Leaks registered by size or class are often ambiguous,
   so these expected leaks are always logged to file (in FullDebugMode) and are
   never hidden from the leak display (only displayed if there is at least one
   unexpected leak).
 - Added a procedure "GetRegisteredMemoryLeaks" to return a list of all
   registered memory leaks. (Thanks to Dan Miser.)
 - Added the "RawStackTraces" option to perform "raw" stack traces, negating
   the need for stack frames. This will usually result in more complete stack
   traces in FullDebugMode error reports, but it is significantly slower.
   (Thanks to Hallvard Vassbotn, Dan Miser and the JCL team.)
 Version 4.31 (2 October 2005):
 - Fixed the crash bug when both "RawStackTraces" and "FullDebugMode" were
   enabled. (Thanks to Dan Miser and Mark Edington.)
 Version 4.33 (6 October 2005):
 - Added a header corruption check to all memory blocks that are identified as
   leaks in FullDebugMode. This allows better differentiation between memory
   pool corruption bugs and actual memory leaks.
 - Fixed the stack overflow bug when using "RawStackTraces".
 Version 4.35 (6 October 2005):
 - Fixed a compilation error when the "NoMessageBoxes" option is set. (Thanks
   to Paul Ishenin.)
 - Before performing a "raw" stack trace, FastMM now checks whether exception
   handling is in place. If exception handling is not in place FastMM falls
   back to stack frame tracing. (Exception handling is required to handle the
   possible A/Vs when reading invalid call addresses. Exception handling is
   usually always available except when SysUtils hasn't been initialized yet or
   after SysUtils has been finalized.)
 Version 4.37 (8 October 2005):
 - Fixed the missing call stack trace entry issue when dynamically loading DLLs.
   (Thanks to Paul Ishenin.)
 Version 4.39 (12 October 2005):
 - Restored the performance with "RawStackTraces" enabled back to the level it
   was in 4.35.
 - Fixed the stack overflow error when using "RawStackTraces" that I thought I
   had fixed in 4.31, but unfortunately didn't. (Thanks to Craig Peterson.)
 Version 4.40 (13 October 2005):
 - Improved "RawStackTraces" to have less incorrect extra entries. (Thanks to
   Craig Peterson.)
 - Added the Russian (by Paul Ishenin) and Afrikaans translations of
   FastMM4Messages.pas.
 Version 4.42 (13 October 2005):
 - Fixed the compilation error when "CatchUseOfFreedInterfaces" is enabled.
   (Thanks to Cristian Nicola.)
 Version 4.44 (25 October 2005):
 - Implemented a FastGetHeapStatus function in analogy with GetHeapStatus.
   (Suggested by Cristian Nicola.)
 - Shifted more of the stack trace code over to the support dll to allow third
   party vendors to make available their own stack tracing and stack trace
   logging facilities.
 - Mathias Rauen (madshi) improved the support for madExcept in the debug info
   support DLL. Thanks!
 - Added support for BCB5. (Thanks to Roddy Pratt.)
 - Added the Czech translation by Rene Mihula.
 - Added the "DetectMMOperationsAfterUninstall" option. This will catch
   attempts to use the MM after FastMM has been uninstalled, and is useful for
   debugging.
 Version 4.46 (26 October 2005):
 - Renamed FastMM_DebugInfo.dll to FastMM_FullDebugMode.dll and made the
   dependency on this library a static one. This solves a DLL unload order
   problem when using FullDebugMode together with the replacement
   borlndmm.dll. (Thanks to Bart van der Werf.)
 - Added the Polish translation by Artur Redzko.
 Version 4.48 (10 November 2005):
 - Fixed class detection for objects leaked in dynamically loaded DLLs that
   were relocated.
 - Fabio Dell'Aria implemented support for EurekaLog in the FullDebugMode
   support DLL. Thanks!
 - Added the Spanish translation by JRG ("The Delphi Guy").
 Version 4.49 (10 November 2005):
 - Implemented support for installing replacement AllocMem and leak
   registration mechanisms for Delphi/BCB versions that support it.
 - Added support for Delphi 4. (Thanks to Justus Janssen.)
 Version 4.50 (5 December 2005):
 - Renamed the ReportMemoryLeaks global variable to ReportMemoryLeaksOnShutdown
   to be more consistent with the Delphi 2006 memory manager.
 - Improved the handling of large blocks. Large blocks can now consist of
   several consecutive segments allocated through VirtualAlloc. This
   significantly improves speed when frequently resizing large blocks, since
   these blocks can now often be upsized in-place.
 Version 4.52 (7 December 2005):
 - Fixed the compilation error with Delphi 5. (Thanks to Vadim Lopushansky and
   Charles Vinal for reporting the error.)
 Version 4.54 (15 December 2005):
 - Added the Brazilian Portuguese translation by Johni Jeferson Capeletto.
 - Fixed the compilation error with BCB6. (Thanks to Kurt Fitzner.)
 Version 4.56 (20 December 2005):
 - Fixed the Kylix compilation problem. (Thanks to Michal Niklas.)
 Version 4.58 (1 February 2006):
 - Added the German translations by Thomas Speck and Uwe Queisser.
 - Added the Indonesian translation by Zaenal Mutaqin.
 - Added the Portuguese translation by Carlos Macao.
 Version 4.60 (21 February 2006):
 - Fixed a performance issue due to an unnecessary block move operation when
   allocating a block in the range 1261-1372 bytes and then reallocating it in
   the range 1373-1429 bytes twice. (Thanks to Michael Winter.)
 - Added the Belarussian translation by dzmitry[li].
 - Added the updated Spanish translation by Marcelo Montenegro.
 - Added a new option "EnableSharingWithDefaultMM". This option allows FastMM
   to be shared with the default MM of Delphi 2006. It is on by default, but
   MM sharing has to be enabled otherwise it has no effect (refer to the
   documentation for the "ShareMM" and "AttemptToUseSharedMM" options).
 Version 4.62 (22 February 2006):
 - Fixed a possible read access violation in the MoveX16LP routine when the
   UseCustomVariableSizeMoveRoutines option is enabled. (Thanks to Jud Cole for
   some great detective work in finding this bug.)
 - Improved the downsizing behaviour of medium blocks to better correlate with
   the reallocation behaviour of small blocks. This change reduces the number
   of transitions between small and medium block types when reallocating blocks
   in the 0.7K to 2.6K range. It cuts down on the number of memory move
   operations and improves performance.
 Version 4.64 (31 March 2006):
 - Added the following functions for use with FullDebugMode (and added the
   exports to the replacement BorlndMM.dll): SetMMLogFileName,
   GetCurrentAllocationGroup, PushAllocationGroup, PopAllocationGroup and
   LogAllocatedBlocksToFile. The purpose of these functions are to allow you to
   identify and log related memory leaks while your application is still
   running.
 - Fixed a bug in the memory manager sharing mechanism affecting Windows
   95/98/ME. (Thanks to Zdenek Vasku.)
 Version 4.66 (9 May 2006):
 - Added a hint comment in this file so that FastMM4Messages.pas will also be
   backed up by GExperts. (Thanks to RB Winston.)
 - Fixed a bug affecting large address space (> 2GB) support under
   FullDebugMode. (Thanks to Thomas Schulz.)
 Version 4.68 (3 July 2006):
 - Added the Italian translation by Luigi Sandon.
 - If FastMM is used inside a DLL it will now use the name of the DLL as base
   for the log file name. (Previously it always used the name of the main
   application executable file.)
 - Fixed a rare A/V when both the FullDebugMode and RawStackTraces options were
   enabled. (Thanks to Primoz Gabrijelcic.)
 - Added the "NeverSleepOnThreadContention" option. This option may improve
   performance if the ratio of the the number of active threads to the number
   of CPU cores is low (typically < 2). This option is only useful for 4+ CPU
   systems, it almost always hurts performance on single and dual CPU systems.
   (Thanks to Werner Bochtler and Markus Beth.)
 Version 4.70 (4 August 2006):
  - Added the Simplified Chinese translation by JiYuan Xie.
  - Added the updated Russian as well as the Ukrainian translation by Andrey
    Shtukaturov.
  - Fixed two bugs in the leak class detection code that would sometimes fail
    to detect the class of leaked objects and strings, and report them as
    'unknown'. (Thanks to Dimitry Timokhov)
  Version 4.72 (24 September 2006):
  - Fixed a bug that caused AllocMem to not clear blocks > 256K in
    FullDebugMode. (Thanks to Paulo Moreno.)
  Version 4.74 (9 November 2006):
  - Fixed a bug in the segmented large block functionality that could lead to
    an application freeze when upsizing blocks greater than 256K in a
    multithreaded application (one of those "what the heck was I thinking?"
    type bugs).
  Version 4.76 (12 January 2007):
  - Changed the RawStackTraces code in the FullDebugMode DLL
    to prevent it from modifying the Windows "GetLastError" error code.
    (Thanks to Primoz Gabrijelcic.)
  - Fixed a threading issue when the "CheckHeapForCorruption" option was
    enabled, but the "FullDebugMode" option was disabled. (Thanks to Primoz
    Gabrijelcic.)
  - Removed some unnecessary startup code when the MM sharing mechanism is
    disabled. (Thanks to Vladimir Bochkarev.)
  - In FullDebugMode leaked blocks would sometimes be reported as belonging to
    the class "TFreedObject" if they were allocated but never used. Such blocks
    will now be reported as "unknown". (Thanks to Francois Malan.)
  - In recent versions the replacement borlndmm.dll created a log file (when
    enabled) that used the "borlndmm" prefix instead of the application name.
    It is now fixed to use the application name, however if FastMM is used
    inside other DLLs the name of those DLLs will be used. (Thanks to Bart van
    der Werf.)
  - Added a "FastMMVersion" constant. (Suggested by Loris Luise.)
  - Fixed an issue with error message boxes not displaying under certain
    configurations. (Thanks to J.W. de Bokx.)
  - FastMM will now display only one error message at a time. If many errors
    occur in quick succession, only the first error will be shown (but all will
    be logged). This avoids a stack overflow with badly misbehaved programs.
    (Thanks to Bart van der Werf.)
  - Added a LoadDebugDLLDynamically option to be used in conjunction with
    FullDebugMode. In this mode FastMM_FullDebugMode.dll is loaded dynamically.
    If the DLL cannot be found, stack traces will not be available. (Thanks to
    Rene Mihula.)
  Version 4.78 (1 March 2007):
  - The MB_DEFAULT_DESKTOP_ONLY constant that is used when displaying messages
    boxes since 4.76 is not defined under Kylix, and the source would thus not
    compile. That constant is now defined. (Thanks to Werner Bochtler.)
  - Moved the medium block locking code that was duplicated in several places
    to a subroutine to reduce code size. (Thanks to Hallvard Vassbotn.)
  - Fixed a bug in the leak registration code that sometimes caused registered
    leaks to be reported erroneously. (Thanks to Primoz Gabrijelcic.)
  - Added the NoDebugInfo option (on by default) that suppresses the generation
    of debug info for the FastMM4.pas unit. This will prevent the integrated
    debugger from stepping into the memory manager. (Thanks to Primoz
    Gabrijelcic.)
  - Increased the default stack trace depth in FullDebugMode from 9 to 10 to
    ensure that the Align16Bytes setting works in FullDebugMode. (Thanks to
    Igor Lindunen.)
  - Updated the Czech translation. (Thanks to Rene Mihula.)
  Version 4.84 (7 July 2008):
  - Added the Romanian translation. (Thanks to Ionut Muntean.)
  - Optimized the GetMemoryMap procedure to improve speed.
  - Added the GetMemoryManagerUsageSummary function that returns a summary of
    the GetMemoryManagerState call. (Thanks to Hallvard Vassbotn.)
  - Added the French translation. (Thanks to Florent Ouchet.)
  - Added the "AlwaysAllocateTopDown" FullDebugMode option to help with
    catching bad pointer arithmetic code in an address space > 2GB. This option
    is enabled by default.
  - Added the "InstallOnlyIfRunningInIDE" option. Enable this option to
    only install FastMM as the memory manager when the application is run
    inside the Delphi IDE. This is useful when you want to deploy the same EXE
    that you use for testing, but only want the debugging features active on
    development machines. When this option is enabled and the application is
    not being run inside the IDE, then the default Delphi memory manager will
    be used (which, since Delphi 2006, is FastMM without FullDebugMode.) This
    option is off by default.
  - Added the "FullDebugModeInIDE" option. This is a convenient shorthand for
    enabling FullDebugMode, InstallOnlyIfRunningInIDE and
    LoadDebugDLLDynamically. This causes FastMM to be used in FullDebugMode
    when the application is being debugged on development machines, and the
    default memory manager when the same executable is deployed. This allows
    the debugging and deployment of an application without having to compile
    separate executables. This option is off by default.
  - Added a ScanMemoryPoolForCorruptions procedure that checks the entire
    memory pool for corruptions and raises an exception if one is found. It can
    be called at any time, but is only available in FullDebugMode. (Thanks to
    Marcus Mönnig.)
  - Added a global variable "FullDebugModeScanMemoryPoolBeforeEveryOperation".
    When this variable is set to true and FullDebugMode is enabled, then the
    entire memory pool is checked for consistency before every GetMem, FreeMem
    and ReallocMem operation. An "Out of Memory" error is raised if a
    corruption is found (and this variable is set to false to prevent recursive
    errors). This obviously incurs a massive performance hit, so enable it only
    when hunting for elusive memory corruption bugs. (Thanks to Marcus Mönnig.)
  - Fixed a bug in AllocMem that caused the FPU stack to be shifted by one
    position.
  - Changed the default for option "EnableMMX" to false, since using MMX may
    cause unexpected behaviour in code that passes parameters on the FPU stack
    (like some "compiler magic" routines, e.g. VarFromReal).
  - Removed the "EnableSharingWithDefaultMM" option. This is now the default
    behaviour and cannot be disabled. (FastMM will always try to share memory
    managers between itself and the default memory manager when memory manager
    sharing is enabled.)
  - Introduced a new memory manager sharing mechanism based on memory mapped
    files. This solves compatibility issues with console and service
    applications. This sharing mechanism currently runs in parallel with the
    old mechanism, but the old mechanism can be disabled by undefining
    "EnableBackwardCompatibleMMSharing" in FastMM4Options.inc.
  - Fixed the recursive call error when the EnableMemoryLeakReporting option
    is disabled and an attempt is made to register a memory leak under Delphi
    2006 or later. (Thanks to Thomas Schulz.)
  - Added a global variable "SuppressMessageBoxes" to enable or disable
    messageboxes at runtime. (Thanks to Craig Peterson.)
  - Added the leak reporting code for C++ Builder, as well as various other
    C++ Builder bits written by JiYuan Xie. (Thank you!)
  - Added the new Usage Tracker written by Hanspeter Widmer. (Thank you!)
  Version 4.86 (31 July 2008):
  - Tweaked the string detection algorithm somewhat to be less strict, and
    allow non-class leaks to be more often categorized as strings.
  - Fixed a compilation error under Delphi 5.
  - Made LogAllocatedBlocksToFile and ScanMemoryPoolForCorruptions thread
    safe. (Thanks to Francois Piette.)
  Version 4.88 (13 August 2008):
  - Fixed compiler warnings in NoOpRegisterExpectedMemoryLeak and
    NoOpUnRegisterExpectedMemoryLeak. (Thanks to Michael Rabatscher.)
  - Added the Simplified Chinese translation of FastMM4Options.inc by
    QianYuan Wang. (Thank you!)
  - Included the updated C++ Builder files with support for BCB6 without
    update 4 applied. (Submitted by JiYuan Xie. Thanks!)
  - Fixed a compilation error under Delphi 5.
  - Made LogAllocatedBlocksToFile and ScanMemoryPoolForCorruptions thread
    safe - for real this time. (Thanks to Francois Piette.)
  Version 4.90 (9 September 2008):
  - Added logging of the thread ID when capturing and displaying stack
    traces. (Suggested by Allen Bauer and Mark Edington.)
  - Fixed a Delphi 5 compiler error under FullDebugMode. (Thanks to Maurizio
    Lotauro and Christian-W. Budde.)
  - Changed a default setting in FastMM4Options.inc: RawStackTraces is now
    off by default due to the high number of support requests I receive with
    regards to the false postives it may cause. I recommend compiling debug
    builds of applications with the "Stack Frames" option enabled.
  - Fixed a compilation error under Kylix. (Thanks to Werner Bochtler.)
  - Official support for Delphi 2009.
  Version 4.92 (25 November 2008):
  - Added the DisableLoggingOfMemoryDumps option under FullDebugMode. When
    this option is set, memory dumps will not be logged for memory leaks or
    errors. (Thanks to Patrick van Logchem.)
  - Exposed the class and string type detection code in the interface section
    for use in application code (if required). (Requested by Patrick van
    Logchem.)
  - Fixed a bug in SetMMLogFileName that could cause the log file name to be
    set incorrectly.
  - Added BCB4 support. (Thanks to Norbert Spiegel.)
  - Included the updated Czech translation by Rene Mihula.
  - When FastMM raises an error due to a freed block being modified, it now
    logs detail about which bytes in the block were modified.
  Version 4.94 (28 August 2009):
  - Added the DoNotInstallIfDLLMissing option that prevents FastMM from
    installing itself if the FastMM_FullDebugMode.dll library is not
    available. (Only applicable when FullDebugMode and LoadDebugDLLDynamically
    are both enabled.) This is useful when the same executable will be used for
    both debugging and deployment - when the debug support DLL is available
    FastMM will be installed in FullDebugMode, and otherwise the default memory
    manager will be used.
  - Added the FullDebugModeWhenDLLAvailable option that combines the
    FullDebugMode, LoadDebugDLLDynamically and DoNotInstallIfDLLMissing options.
  - Re-enabled RawStackTraces by default. The frame based stack traces (even
    when compiling with stack frames enabled) are generally too incomplete.
  - Improved the speed of large block operations under FullDebugMode: Since
    large blocks are never reused, there is no point in clearing them before
    and after use (so it does not do that anymore).
  - If an error occurs in FullDebugMode and FastMM is unable to append to the
    log file, it will attempt to write to a log file of the same name in the
    "My Documents" folder. This feature is helpful when the executable resides
    in a read-only location and the default log file, which is derived from the
    executable name, would thus not be writeable.
  - Added support for controlling the error log file location through an
    environment variable. If the 'FastMMLogFilePath' environment variable is
    set then any generated error logs will be written to the specified folder
    instead of the default location (which is the same folder as the
    application).
  - Improved the call instruction detection code in the FastMM_FullDebugMode
    library. (Thanks to the JCL team.)
  - Improved the string leak detection and reporting code. (Thanks to Uwe
    Schuster.)
  - New FullDebugMode feature: Whenever FreeMem or ReallocMem is called, FastMM
    will check that the block was actually allocated through the same FastMM
    instance. This is useful for tracking down memory manager sharing issues.
  - Compatible with Delphi 2010.
  Version 4.96 (31 August 2010):
  - Reduced the minimum block size to 4 bytes from the previous value of 12
    bytes (only applicable to 8 byte alignment). This reduces memory usage if
    the application allocates many blocks <= 4 bytes in size.
  - Added colour-coded change indication to the FastMM usage tracker, making
    it easier to spot changes in the memory usage grid. (Thanks to Murray
    McGowan.)
  - Added the SuppressFreeMemErrorsInsideException FullDebugMode option: If
    FastMM encounters a problem with a memory block inside the FullDebugMode
    FreeMem handler then an "invalid pointer operation" exception will usually
    be raised. If the FreeMem occurs while another exception is being handled
    (perhaps in the try.. finally code) then the original exception will be
    lost. With this option set FastMM will ignore errors inside FreeMem when an
    exception is being handled, thus allowing the original exception to
    propagate. This option is on by default. (Thanks to Michael Hieke.)
  - Fixed Windows 95 FullDebugMode support that was broken in 4.94. (Thanks to
    Richard Bradbrook.)
  - Fixed a bug affecting GetMemoryMap performance and accuracy of measurements
    above 2GB if a large address space is not enabled for the project. (Thanks
    to Michael Hieke.)
  - Added the FullDebugModeRegisterAllAllocsAsExpectedMemoryLeak boolean flag.
    When set, all allocations are automatically registered as expected memory
    leaks. Only available in FullDebugMode. (Thanks to Brian Cook.)
  - Compatible with Delphi XE.
  Version 4.97 (30 September 2010):
  - Fixed a crash bug (that crept in in 4.96) that may manifest itself when
    resizing a block to 4 bytes or less.
  - Added the UseSwitchToThread option. Set this option to call SwitchToThread
    instead of sitting in a "busy waiting" loop when a thread contention
    occurs. This is used in conjunction with the NeverSleepOnThreadContention
    option, and has no effect unless NeverSleepOnThreadContention is also
    defined. This option may improve performance with many CPU cores and/or
    threads of different priorities. Note that the SwitchToThread API call is
    only available on Windows 2000 and later. (Thanks to Zach Saw.)
  Version 4.98 (23 September 2011):
  - Added the FullDebugModeCallBacks define which adds support for memory
    manager event callbacks. This allows the application to be notified of
    memory allocations, frees and reallocations as they occur. (Thanks to
    Jeroen Pluimers.)
  - Added security options ClearMemoryBeforeReturningToOS and
    AlwaysClearFreedMemory to force the clearing of memory blocks after being
    freed. This could possibly provide some protection against information
    theft, but at a significant performance penalty. (Thanks to Andrey
    Sozonov.)
  - Shifted the code in the initialization section to a procedure
    RunInitializationCode. This allows the startup code to be called before
    InitUnits, which is required by some software protection tools.
  - Added support for Delphi XE2 (Windows 32-bit and Windows 64-bit platforms
    only).
  Version 4.99 (6 November 2011):
  - Fixed crashes in the 64-bit BASM codepath when more than 4GB of memory is
    allocated.
  - Fixed bad record alignment under 64-bit that affected performance.
  - Fixed compilation errors with some older compilers.
  Version 4.??? (? ??? 2012)
  - Added the LogMemoryManagerStateToFile call. This call logs a summary of
    the memory manager state to file: The total allocated memory, overhead,
    efficiency, and a breakdown of allocated memory by class and string type.
    This call may be useful to catch objects that do not necessarily leak, but
    do linger longer than they should.
  - OS X support added by Sebastian Zierer

*)

unit FastMM4;

interface

{$Include FastMM4Options.inc}

{$RANGECHECKS OFF}
{$BOOLEVAL OFF}
{$OVERFLOWCHECKS OFF}
{$OPTIMIZATION ON}
{$TYPEDADDRESS OFF}
{$LONGSTRINGS ON}

{Compiler version defines}
{$ifndef BCB}
  {$ifdef ver120}
    {$define Delphi4or5}
  {$endif}
  {$ifdef ver130}
    {$define Delphi4or5}
  {$endif}
  {$ifdef ver140}
    {$define Delphi6}
  {$endif}
  {$ifdef ver150}
    {$define Delphi7}
  {$endif}
  {$ifdef ver170}
    {$define Delphi2005}
  {$endif}
{$else}
  {for BCB4, use the Delphi 5 codepath}
  {$ifdef ver120}
    {$define Delphi4or5}
    {$define BCB4}
  {$endif}
  {for BCB5, use the Delphi 5 codepath}
  {$ifdef ver130}
    {$define Delphi4or5}
  {$endif}
{$endif}
{$ifdef ver180}
  {$define BDS2006}
{$endif}
{$define 32Bit}
{$ifndef Delphi4or5}
  {$if SizeOf(Pointer) = 8}
    {$define 64Bit}
    {$undef 32Bit}
  {$ifend}
  {$if CompilerVersion >= 23}
    {$define XE2AndUp}
  {$ifend}
  {$define BCB6OrDelphi6AndUp}
  {$ifndef BCB}
    {$define Delphi6AndUp}
  {$endif}
  {$ifndef Delphi6}
    {$define BCB6OrDelphi7AndUp}
    {$ifndef BCB}
      {$define Delphi7AndUp}
    {$endif}
    {$ifndef BCB}
      {$ifndef Delphi7}
        {$ifndef Delphi2005}
          {$define BDS2006AndUp}
        {$endif}
      {$endif}
    {$endif}
  {$endif}
{$endif}

{$ifdef 64Bit}
  {Under 64 bit memory blocks must always be 16-byte aligned}
  {$define Align16Bytes}
  {No need for MMX under 64-bit, since SSE2 is available}
  {$undef EnableMMX}
  {There is little need for raw stack traces under 64-bit, since frame based
   stack traces are much more accurate than under 32-bit. (And frame based
   stack tracing is much faster.)}
  {$undef RawStackTraces}
{$endif}

{IDE debug mode always enables FullDebugMode and dynamic loading of the FullDebugMode DLL.}
{$ifdef FullDebugModeInIDE}
  {$define InstallOnlyIfRunningInIDE}
  {$define FullDebugMode}
  {$define LoadDebugDLLDynamically}
{$endif}

{Install in FullDebugMode only when the DLL is available?}
{$ifdef FullDebugModeWhenDLLAvailable}
  {$define FullDebugMode}
  {$define LoadDebugDLLDynamically}
  {$define DoNotInstallIfDLLMissing}
{$endif}

{$ifdef Linux}
  {$define POSIX}
{$endif}

{Some features not currently supported under Kylix / OS X}
{$ifdef POSIX}
  {$undef FullDebugMode}
  {$undef LogErrorsToFile}
  {$undef LogMemoryLeakDetailToFile}
  {$undef ShareMM}
  {$undef AttemptToUseSharedMM}
  {$undef RequireIDEPresenceForLeakReporting}
  {$undef UseOutputDebugString}
  {$ifdef PIC}
    {BASM version does not support position independent code}
    {$undef ASMVersion}
  {$endif}
{$endif}

{Do we require debug info for leak checking?}
{$ifdef RequireDebugInfoForLeakReporting}
  {$ifopt D-}
    {$undef EnableMemoryLeakReporting}
  {$endif}
{$endif}

{Enable heap checking and leak reporting in full debug mode}
{$ifdef FullDebugMode}
  {$STACKFRAMES ON}
  {$define CheckHeapForCorruption}
  {$ifndef CatchUseOfFreedInterfaces}
    {$define CheckUseOfFreedBlocksOnShutdown}
  {$endif}
{$else}
  {Error logging requires FullDebugMode}
  {$undef LogErrorsToFile}
  {$undef CatchUseOfFreedInterfaces}
  {$undef RawStackTraces}
  {$undef AlwaysAllocateTopDown}
{$endif}

{Set defines for security options}
{$ifdef FullDebugMode}
  {In FullDebugMode small and medium blocks are always cleared when calling
   FreeMem. Large blocks are always returned to the OS immediately.}
  {$ifdef ClearMemoryBeforeReturningToOS}
    {$define ClearLargeBlocksBeforeReturningToOS}
  {$endif}
  {$ifdef AlwaysClearFreedMemory}
    {$define ClearLargeBlocksBeforeReturningToOS}
  {$endif}
{$else}
  {If memory blocks are cleared in FreeMem then they do not need to be cleared
   before returning the memory to the OS.}
  {$ifdef AlwaysClearFreedMemory}
    {$define ClearSmallAndMediumBlocksInFreeMem}
    {$define ClearLargeBlocksBeforeReturningToOS}
  {$else}
    {$ifdef ClearMemoryBeforeReturningToOS}
      {$define ClearMediumBlockPoolsBeforeReturningToOS}
      {$define ClearLargeBlocksBeforeReturningToOS}
    {$endif}
  {$endif}
{$endif}

{Only the Pascal version supports extended heap corruption checking.}
{$ifdef CheckHeapForCorruption}
  {$undef ASMVersion}
{$endif}

{For BASM bits that are not implemented in 64-bit.}
{$ifdef 32Bit}
  {$ifdef ASMVersion}
    {$define Use32BitAsm}
  {$endif}
{$endif}

{$ifdef UseRuntimePackages}
  {$define AssumeMultiThreaded}
{$endif}

{$ifdef BCB6OrDelphi6AndUp}
  {$WARN SYMBOL_PLATFORM OFF}
  {$WARN SYMBOL_DEPRECATED OFF}
{$endif}

{Leak detail logging requires error logging}
{$ifndef LogErrorsToFile}
  {$undef LogMemoryLeakDetailToFile}
  {$undef ClearLogFileOnStartup}
{$endif}

{$ifndef EnableMemoryLeakReporting}
  {Manual leak reporting control requires leak reporting to be enabled}
  {$undef ManualLeakReportingControl}
{$endif}

{$ifndef EnableMMX}
  {$undef ForceMMX}
{$endif}

{Are any of the MM sharing options enabled?}
{$ifdef ShareMM}
  {$define MMSharingEnabled}
{$endif}
{$ifdef AttemptToUseSharedMM}
  {$define MMSharingEnabled}
{$endif}

{Instruct GExperts to back up the messages file as well.}
{#BACKUP FastMM4Messages.pas}

{Should debug info be disabled?}
{$ifdef NoDebugInfo}
  {$DEBUGINFO OFF}
{$endif}

{$ifdef BCB}
  {$ifdef borlndmmdll}
    {$OBJEXPORTALL OFF}
  {$endif}
  {$ifndef PatchBCBTerminate}
    {Cannot uninstall safely under BCB}
    {$define NeverUninstall}
    {Disable memory leak reporting}
    {$undef EnableMemoryLeakReporting}
  {$endif}
{$endif}

{-------------------------Public constants-----------------------------}
const
  {The current version of FastMM}
  FastMMVersion = '4.99';
  {The number of small block types}
{$ifdef Align16Bytes}
  NumSmallBlockTypes = 46;
{$else}
  NumSmallBlockTypes = 56;
{$endif}

{----------------------------Public types------------------------------}
type

  {Make sure all the required types are available}
{$ifdef BCB6OrDelphi6AndUp}
  {$if CompilerVersion < 20}
  PByte = PAnsiChar;
  {NativeInt didn't exist or was broken before Delphi 2009.}
  NativeInt = Integer;
  {$ifend}
  {$if CompilerVersion < 21}
  {NativeUInt didn't exist or was broken before Delphi 2010.}
  NativeUInt = Cardinal;
  {$ifend}
  {$if CompilerVersion < 22}
  {PNativeUInt didn't exist before Delphi XE.}
  PNativeUInt = ^Cardinal;
  {$ifend}
  {$if CompilerVersion < 23}
  {IntPtr and UIntPtr didn't exist before Delphi XE2.}
  IntPtr = Integer;
  UIntPtr = Cardinal;
  {$ifend}
{$else}
  PByte = PAnsiChar;
  NativeInt = Integer;
  NativeUInt = Cardinal;
  PNativeUInt = ^Cardinal;
  IntPtr = Integer;
  UIntPtr = Cardinal;
{$endif}

  TSmallBlockTypeState = record
    {The internal size of the block type}
    InternalBlockSize: Cardinal;
    {Useable block size: The number of non-reserved bytes inside the block.}
    UseableBlockSize: Cardinal;
    {The number of allocated blocks}
    AllocatedBlockCount: NativeUInt;
    {The total address space reserved for this block type (both allocated and
     free blocks)}
    ReservedAddressSpace: NativeUInt;
  end;
  TSmallBlockTypeStates = array[0..NumSmallBlockTypes - 1] of TSmallBlockTypeState;

  TMemoryManagerState = record
    {Small block type states}
    SmallBlockTypeStates: TSmallBlockTypeStates;
    {Medium block stats}
    AllocatedMediumBlockCount: Cardinal;
    TotalAllocatedMediumBlockSize: NativeUInt;
    ReservedMediumBlockAddressSpace: NativeUInt;
    {Large block stats}
    AllocatedLargeBlockCount: Cardinal;
    TotalAllocatedLargeBlockSize: NativeUInt;
    ReservedLargeBlockAddressSpace: NativeUInt;
  end;

  TMemoryManagerUsageSummary = record
    {The total number of bytes allocated by the application.}
    AllocatedBytes: NativeUInt;
    {The total number of address space bytes used by control structures, or
     lost due to fragmentation and other overhead.}
    OverheadBytes: NativeUInt;
    {The efficiency of the memory manager expressed as a percentage. This is
     100 * AllocatedBytes / (AllocatedBytes + OverheadBytes).}
    EfficiencyPercentage: Double;
  end;

  {Memory map}
  TChunkStatus = (csUnallocated, csAllocated, csReserved, csSysAllocated,
    csSysReserved);
  TMemoryMap = array[0..65535] of TChunkStatus;

{$ifdef EnableMemoryLeakReporting}
  {List of registered leaks}
  TRegisteredMemoryLeak = record
    LeakAddress: Pointer;
    LeakedClass: TClass;
    {$ifdef CheckCppObjectTypeEnabled}
    LeakedCppTypeIdPtr: Pointer;
    {$endif}
    LeakSize: NativeInt;
    LeakCount: Integer;
  end;
  TRegisteredMemoryLeaks = array of TRegisteredMemoryLeak;
{$endif}

  {Used by the DetectStringData routine to detect whether a leaked block
   contains string data.}
  TStringDataType = (stUnknown, stAnsiString, stUnicodeString);

  {The callback procedure for WalkAllocatedBlocks.}
  TWalkAllocatedBlocksCallback = procedure(APBlock: Pointer; ABlockSize: NativeInt; AUserData: Pointer);

{--------------------------Public variables----------------------------}
var
  {If this variable is set to true and FullDebugMode is enabled, then the
   entire memory pool is checked for consistency before every memory
   operation. Note that this incurs a massive performance hit on top of
   the already significant FullDebugMode overhead, so enable this option
   only when absolutely necessary.}
  FullDebugModeScanMemoryPoolBeforeEveryOperation: Boolean = False;
  FullDebugModeRegisterAllAllocsAsExpectedMemoryLeak: Boolean = False;
{$ifdef ManualLeakReportingControl}
  {Variable is declared in system.pas in newer Delphi versions.}
  {$ifndef BDS2006AndUp}
  ReportMemoryLeaksOnShutdown: Boolean;
  {$endif}
{$endif}
  {If set to True, disables the display of all messageboxes}
  SuppressMessageBoxes: Boolean;

{-------------------------Public procedures----------------------------}
{Executes the code normally run in the initialization section. Running it
 earlier may be required with e.g. some software protection tools.}
procedure RunInitializationCode;
{Installation procedures must be exposed for the BCB helper unit FastMM4BCB.cpp}
{$ifdef BCB}
procedure InitializeMemoryManager;
function CheckCanInstallMemoryManager: Boolean;
procedure InstallMemoryManager;

{$ifdef FullDebugMode}
(*$HPPEMIT '#define FullDebugMode' *)

{$ifdef ClearLogFileOnStartup}
(*$HPPEMIT '  #define ClearLogFileOnStartup' *)
procedure DeleteEventLog;
{$endif}

{$ifdef LoadDebugDLLDynamically}
(*$HPPEMIT '  #define LoadDebugDLLDynamically' *)
{$endif}

{$ifdef RawStackTraces}
(*$HPPEMIT '  #define RawStackTraces' *)
{$endif}

{$endif}

{$ifdef PatchBCBTerminate}
(*$HPPEMIT ''#13#10 *)
(*$HPPEMIT '#define PatchBCBTerminate' *)

{$ifdef EnableMemoryLeakReporting}
(*$HPPEMIT ''#13#10 *)
(*$HPPEMIT '#define EnableMemoryLeakReporting' *)
{$endif}

{$ifdef DetectMMOperationsAfterUninstall}
(*$HPPEMIT ''#13#10 *)
(*$HPPEMIT '#define DetectMMOperationsAfterUninstall' *)
{$endif}

{Called in FastMM4BCB.cpp, should contain codes of original "finalization" section}
procedure FinalizeMemoryManager;

{For completion of "RequireDebuggerPresenceForLeakReporting" checking in "FinalizeMemoryManager"}
var
  pCppDebugHook: ^Integer = nil; //PInteger not defined in BCB5

{$ifdef CheckCppObjectTypeEnabled}
(*$HPPEMIT ''#13#10 *)
(*$HPPEMIT '#define CheckCppObjectTypeEnabled' *)

type
  TGetCppVirtObjSizeByTypeIdPtrFunc = function(APointer: Pointer): Cardinal;
  TGetCppVirtObjTypeIdPtrFunc = function(APointer: Pointer; ASize: Cardinal): Pointer;
  TGetCppVirtObjTypeNameFunc = function(APointer: Pointer; ASize: Cardinal): PAnsiChar;
  TGetCppVirtObjTypeNameByTypeIdPtrFunc = function (APointer: Pointer): PAnsiChar;
  TGetCppVirtObjTypeNameByVTablePtrFunc = function(AVTablePtr: Pointer; AVTablePtrOffset: Cardinal): PAnsiChar;
var
  {Return virtual object's size from typeId pointer}
  GetCppVirtObjSizeByTypeIdPtrFunc: TGetCppVirtObjSizeByTypeIdPtrFunc = nil;
  {Retrieve virtual object's typeId pointer}
  GetCppVirtObjTypeIdPtrFunc: TGetCppVirtObjTypeIdPtrFunc = nil;
  {Retrieve virtual object's type name}
  GetCppVirtObjTypeNameFunc: TGetCppVirtObjTypeNameFunc = nil;
  {Return virtual object's type name from typeId pointer}
  GetCppVirtObjTypeNameByTypeIdPtrFunc: TGetCppVirtObjTypeNameByTypeIdPtrFunc = nil;
  {Retrieve virtual object's typeId pointer from it's virtual table pointer}
  GetCppVirtObjTypeNameByVTablePtrFunc: TGetCppVirtObjTypeNameByVTablePtrFunc = nil;
{$endif}
{$endif}
{$endif}

{$ifndef FullDebugMode}
{The standard memory manager functions}
function FastGetMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
function FastFreeMem(APointer: Pointer): Integer;
function FastReallocMem(APointer: Pointer; ANewSize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
function FastAllocMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Cardinal{$endif}): Pointer;
{$else}
{The FullDebugMode memory manager functions}
function DebugGetMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
function DebugFreeMem(APointer: Pointer): Integer;
function DebugReallocMem(APointer: Pointer; ANewSize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
function DebugAllocMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Cardinal{$endif}): Pointer;
{Scans the memory pool for any corruptions. If a corruption is encountered an "Out of Memory" exception is
 raised.}
procedure ScanMemoryPoolForCorruptions;
{Specify the full path and name for the filename to be used for logging memory
 errors, etc. If ALogFileName is nil or points to an empty string it will
 revert to the default log file name.}
procedure SetMMLogFileName(ALogFileName: PAnsiChar = nil);
{Returns the current "allocation group". Whenever a GetMem request is serviced
 in FullDebugMode, the current "allocation group" is stored in the block header.
 This may help with debugging. Note that if a block is subsequently reallocated
 that it keeps its original "allocation group" and "allocation number" (all
 allocations are also numbered sequentially).}
function GetCurrentAllocationGroup: Cardinal;
{Allocation groups work in a stack like fashion. Group numbers are pushed onto
 and popped off the stack. Note that the stack size is limited, so every push
 should have a matching pop.}
procedure PushAllocationGroup(ANewCurrentAllocationGroup: Cardinal);
procedure PopAllocationGroup;
{Logs detail about currently allocated memory blocks for the specified range of
 allocation groups. if ALastAllocationGroupToLog is less than
 AFirstAllocationGroupToLog or it is zero, then all allocation groups are
 logged. This routine also checks the memory pool for consistency at the same
 time, raising an "Out of Memory" error if the check fails.}
procedure LogAllocatedBlocksToFile(AFirstAllocationGroupToLog, ALastAllocationGroupToLog: Cardinal);
{$endif}

{Releases all allocated memory (use with extreme care)}
procedure FreeAllMemory;

{Returns summarised information about the state of the memory manager. (For
 backward compatibility.)}
function FastGetHeapStatus: THeapStatus;
{Returns statistics about the current state of the memory manager}
procedure GetMemoryManagerState(var AMemoryManagerState: TMemoryManagerState);
{Returns a summary of the information returned by GetMemoryManagerState}
procedure GetMemoryManagerUsageSummary(
  var AMemoryManagerUsageSummary: TMemoryManagerUsageSummary);
{$ifndef POSIX}
{Gets the state of every 64K block in the 4GB address space}
procedure GetMemoryMap(var AMemoryMap: TMemoryMap);
{$endif}

{$ifdef EnableMemoryLeakReporting}
{Registers expected memory leaks. Returns true on success. The list of leaked
 blocks is limited, so failure is possible if the list is full.}
function RegisterExpectedMemoryLeak(ALeakedPointer: Pointer): Boolean; overload;
function RegisterExpectedMemoryLeak(ALeakedObjectClass: TClass; ACount: Integer = 1): Boolean; overload;
function RegisterExpectedMemoryLeak(ALeakedBlockSize: NativeInt; ACount: Integer = 1): Boolean; overload;
{$ifdef CheckCppObjectTypeEnabled}
{Registers expected memory leaks by virtual object's typeId pointer.
 Usage: RegisterExpectedMemoryLeak(typeid(ACppObject).tpp, Count);}
function RegisterExpectedMemoryLeak(ALeakedCppVirtObjTypeIdPtr: Pointer; ACount: Integer): boolean; overload;
{$endif}
{Removes expected memory leaks. Returns true on success.}
function UnregisterExpectedMemoryLeak(ALeakedPointer: Pointer): Boolean; overload;
function UnregisterExpectedMemoryLeak(ALeakedObjectClass: TClass; ACount: Integer = 1): Boolean; overload;
function UnregisterExpectedMemoryLeak(ALeakedBlockSize: NativeInt; ACount: Integer = 1): Boolean; overload;
{$ifdef CheckCppObjectTypeEnabled}
{Usage: UnregisterExpectedMemoryLeak(typeid(ACppObject).tpp, Count);}
function UnregisterExpectedMemoryLeak(ALeakedCppVirtObjTypeIdPtr: Pointer; ACount: Integer): boolean; overload;
{$endif}
{Returns a list of all expected memory leaks}
function GetRegisteredMemoryLeaks: TRegisteredMemoryLeaks;
{$endif}

{Returns the class for a memory block. Returns nil if it is not a valid class.
 Used by the leak detection code.}
function DetectClassInstance(APointer: Pointer): TClass;
{Detects the probable string data type for a memory block. Used by the leak
 classification code when a block cannot be identified as a known class
 instance.}
function DetectStringData(APMemoryBlock: Pointer;
  AAvailableSpaceInBlock: NativeInt): TStringDataType;
{Walks all allocated blocks, calling ACallBack for each. Passes the user block size and AUserData to the callback.
 Important note: All block types will be locked during the callback, so the memory manager cannot be used inside it.}
procedure WalkAllocatedBlocks(ACallBack: TWalkAllocatedBlocksCallback; AUserData: Pointer);
{Writes a log file containing a summary of the memory mananger state and a summary of allocated blocks grouped by
 class. The file will be saved in UTF-8 encoding (in supported Delphi versions). Returns True on success. }
function LogMemoryManagerStateToFile(const AFileName: string; const AAdditionalDetails: string = ''): Boolean;

{$ifdef FullDebugMode}
{-------------FullDebugMode constants---------------}
const
  {The stack trace depth. (Must be an *uneven* number to ensure that the
   Align16Bytes option works in FullDebugMode.)}
  StackTraceDepth = 11;
  {The number of entries in the allocation group stack}
  AllocationGroupStackSize = 1000;
  {The number of fake VMT entries - used to track virtual method calls on
   freed objects. Do not change this value without also updating TFreedObject.GetVirtualMethodIndex}
  MaxFakeVMTEntries = 200;
  {The pattern used to fill unused memory}
  DebugFillByte = $80;
{$ifdef 32Bit}
  DebugFillPattern = $01010101 * Cardinal(DebugFillByte);
  {The address that is reserved so that accesses to the address of the fill
   pattern will result in an A/V. (Not used under 64-bit, since the upper half
   of the address space is always reserved by the OS.)}
  DebugReservedAddress = $01010000 * Cardinal(DebugFillByte);
{$else}
  DebugFillPattern = $8080808080808080;
{$endif}

{-------------------------FullDebugMode structures--------------------}
type
  PStackTrace = ^TStackTrace;
  TStackTrace = array[0..StackTraceDepth - 1] of NativeUInt;

  TBlockOperation = (boBlockCheck, boGetMem, boFreeMem, boReallocMem);

  {The header placed in front of blocks in FullDebugMode (just after the
   standard header). Must be a multiple of 16 bytes in size otherwise the
   Align16Bytes option will not work. Current size = 128 bytes under 32-bit,
   and 240 bytes under 64-bit.}
  PFullDebugBlockHeader = ^TFullDebugBlockHeader;
  TFullDebugBlockHeader = record
    {Space used by the medium block manager for previous/next block management.
     If a medium block is binned then these two fields will be modified.}
    Reserved1: Pointer;
    Reserved2: Pointer;
    {Is the block currently allocated? If it is allocated this will be the
     address of the getmem routine through which it was allocated, otherwise it
     will be nil.}
    AllocatedByRoutine: Pointer;
    {The allocation group: Can be used in the debugging process to group
     related memory leaks together}
    AllocationGroup: Cardinal;
    {The allocation number: All new allocations are numbered sequentially. This
     number may be useful in memory leak analysis. If it reaches 4G it wraps
     back to 0.}
    AllocationNumber: Cardinal;
    {The call stack when the block was allocated}
    AllocationStackTrace: TStackTrace;
    {The thread that allocated the block}
    AllocatedByThread: Cardinal;
    {The thread that freed the block}
    FreedByThread: Cardinal;
    {The call stack when the block was freed}
    FreeStackTrace: TStackTrace;
    {The user requested size for the block. 0 if this is the first time the
     block is used.}
    UserSize: NativeUInt;
    {The object class this block was used for the previous time it was
     allocated. When a block is freed, the pointer that would normally be in the
     space of the class pointer is copied here, so if it is detected that
     the block was used after being freed we have an idea what class it is.}
    PreviouslyUsedByClass: NativeUInt;
    {The sum of all the dwords(32-bit)/qwords(64-bit) in this structure
     excluding the initial two reserved fields and this field.}
    HeaderCheckSum: NativeUInt;
  end;
  {The NativeUInt following the user area of the block is the inverse of
   HeaderCheckSum. This is used to catch buffer overrun errors.}

  {The class used to catch attempts to execute a virtual method of a freed
   object}
  TFreedObject = class
  public
    procedure GetVirtualMethodIndex;
    procedure VirtualMethodError;
{$ifdef CatchUseOfFreedInterfaces}
    procedure InterfaceError;
{$endif}
  end;

{$ifdef FullDebugModeCallBacks}
  {FullDebugMode memory manager event callbacks. Note that APHeaderFreedBlock in the TOnDebugFreeMemFinish
   will not be valid for large (>260K) blocks.}
  TOnDebugGetMemFinish = procedure(APHeaderNewBlock: PFullDebugBlockHeader; ASize: NativeInt);
  TOnDebugFreeMemStart = procedure(APHeaderBlockToFree: PFullDebugBlockHeader);
  TOnDebugFreeMemFinish = procedure(APHeaderFreedBlock: PFullDebugBlockHeader; AResult: Integer);
  TOnDebugReallocMemStart = procedure(APHeaderBlockToReallocate: PFullDebugBlockHeader; ANewSize: NativeInt);
  TOnDebugReallocMemFinish = procedure(APHeaderReallocatedBlock: PFullDebugBlockHeader; ANewSize: NativeInt);

var
  {Note: FastMM will not catch exceptions inside these hooks, so make sure your hook code runs without
   exceptions.}
  OnDebugGetMemFinish: TOnDebugGetMemFinish = nil;
  OnDebugFreeMemStart: TOnDebugFreeMemStart = nil;
  OnDebugFreeMemFinish: TOnDebugFreeMemFinish = nil;
  OnDebugReallocMemStart: TOnDebugReallocMemStart = nil;
  OnDebugReallocMemFinish: TOnDebugReallocMemFinish = nil;
{$endif}
{$endif}

implementation

uses
{$ifndef POSIX}
  Windows,
  {$ifdef FullDebugMode}
    {$ifdef Delphi4or5}
  ShlObj,
    {$else}
  SHFolder,
    {$endif}
  {$endif}
{$else}
  {$ifdef MACOS}
  Posix.Stdlib, Posix.Unistd, Posix.Fcntl,
  {$ELSE}
  Libc,
  {$endif}
{$endif}
  FastMM4Messages;

{Fixed size move procedures. The 64-bit versions assume 16-byte alignment.}
procedure Move4(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move12(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move20(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move28(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move36(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move44(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move52(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move60(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move68(const ASource; var ADest; ACount: NativeInt); forward;
{$ifdef 64Bit}
{These are not needed and thus unimplemented under 32-bit}
procedure Move8(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move24(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move40(const ASource; var ADest; ACount: NativeInt); forward;
procedure Move56(const ASource; var ADest; ACount: NativeInt); forward;
{$endif}

{$ifdef DetectMMOperationsAfterUninstall}
{Invalid handlers to catch MM operations after uninstall}
function InvalidFreeMem(APointer: Pointer): Integer; forward;
function InvalidGetMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer; forward;
function InvalidReallocMem(APointer: Pointer; ANewSize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer; forward;
function InvalidAllocMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Cardinal{$endif}): Pointer; forward;
function InvalidRegisterAndUnRegisterMemoryLeak(APointer: Pointer): Boolean; forward;
{$endif}

{-------------------------Private constants----------------------------}
const
  {The size of a medium block pool. This is allocated through VirtualAlloc and
   is used to serve medium blocks. The size must be a multiple of 16 and at
   least 4 bytes less than a multiple of 4K (the page size) to prevent a
   possible read access violation when reading past the end of a memory block
   in the optimized move routine (MoveX16LP). In Full Debug mode we leave a
   trailing 256 bytes to be able to safely do a memory dump.}
  MediumBlockPoolSize = 20 * 64 * 1024{$ifndef FullDebugMode} - 16{$else} - 256{$endif};
  {The granularity of small blocks}
{$ifdef Align16Bytes}
  SmallBlockGranularity = 16;
{$else}
  SmallBlockGranularity = 8;
{$endif}
  {The granularity of medium blocks. Newly allocated medium blocks are
   a multiple of this size plus MediumBlockSizeOffset, to avoid cache line
   conflicts}
  MediumBlockGranularity = 256;
  MediumBlockSizeOffset = 48;
  {The granularity of large blocks}
  LargeBlockGranularity = 65536;
  {The maximum size of a small block. Blocks Larger than this are either
   medium or large blocks.}
  MaximumSmallBlockSize = 2608;
  {The smallest medium block size. (Medium blocks are rounded up to the nearest
   multiple of MediumBlockGranularity plus MediumBlockSizeOffset)}
  MinimumMediumBlockSize = 11 * 256 + MediumBlockSizeOffset;
  {The number of bins reserved for medium blocks}
  MediumBlockBinsPerGroup = 32;
  MediumBlockBinGroupCount = 32;
  MediumBlockBinCount = MediumBlockBinGroupCount * MediumBlockBinsPerGroup;
  {The maximum size allocatable through medium blocks. Blocks larger than this
   fall through to VirtualAlloc ( = large blocks).}
  MaximumMediumBlockSize = MinimumMediumBlockSize + (MediumBlockBinCount - 1) * MediumBlockGranularity;
  {The target number of small blocks per pool. The actual number of blocks per
   pool may be much greater for very small sizes and less for larger sizes. The
   cost of allocating the small block pool is amortized across all the small
   blocks in the pool, however the blocks may not all end up being used so they
   may be lying idle.}
  TargetSmallBlocksPerPool = 48;
  {The minimum number of small blocks per pool. Any available medium block must
   have space for roughly this many small blocks (or more) to be useable as a
   small block pool.}
  MinimumSmallBlocksPerPool = 12;
  {The lower and upper limits for the optimal small block pool size}
  OptimalSmallBlockPoolSizeLowerLimit = 29 * 1024 - MediumBlockGranularity + MediumBlockSizeOffset;
  OptimalSmallBlockPoolSizeUpperLimit = 64 * 1024 - MediumBlockGranularity + MediumBlockSizeOffset;
  {The maximum small block pool size. If a free block is this size or larger
   then it will be split.}
  MaximumSmallBlockPoolSize = OptimalSmallBlockPoolSizeUpperLimit + MinimumMediumBlockSize;
  {-------------Block type flags--------------}
  {The lower 3 bits in the dword header of small blocks (4 bits in medium and
   large blocks) are used as flags to indicate the state of the block}
  {Set if the block is not in use}
  IsFreeBlockFlag = 1;
  {Set if this is a medium block}
  IsMediumBlockFlag = 2;
  {Set if it is a medium block being used as a small block pool. Only valid if
   IsMediumBlockFlag is set.}
  IsSmallBlockPoolInUseFlag = 4;
  {Set if it is a large block. Only valid if IsMediumBlockFlag is not set.}
  IsLargeBlockFlag = 4;
  {Is the medium block preceding this block available? (Only used by medium
   blocks)}
  PreviousMediumBlockIsFreeFlag = 8;
  {Is this large block segmented? I.e. is it actually built up from more than
   one chunk allocated through VirtualAlloc? (Only used by large blocks.)}
  LargeBlockIsSegmented = 8;
  {The flags masks for small blocks}
  DropSmallFlagsMask = -8;
  ExtractSmallFlagsMask = 7;
  {The flags masks for medium and large blocks}
  DropMediumAndLargeFlagsMask = -16;
  ExtractMediumAndLargeFlagsMask = 15;
  {-------------Block resizing constants---------------}
  SmallBlockDownsizeCheckAdder = 64;
  SmallBlockUpsizeAdder = 32;
  {When a medium block is reallocated to a size smaller than this, then it must
   be reallocated to a small block and the data moved. If not, then it is
   shrunk in place down to MinimumMediumBlockSize. Currently the limit is set
   at a quarter of the minimum medium block size.}
  MediumInPlaceDownsizeLimit = MinimumMediumBlockSize div 4;
  {-------------Memory leak reporting constants---------------}
  ExpectedMemoryLeaksListSize = 64 * 1024;
  {-------------Other constants---------------}
{$ifndef NeverSleepOnThreadContention}
  {Sleep time when a resource (small/medium/large block manager) is in use}
  InitialSleepTime = 0;
  {Used when the resource is still in use after the first sleep}
  AdditionalSleepTime = 1;
{$endif}
  {Hexadecimal characters}
  HexTable: array[0..15] of AnsiChar = ('0', '1', '2', '3', '4', '5', '6', '7',
    '8', '9', 'A', 'B', 'C', 'D', 'E', 'F');
  {Copyright message - not used anywhere in the code}
  Copyright: AnsiString = 'FastMM4 (c) 2004 - 2011 Pierre le Riche / Professional Software Development';
{$ifdef FullDebugMode}
  {Virtual Method Called On Freed Object Errors}
  StandardVirtualMethodNames: array[1 + vmtParent div SizeOf(Pointer) .. vmtDestroy div SizeOf(Pointer)] of PAnsiChar = (
{$ifdef BCB6OrDelphi6AndUp}
  {$if RTLVersion >= 20}
    'Equals',
    'GetHashCode',
    'ToString',
  {$ifend}
{$endif}
    'SafeCallException',
    'AfterConstruction',
    'BeforeDestruction',
    'Dispatch',
    'DefaultHandler',
    'NewInstance',
    'FreeInstance',
    'Destroy');
  {The name of the FullDebugMode support DLL. The support DLL implements stack
   tracing and the conversion of addresses to unit and line number information.}
{$ifdef 32Bit}
  FullDebugModeLibraryName = FullDebugModeLibraryName32Bit;
{$else}
  FullDebugModeLibraryName = FullDebugModeLibraryName64Bit;
{$endif}
{$endif}

{-------------------------Private types----------------------------}
type

{$ifdef Delphi4or5}
  {Delphi 5 Compatibility}
  PCardinal = ^Cardinal;
  PPointer = ^Pointer;
{$endif}
{$ifdef BCB4}
  {Define some additional types for BCB4}
  PInteger  = ^Integer;
{$endif}

  {Move procedure type}
  TMoveProc = procedure(const ASource; var ADest; ACount: NativeInt);

  {Registers structure (for GetCPUID)}
  TRegisters = record
    RegEAX, RegEBX, RegECX, RegEDX: Integer;
  end;

  {The layout of a string allocation. Used to detect string leaks.}
  PStrRec = ^StrRec;
  StrRec = packed record
{$ifdef 64Bit}
    _Padding: Integer;
{$endif}
{$ifdef BCB6OrDelphi6AndUp}
  {$if RTLVersion >= 20}
    codePage: Word;
    elemSize: Word;
  {$ifend}
{$endif}
    refCnt: Integer;
    length: Integer;
  end;

{$ifdef EnableMemoryLeakReporting}
  {Different kinds of memory leaks}
  TMemoryLeakType = (mltUnexpectedLeak, mltExpectedLeakRegisteredByPointer,
    mltExpectedLeakRegisteredByClass, mltExpectedLeakRegisteredBySize);
{$endif}

  {---------------Small block structures-------------}

  {Pointer to the header of a small block pool}
  PSmallBlockPoolHeader = ^TSmallBlockPoolHeader;

  {Small block type (Size = 32 bytes for 32-bit, 64 bytes for 64-bit).}
  PSmallBlockType = ^TSmallBlockType;
  TSmallBlockType = record
    {True = Block type is locked}
    BlockTypeLocked: Boolean;
    {Bitmap indicating which of the first 8 medium block groups contain blocks
     of a suitable size for a block pool.}
    AllowedGroupsForBlockPoolBitmap: Byte;
    {The block size for this block type}
    BlockSize: Word;
    {The minimum and optimal size of a small block pool for this block type}
    MinimumBlockPoolSize: Word;
    OptimalBlockPoolSize: Word;
    {The first partially free pool for the given small block. This field must
     be at the same offset as TSmallBlockPoolHeader.NextPartiallyFreePool.}
    NextPartiallyFreePool: PSmallBlockPoolHeader;
    {The last partially free pool for the small block type. This field must
     be at the same offset as TSmallBlockPoolHeader.PreviousPartiallyFreePool.}
    PreviousPartiallyFreePool: PSmallBlockPoolHeader;
    {The offset of the last block that was served sequentially. The field must
     be at the same offset as TSmallBlockPoolHeader.FirstFreeBlock.}
    NextSequentialFeedBlockAddress: Pointer;
    {The last block that can be served sequentially.}
    MaxSequentialFeedBlockAddress: Pointer;
    {The pool that is current being used to serve blocks in sequential order}
    CurrentSequentialFeedPool: PSmallBlockPoolHeader;
{$ifdef UseCustomFixedSizeMoveRoutines}
    {The fixed size move procedure used to move data for this block size when
     it is upsized. When a block is downsized (which usually does not occur
     that often) the variable size move routine is used.}
    UpsizeMoveProcedure: TMoveProc;
{$else}
    Reserved1: Pointer;
{$endif}
{$ifdef 64Bit}
    {Pad to 64 bytes for 64-bit}
    Reserved2: Pointer;
{$endif}
  end;

  {Small block pool (Size = 32 bytes for 32-bit, 48 bytes for 64-bit).}
  TSmallBlockPoolHeader = record
    {BlockType}
    BlockType: PSmallBlockType;
{$ifdef 32Bit}
    {Align the next fields to the same fields in TSmallBlockType and pad this
     structure to 32 bytes for 32-bit}
    Reserved1: Cardinal;
{$endif}
    {The next and previous pool that has free blocks of this size. Do not
     change the position of these two fields: They must be at the same offsets
     as the fields in TSmallBlockType of the same name.}
    NextPartiallyFreePool: PSmallBlockPoolHeader;
    PreviousPartiallyFreePool: PSmallBlockPoolHeader;
    {Pointer to the first free block inside this pool. This field must be at
     the same offset as TSmallBlockType.NextSequentialFeedBlockAddress.}
    FirstFreeBlock: Pointer;
    {The number of blocks allocated in this pool.}
    BlocksInUse: Cardinal;
    {Padding}
    Reserved2: Cardinal;
    {The pool pointer and flags of the first block}
    FirstBlockPoolPointerAndFlags: NativeUInt;
  end;

  {Small block layout:
   At offset -SizeOf(Pointer) = Flags + address of the small block pool.
   At offset BlockSize - SizeOf(Pointer) = Flags + address of the small block
   pool for the next small block.
  }

  {------------------------Medium block structures------------------------}

  {The medium block pool from which medium blocks are drawn. Size = 16 bytes
   for 32-bit and 32 bytes for 64-bit.}
  PMediumBlockPoolHeader = ^TMediumBlockPoolHeader;
  TMediumBlockPoolHeader = record
    {Points to the previous and next medium block pools. This circular linked
     list is used to track memory leaks on program shutdown.}
    PreviousMediumBlockPoolHeader: PMediumBlockPoolHeader;
    NextMediumBlockPoolHeader: PMediumBlockPoolHeader;
    {Padding}
    Reserved1: NativeUInt;
    {The block size and flags of the first medium block in the block pool}
    FirstMediumBlockSizeAndFlags: NativeUInt;
  end;

  {Medium block layout:
   Offset: -2 * SizeOf(Pointer) = Previous Block Size (only if the previous block is free)
   Offset: -SizeOf(Pointer) = This block size and flags
   Offset: 0 = User data / Previous Free Block (if this block is free)
   Offset: SizeOf(Pointer) = Next Free Block (if this block is free)
   Offset: BlockSize - 2*SizeOf(Pointer) = Size of this block (if this block is free)
   Offset: BlockSize - SizeOf(Pointer) = Size of the next block and flags

  {A medium block that is unused}
  PMediumFreeBlock = ^TMediumFreeBlock;
  TMediumFreeBlock = record
    PreviousFreeBlock: PMediumFreeBlock;
    NextFreeBlock: PMediumFreeBlock;
  end;

  {-------------------------Large block structures------------------------}

  {Large block header record (Size = 16 for 32-bit, 32 for 64-bit)}
  PLargeBlockHeader = ^TLargeBlockHeader;
  TLargeBlockHeader = record
    {Points to the previous and next large blocks. This circular linked
     list is used to track memory leaks on program shutdown.}
    PreviousLargeBlockHeader: PLargeBlockHeader;
    NextLargeBlockHeader: PLargeBlockHeader;
    {The user allocated size of the Large block}
    UserAllocatedSize: NativeUInt;
    {The size of this block plus the flags}
    BlockSizeAndFlags: NativeUInt;
  end;

  {-------------------------Expected Memory Leak Structures--------------------}
{$ifdef EnableMemoryLeakReporting}

  {The layout of an expected leak. All fields may not be specified, in which
   case it may be harder to determine which leaks are expected and which are
   not.}
  PExpectedMemoryLeak = ^TExpectedMemoryLeak;
  PPExpectedMemoryLeak = ^PExpectedMemoryLeak;
  TExpectedMemoryLeak = record
    {Linked list pointers}
    PreviousLeak, NextLeak: PExpectedMemoryLeak;
    {Information about the expected leak}
    LeakAddress: Pointer;
    LeakedClass: TClass;
    {$ifdef CheckCppObjectTypeEnabled}
    LeakedCppTypeIdPtr: Pointer;
    {$endif}
    LeakSize: NativeInt;
    LeakCount: Integer;
  end;

  TExpectedMemoryLeaks = record
    {The number of entries used in the expected leaks buffer}
    EntriesUsed: Integer;
    {Freed entries}
    FirstFreeSlot: PExpectedMemoryLeak;
    {Entries with the address specified}
    FirstEntryByAddress: PExpectedMemoryLeak;
    {Entries with no address specified, but with the class specified}
    FirstEntryByClass: PExpectedMemoryLeak;
    {Entries with only size specified}
    FirstEntryBySizeOnly: PExpectedMemoryLeak;
    {The expected leaks buffer (Need to leave space for this header)}
    ExpectedLeaks: array[0..(ExpectedMemoryLeaksListSize - 64) div SizeOf(TExpectedMemoryLeak) - 1] of TExpectedMemoryLeak;
  end;
  PExpectedMemoryLeaks = ^TExpectedMemoryLeaks;

{$endif}

{-------------------------Private constants----------------------------}
const
{$ifndef BCB6OrDelphi7AndUp}
  reOutOfMemory = 1;
  reInvalidPtr = 2;
{$endif}
  {The size of the block header in front of small and medium blocks}
  BlockHeaderSize = SizeOf(Pointer);
  {The size of a small block pool header}
  SmallBlockPoolHeaderSize = SizeOf(TSmallBlockPoolHeader);
  {The size of a medium block pool header}
  MediumBlockPoolHeaderSize = SizeOf(TMediumBlockPoolHeader);
  {The size of the header in front of Large blocks}
  LargeBlockHeaderSize = SizeOf(TLargeBlockHeader);
{$ifdef FullDebugMode}
  {We need space for the header, the trailer checksum and the trailing block
   size (only used by freed medium blocks).}
  FullDebugBlockOverhead = SizeOf(TFullDebugBlockHeader) + SizeOf(NativeUInt) + SizeOf(Pointer);
{$endif}

{-------------------------Private variables----------------------------}
var
  {-----------------Small block management------------------}
  {The small block types. Sizes include the leading header. Sizes are
   picked to limit maximum wastage to about 10% or 256 bytes (whichever is
   less) where possible.}
  SmallBlockTypes: array[0..NumSmallBlockTypes - 1] of TSmallBlockType =(
    {8/16 byte jumps}
{$ifndef Align16Bytes}
    (BlockSize: 8 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: Move4{$endif}),
{$endif}
    (BlockSize: 16 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: {$ifdef 32Bit}Move12{$else}Move8{$endif}{$endif}),
{$ifndef Align16Bytes}
    (BlockSize: 24 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: Move20{$endif}),
{$endif}
    (BlockSize: 32 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: {$ifdef 32Bit}Move28{$else}Move24{$endif}{$endif}),
{$ifndef Align16Bytes}
    (BlockSize: 40 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: Move36{$endif}),
{$endif}
    (BlockSize: 48 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: {$ifdef 32Bit}Move44{$else}Move40{$endif}{$endif}),
{$ifndef Align16Bytes}
    (BlockSize: 56 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: Move52{$endif}),
{$endif}
    (BlockSize: 64 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: {$ifdef 32Bit}Move60{$else}Move56{$endif}{$endif}),
{$ifndef Align16Bytes}
    (BlockSize: 72 {$ifdef UseCustomFixedSizeMoveRoutines}; UpsizeMoveProcedure: Move68{$endif}),
{$endif}
    (BlockSize: 80),
{$ifndef Align16Bytes}
    (BlockSize: 88),
{$endif}
    (BlockSize: 96),
{$ifndef Align16Bytes}
    (BlockSize: 104),
{$endif}
    (BlockSize: 112),
{$ifndef Align16Bytes}
    (BlockSize: 120),
{$endif}
    (BlockSize: 128),
{$ifndef Align16Bytes}
    (BlockSize: 136),
{$endif}
    (BlockSize: 144),
{$ifndef Align16Bytes}
    (BlockSize: 152),
{$endif}
    (BlockSize: 160),
    {16 byte jumps}
    (BlockSize: 176),
    (BlockSize: 192),
    (BlockSize: 208),
    (BlockSize: 224),
    (BlockSize: 240),
    (BlockSize: 256),
    (BlockSize: 272),
    (BlockSize: 288),
    (BlockSize: 304),
    (BlockSize: 320),
    {32 byte jumps}
    (BlockSize: 352),
    (BlockSize: 384),
    (BlockSize: 416),
    (BlockSize: 448),
    (BlockSize: 480),
    {48 byte jumps}
    (BlockSize: 528),
    (BlockSize: 576),
    (BlockSize: 624),
    (BlockSize: 672),
    {64 byte jumps}
    (BlockSize: 736),
    (BlockSize: 800),
    {80 byte jumps}
    (BlockSize: 880),
    (BlockSize: 960),
    {96 byte jumps}
    (BlockSize: 1056),
    (BlockSize: 1152),
    {112 byte jumps}
    (BlockSize: 1264),
    (BlockSize: 1376),
    {128 byte jumps}
    (BlockSize: 1504),
    {144 byte jumps}
    (BlockSize: 1648),
    {160 byte jumps}
    (BlockSize: 1808),
    {176 byte jumps}
    (BlockSize: 1984),
    {192 byte jumps}
    (BlockSize: 2176),
    {208 byte jumps}
    (BlockSize: 2384),
    {224 byte jumps}
    (BlockSize: MaximumSmallBlockSize),
    {The last block size occurs three times. If, during a GetMem call, the
     requested block size is already locked by another thread then up to two
     larger block sizes may be used instead. Having the last block size occur
     three times avoids the need to have a size overflow check.}
    (BlockSize: MaximumSmallBlockSize),
    (BlockSize: MaximumSmallBlockSize));
  {Size to small block type translation table}
  AllocSize2SmallBlockTypeIndX4: array[0..(MaximumSmallBlockSize - 1) div SmallBlockGranularity] of Byte;
  {-----------------Medium block management------------------}
  {A dummy medium block pool header: Maintains a circular list of all medium
   block pools to enable memory leak detection on program shutdown.}
  MediumBlockPoolsCircularList: TMediumBlockPoolHeader;
  {Are medium blocks locked?}
  MediumBlocksLocked: Boolean;
  {The sequential feed medium block pool.}
  LastSequentiallyFedMediumBlock: Pointer;
  MediumSequentialFeedBytesLeft: Cardinal;
  {The medium block bins are divided into groups of 32 bins. If a bit
   is set in this group bitmap, then at least one bin in the group has free
   blocks.}
  MediumBlockBinGroupBitmap: Cardinal;
  {The medium block bins: total of 32 * 32 = 1024 bins of a certain
   minimum size.}
  MediumBlockBinBitmaps: array[0..MediumBlockBinGroupCount - 1] of Cardinal;
  {The medium block bins. There are 1024 LIFO circular linked lists each
   holding blocks of a specified minimum size. The sizes vary in size from
   MinimumMediumBlockSize to MaximumMediumBlockSize. The bins are treated as
   type TMediumFreeBlock to avoid pointer checks.}
  MediumBlockBins: array[0..MediumBlockBinCount - 1] of TMediumFreeBlock;
  {-----------------Large block management------------------}
  {Are large blocks locked?}
  LargeBlocksLocked: Boolean;
  {A dummy large block header: Maintains a list of all allocated large blocks
   to enable memory leak detection on program shutdown.}
  LargeBlocksCircularList: TLargeBlockHeader;
  {-------------------------Expected Memory Leak Structures--------------------}
{$ifdef EnableMemoryLeakReporting}
  {The expected memory leaks}
  ExpectedMemoryLeaks: PExpectedMemoryLeaks;
  ExpectedMemoryLeaksListLocked: Boolean;
{$endif}
  {---------------------Full Debug Mode structures--------------------}
{$ifdef FullDebugMode}
  {The allocation group stack}
  AllocationGroupStack: array[0..AllocationGroupStackSize - 1] of Cardinal;
  {The allocation group stack top (it is an index into AllocationGroupStack)}
  AllocationGroupStackTop: Cardinal;
  {The last allocation number used}
  CurrentAllocationNumber: Cardinal;
  {This is a count of the number of threads currently inside any of the
   FullDebugMode GetMem, Freemem or ReallocMem handlers. If this value
   is negative then a block scan is in progress and no thread may
   allocate, free or reallocate any block or modify any FullDebugMode
   block header or footer.}
  ThreadsInFullDebugModeRoutine: Integer;
  {The current log file name}
  MMLogFileName: array[0..1023] of AnsiChar;
  {The 64K block of reserved memory used to trap invalid memory accesses using
   fields in a freed object.}
  ReservedBlock: Pointer;
  {The virtual method index count - used to get the virtual method index for a
   virtual method call on a freed object.}
  VMIndex: Integer;
  {The fake VMT used to catch virtual method calls on freed objects.}
  FreedObjectVMT: packed record
    VMTData: array[vmtSelfPtr .. vmtParent + SizeOf(Pointer) - 1] of byte;
    VMTMethods: array[SizeOf(Pointer) + vmtParent .. vmtParent + MaxFakeVMTEntries * SizeOf(Pointer) + SizeOf(Pointer) - 1] of Byte;
  end;
  {$ifdef CatchUseOfFreedInterfaces}
  VMTBadInterface: array[0..MaxFakeVMTEntries - 1] of Pointer;
  {$endif}
{$endif}
  {--------------Other info--------------}
  {The memory manager that was replaced}
  OldMemoryManager: {$ifndef BDS2006AndUp}TMemoryManager{$else}TMemoryManagerEx{$endif};
  {The replacement memory manager}
  NewMemoryManager: {$ifndef BDS2006AndUp}TMemoryManager{$else}TMemoryManagerEx{$endif};
{$ifdef DetectMMOperationsAfterUninstall}
  {Invalid handlers to catch MM operations after uninstall}
  InvalidMemoryManager: {$ifndef BDS2006AndUp}TMemoryManager{$else}TMemoryManagerEx{$endif} = (
    GetMem: InvalidGetMem;
    FreeMem: InvalidFreeMem;
    ReallocMem: InvalidReallocMem
  {$ifdef BDS2006AndUp};
    AllocMem: InvalidAllocMem;
    RegisterExpectedMemoryLeak: InvalidRegisterAndUnRegisterMemoryLeak;
    UnRegisterExpectedMemoryLeak: InvalidRegisterAndUnRegisterMemoryLeak;
  {$endif}
  );
{$endif}

{$ifdef MMSharingEnabled}
  {A string uniquely identifying the current process (for sharing the memory
   manager between DLLs and the main application)}
  MappingObjectName: array[0..25] of AnsiChar = ('L', 'o', 'c', 'a', 'l', '\',
    'F', 'a', 's', 't', 'M', 'M', '_', 'P', 'I', 'D', '_', '?', '?', '?', '?',
    '?', '?', '?', '?', #0);
{$ifdef EnableBackwardCompatibleMMSharing}
  UniqueProcessIDString: array[1..20] of AnsiChar = ('?', '?', '?', '?', '?',
    '?', '?', '?', '_', 'P', 'I', 'D', '_', 'F', 'a', 's', 't', 'M', 'M', #0);
  UniqueProcessIDStringBE: array[1..23] of AnsiChar = ('?', '?', '?', '?', '?',
    '?', '?', '?', '_', 'P', 'I', 'D', '_', 'F', 'a', 's', 't', 'M', 'M', '_',
    'B', 'E', #0);
  {The handle of the MM window}
  MMWindow: HWND;
  {The handle of the MM window (for default MM of Delphi 2006 compatibility)}
  MMWindowBE: HWND;
{$endif}
  {The handle of the memory mapped file}
  MappingObjectHandle: NativeUInt;
{$endif}
  {Has FastMM been installed?}
  FastMMIsInstalled: Boolean;
  {Is the MM in place a shared memory manager?}
  IsMemoryManagerOwner: Boolean;
  {Must MMX be used for move operations?}
{$ifdef EnableMMX}
  {$ifndef ForceMMX}
  UseMMX: Boolean;
  {$endif}
{$endif}
  {Is a MessageBox currently showing? If so, do not show another one.}
  ShowingMessageBox: Boolean;
  {True if RunInitializationCode has been called already.}
  InitializationCodeHasRun: Boolean = False;

{----------------Utility Functions------------------}

{A copy of StrLen in order to avoid the SysUtils unit, which would have
 introduced overhead like exception handling code.}
function StrLen(const AStr: PAnsiChar): NativeUInt;
{$ifndef Use32BitAsm}
begin
  Result := 0;
  while AStr[Result] <> #0 do
    Inc(Result);
end;
{$else}
asm
  {Check the first byte}
  cmp byte ptr [eax], 0
  je @ZeroLength
  {Get the negative of the string start in edx}
  mov edx, eax
  neg edx
  {Word align}
  add eax, 1
  and eax, -2
@ScanLoop:
  mov cx, [eax]
  add eax, 2
  test cl, ch
  jnz @ScanLoop
  test cl, cl
  jz @ReturnLess2
  test ch, ch
  jnz @ScanLoop
  lea eax, [eax + edx - 1]
  ret
@ReturnLess2:
  lea eax, [eax + edx - 2]
  ret
@ZeroLength:
  xor eax, eax
end;
{$endif}

{$ifdef EnableMMX}
{$ifndef ForceMMX}
{Returns true if the CPUID instruction is supported}
function CPUID_Supported: Boolean;
asm
  pushfd
  pop eax
  mov edx, eax
  xor eax, $200000
  push eax
  popfd
  pushfd
  pop eax
  xor eax, edx
  setnz al
end;

{Gets the CPUID}
function GetCPUID(AInfoRequired: Integer): TRegisters;
asm
  push ebx
  push esi
  mov esi, edx
  {cpuid instruction}
{$ifdef Delphi4or5}
  db $0f, $a2
{$else}
  cpuid
{$endif}
  {Save registers}
  mov TRegisters[esi].RegEAX, eax
  mov TRegisters[esi].RegEBX, ebx
  mov TRegisters[esi].RegECX, ecx
  mov TRegisters[esi].RegEDX, edx
  pop esi
  pop ebx
end;

{Returns true if the CPU supports MMX}
function MMX_Supported: Boolean;
var
  LReg: TRegisters;
begin
  if CPUID_Supported then
  begin
    {Get the CPUID}
    LReg := GetCPUID(1);
    {Bit 23 must be set for MMX support}
    Result := LReg.RegEDX and $800000 <> 0;
  end
  else
    Result := False;
end;
{$endif}
{$endif}

{Compare [AAddress], CompareVal:
 If Equal: [AAddress] := NewVal and result = CompareVal
 If Unequal: Result := [AAddress]}
function LockCmpxchg(CompareVal, NewVal: Byte; AAddress: PByte): Byte;
asm
{$ifdef 32Bit}
  {On entry:
    al = CompareVal,
    dl = NewVal,
    ecx = AAddress}
  {$ifndef LINUX}
  lock cmpxchg [ecx], dl
  {$else}
  {Workaround for Kylix compiler bug}
  db $F0, $0F, $B0, $11
  {$endif}
{$else}
  {On entry:
    cl = CompareVal
    dl = NewVal
    r8 = AAddress}
  .noframe
  mov rax, rcx
  lock cmpxchg [r8], dl
{$endif}
end;

{$ifndef ASMVersion}
{Gets the first set bit in the 32-bit number, returning the bit index}
function FindFirstSetBit(ACardinal: Cardinal): Cardinal;
asm
{$ifdef 64Bit}
  .noframe
  mov rax, rcx
{$endif}
  bsf eax, eax
end;
{$endif}

{$ifdef MACOS}

function StrLCopy(Dest: PAnsiChar; const Source: PAnsiChar; MaxLen: Cardinal): PAnsiChar;
var
  Len: Cardinal;
begin
  Result := Dest;
  Len := StrLen(Source);
  if Len > MaxLen then
    Len := MaxLen;
  Move(Source^, Dest^, Len * SizeOf(AnsiChar));
  Dest[Len] := #0;
end;

function GetModuleFileName(Module: HMODULE; Buffer: PAnsiChar; BufLen: Integer): Integer;
const
  CUnknown: AnsiString = 'unknown';
var
  tmp: array[0..512] of Char;
begin
  if FastMMIsInstalled then
  begin
    Result := System.GetModuleFileName(Module, tmp, BufLen);
    StrLCopy(Buffer, PAnsiChar(AnsiString(tmp)), BufLen);
  end
  else
  begin
    Result := Length(CUnknown);
    StrLCopy(Buffer, Pointer(CUnknown), Result + 1);
  end;
end;

const
  INVALID_HANDLE_VALUE = THandle(-1);

function FileCreate(const FileName: string): THandle;
begin
  Result := THandle(__open(PAnsiChar(UTF8String(FileName)), O_RDWR or O_CREAT or O_TRUNC or O_EXCL, FileAccessRights));
end;

{$endif}

{Writes the module filename to the specified buffer and returns the number of
 characters written.}
function AppendModuleFileName(ABuffer: PAnsiChar): Integer;
var
  LModuleHandle: HModule;
begin
  {Get the module handle}
{$ifndef borlndmmdll}
  if IsLibrary then
    LModuleHandle := HInstance
  else
{$endif}
    LModuleHandle := 0;
  {Get the module name}
{$ifndef POSIX}
  Result := GetModuleFileNameA(LModuleHandle, ABuffer, 512);
{$else}
  Result := GetModuleFileName(LModuleHandle, ABuffer, 512);
{$endif}
end;

{Copies the name of the module followed by the given string to the buffer,
 returning the pointer following the buffer.}
function AppendStringToModuleName(AString, ABuffer: PAnsiChar): PAnsiChar;
var
  LModuleNameLength: Cardinal;
  LCopyStart: PAnsiChar;
begin
  {Get the name of the application}
  LModuleNameLength := AppendModuleFileName(ABuffer);
  {Replace the last few characters}
  if LModuleNameLength > 0 then
  begin
    {Find the last backslash}
    LCopyStart := PAnsiChar(PByte(ABuffer) + LModuleNameLength - 1);
    LModuleNameLength := 0;
    while (UIntPtr(LCopyStart) >= UIntPtr(ABuffer))
      and (LCopyStart^ <> '\') do
    begin
      Inc(LModuleNameLength);
      Dec(LCopyStart);
    end;
    {Copy the name to the start of the buffer}
    Inc(LCopyStart);
    System.Move(LCopyStart^, ABuffer^, LModuleNameLength);
    Inc(ABuffer, LModuleNameLength);
    ABuffer^ := ':';
    Inc(ABuffer);
    ABuffer^ := ' ';
    Inc(ABuffer);
  end;
  {Append the string}
  while AString^ <> #0 do
  begin
    ABuffer^ := AString^;
    Inc(ABuffer);
    {Next char}
    Inc(AString);
  end;
  ABuffer^ := #0;
  Result := ABuffer;
end;

{----------------Faster Move Procedures-------------------}

{Fixed size move operations ignore the size parameter. All moves are assumed to
 be non-overlapping.}

procedure Move4(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  mov eax, [eax]
  mov [edx], eax
{$else}
.noframe
  mov eax, [rcx]
  mov [rdx], eax
{$endif}
end;

{$ifdef 64Bit}
procedure Move8(const ASource; var ADest; ACount: NativeInt);
asm
  mov rax, [rcx]
  mov [rdx], rax
end;
{$endif}

procedure Move12(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  mov ecx, [eax]
  mov [edx], ecx
  mov ecx, [eax + 4]
  mov eax, [eax + 8]
  mov [edx + 4], ecx
  mov [edx + 8], eax
{$else}
.noframe
  mov rax, [rcx]
  mov ecx, [rcx + 8]
  mov [rdx], rax
  mov [rdx + 8], ecx
{$endif}
end;

procedure Move20(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  mov ecx, [eax]
  mov [edx], ecx
  mov ecx, [eax + 4]
  mov [edx + 4], ecx
  mov ecx, [eax + 8]
  mov [edx + 8], ecx
  mov ecx, [eax + 12]
  mov eax, [eax + 16]
  mov [edx + 12], ecx
  mov [edx + 16], eax
{$else}
.noframe
  movdqa xmm0, [rcx]
  mov ecx, [rcx + 16]
  movdqa [rdx], xmm0
  mov [rdx + 16], ecx
{$endif}
end;

{$ifdef 64Bit}
procedure Move24(const ASource; var ADest; ACount: NativeInt);
asm
  movdqa xmm0, [rcx]
  mov r8, [rcx + 16]
  movdqa [rdx], xmm0
  mov [rdx + 16], r8
end;
{$endif}

procedure Move28(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  mov ecx, [eax]
  mov [edx], ecx
  mov ecx, [eax + 4]
  mov [edx + 4], ecx
  mov ecx, [eax + 8]
  mov [edx + 8], ecx
  mov ecx, [eax + 12]
  mov [edx + 12], ecx
  mov ecx, [eax + 16]
  mov [edx + 16], ecx
  mov ecx, [eax + 20]
  mov eax, [eax + 24]
  mov [edx + 20], ecx
  mov [edx + 24], eax
{$else}
.noframe
  movdqa xmm0, [rcx]
  mov r8, [rcx + 16]
  mov ecx, [rcx + 24]
  movdqa [rdx], xmm0
  mov [rdx + 16], r8
  mov [rdx + 24], ecx
{$endif}
end;

procedure Move36(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  fild qword ptr [eax]
  fild qword ptr [eax + 8]
  fild qword ptr [eax + 16]
  fild qword ptr [eax + 24]
  mov ecx, [eax + 32]
  mov [edx + 32], ecx
  fistp qword ptr [edx + 24]
  fistp qword ptr [edx + 16]
  fistp qword ptr [edx + 8]
  fistp qword ptr [edx]
{$else}
.noframe
  movdqa xmm0, [rcx]
  movdqa xmm1, [rcx + 16]
  mov ecx, [rcx + 32]
  movdqa [rdx], xmm0
  movdqa [rdx + 16], xmm1
  mov [rdx + 32], ecx
{$endif}
end;

{$ifdef 64Bit}
procedure Move40(const ASource; var ADest; ACount: NativeInt);
asm
  movdqa xmm0, [rcx]
  movdqa xmm1, [rcx + 16]
  mov r8, [rcx + 32]
  movdqa [rdx], xmm0
  movdqa [rdx + 16], xmm1
  mov [rdx + 32], r8
end;
{$endif}

procedure Move44(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  fild qword ptr [eax]
  fild qword ptr [eax + 8]
  fild qword ptr [eax + 16]
  fild qword ptr [eax + 24]
  fild qword ptr [eax + 32]
  mov ecx, [eax + 40]
  mov [edx + 40], ecx
  fistp qword ptr [edx + 32]
  fistp qword ptr [edx + 24]
  fistp qword ptr [edx + 16]
  fistp qword ptr [edx + 8]
  fistp qword ptr [edx]
{$else}
.noframe
  movdqa xmm0, [rcx]
  movdqa xmm1, [rcx + 16]
  mov r8, [rcx + 32]
  mov ecx, [rcx + 40]
  movdqa [rdx], xmm0
  movdqa [rdx + 16], xmm1
  mov [rdx + 32], r8
  mov [rdx + 40], ecx
{$endif}
end;

procedure Move52(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  fild qword ptr [eax]
  fild qword ptr [eax + 8]
  fild qword ptr [eax + 16]
  fild qword ptr [eax + 24]
  fild qword ptr [eax + 32]
  fild qword ptr [eax + 40]
  mov ecx, [eax + 48]
  mov [edx + 48], ecx
  fistp qword ptr [edx + 40]
  fistp qword ptr [edx + 32]
  fistp qword ptr [edx + 24]
  fistp qword ptr [edx + 16]
  fistp qword ptr [edx + 8]
  fistp qword ptr [edx]
{$else}
.noframe
  movdqa xmm0, [rcx]
  movdqa xmm1, [rcx + 16]
  movdqa xmm2, [rcx + 32]
  mov ecx, [rcx + 48]
  movdqa [rdx], xmm0
  movdqa [rdx + 16], xmm1
  movdqa [rdx + 32], xmm2
  mov [rdx + 48], ecx
{$endif}
end;

{$ifdef 64Bit}
procedure Move56(const ASource; var ADest; ACount: NativeInt);
asm
  movdqa xmm0, [rcx]
  movdqa xmm1, [rcx + 16]
  movdqa xmm2, [rcx + 32]
  mov r8, [rcx + 48]
  movdqa [rdx], xmm0
  movdqa [rdx + 16], xmm1
  movdqa [rdx + 32], xmm2
  mov [rdx + 48], r8
end;
{$endif}

procedure Move60(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  fild qword ptr [eax]
  fild qword ptr [eax + 8]
  fild qword ptr [eax + 16]
  fild qword ptr [eax + 24]
  fild qword ptr [eax + 32]
  fild qword ptr [eax + 40]
  fild qword ptr [eax + 48]
  mov ecx, [eax + 56]
  mov [edx + 56], ecx
  fistp qword ptr [edx + 48]
  fistp qword ptr [edx + 40]
  fistp qword ptr [edx + 32]
  fistp qword ptr [edx + 24]
  fistp qword ptr [edx + 16]
  fistp qword ptr [edx + 8]
  fistp qword ptr [edx]
{$else}
.noframe
  movdqa xmm0, [rcx]
  movdqa xmm1, [rcx + 16]
  movdqa xmm2, [rcx + 32]
  mov r8, [rcx + 48]
  mov ecx, [rcx + 56]
  movdqa [rdx], xmm0
  movdqa [rdx + 16], xmm1
  movdqa [rdx + 32], xmm2
  mov [rdx + 48], r8
  mov [rdx + 56], ecx
{$endif}
end;

procedure Move68(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  fild qword ptr [eax]
  fild qword ptr [eax + 8]
  fild qword ptr [eax + 16]
  fild qword ptr [eax + 24]
  fild qword ptr [eax + 32]
  fild qword ptr [eax + 40]
  fild qword ptr [eax + 48]
  fild qword ptr [eax + 56]
  mov ecx, [eax + 64]
  mov [edx + 64], ecx
  fistp qword ptr [edx + 56]
  fistp qword ptr [edx + 48]
  fistp qword ptr [edx + 40]
  fistp qword ptr [edx + 32]
  fistp qword ptr [edx + 24]
  fistp qword ptr [edx + 16]
  fistp qword ptr [edx + 8]
  fistp qword ptr [edx]
{$else}
.noframe
  movdqa xmm0, [rcx]
  movdqa xmm1, [rcx + 16]
  movdqa xmm2, [rcx + 32]
  movdqa xmm3, [rcx + 48]
  mov ecx, [rcx + 64]
  movdqa [rdx], xmm0
  movdqa [rdx + 16], xmm1
  movdqa [rdx + 32], xmm2
  movdqa [rdx + 48], xmm3
  mov [rdx + 64], ecx
{$endif}
end;

{Variable size move procedure: Rounds ACount up to the next multiple of 16 less
 SizeOf(Pointer). Important note: Always moves at least 16 - SizeOf(Pointer)
 bytes (the minimum small block size with 16 byte alignment), irrespective of
 ACount.}
procedure MoveX16LP(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  {Make the counter negative based: The last 12 bytes are moved separately}
  sub ecx, 12
  add eax, ecx
  add edx, ecx
{$ifdef EnableMMX}
  {$ifndef ForceMMX}
  cmp UseMMX, True
  jne @FPUMove
  {$endif}
  {Make the counter negative based: The last 12 bytes are moved separately}
  neg ecx
  jns @MMXMoveLast12
@MMXMoveLoop:
  {Move a 16 byte block}
  {$ifdef Delphi4or5}
  {Delphi 5 compatibility}
  db $0f, $6f, $04, $01
  db $0f, $6f, $4c, $01, $08
  db $0f, $7f, $04, $11
  db $0f, $7f, $4c, $11, $08
  {$else}
  movq mm0, [eax + ecx]
  movq mm1, [eax + ecx + 8]
  movq [edx + ecx], mm0
  movq [edx + ecx + 8], mm1
  {$endif}
  {Are there another 16 bytes to move?}
  add ecx, 16
  js @MMXMoveLoop
@MMXMoveLast12:
  {Do the last 12 bytes}
  {$ifdef Delphi4or5}
  {Delphi 5 compatibility}
  db $0f, $6f, $04, $01
  {$else}
  movq mm0, [eax + ecx]
  {$endif}
  mov eax, [eax + ecx + 8]
  {$ifdef Delphi4or5}
  {Delphi 5 compatibility}
  db $0f, $7f, $04, $11
  {$else}
  movq [edx + ecx], mm0
  {$endif}
  mov [edx + ecx + 8], eax
  {Exit MMX state}
  {$ifdef Delphi4or5}
  {Delphi 5 compatibility}
  db $0f, $77
  {$else}
  emms
  {$endif}
  {$ifndef ForceMMX}
  ret
  {$endif}
{$endif}
{FPU code is only used if MMX is not forced}
{$ifndef ForceMMX}
@FPUMove:
  neg ecx
  jns @FPUMoveLast12
@FPUMoveLoop:
  {Move a 16 byte block}
  fild qword ptr [eax + ecx]
  fild qword ptr [eax + ecx + 8]
  fistp qword ptr [edx + ecx + 8]
  fistp qword ptr [edx + ecx]
  {Are there another 16 bytes to move?}
  add ecx, 16
  js @FPUMoveLoop
@FPUMoveLast12:
  {Do the last 12 bytes}
  fild qword ptr [eax + ecx]
  fistp qword ptr [edx + ecx]
  mov eax, [eax + ecx + 8]
  mov [edx + ecx + 8], eax
{$endif}
{$else}
.noframe
  {Make the counter negative based: The last 8 bytes are moved separately}
  sub r8, 8
  add rcx, r8
  add rdx, r8
  neg r8
  jns @MoveLast12
@MoveLoop:
  {Move a 16 byte block}
  movdqa xmm0, [rcx + r8]
  movdqa [rdx + r8], xmm0
  {Are there another 16 bytes to move?}
  add r8, 16
  js @MoveLoop
@MoveLast12:
  {Do the last 8 bytes}
  mov r9, [rcx + r8]
  mov [rdx + r8], r9
{$endif}
end;

{Variable size move procedure: Rounds ACount up to the next multiple of 8 less
 SizeOf(Pointer). Important note: Always moves at least 8 - SizeOf(Pointer)
 bytes (the minimum small block size with 8 byte alignment), irrespective of
 ACount.}
procedure MoveX8LP(const ASource; var ADest; ACount: NativeInt);
asm
{$ifdef 32Bit}
  {Make the counter negative based: The last 4 bytes are moved separately}
  sub ecx, 4
  {4 bytes or less? -> Use the Move4 routine.}
  jle @FourBytesOrLess
  add eax, ecx
  add edx, ecx
  neg ecx
{$ifdef EnableMMX}
  {$ifndef ForceMMX}
  cmp UseMMX, True
  jne @FPUMoveLoop
  {$endif}
@MMXMoveLoop:
  {Move an 8 byte block}
{$ifdef Delphi4or5}
  {Delphi 5 compatibility}
  db $0f, $6f, $04, $01
  db $0f, $7f, $04, $11
{$else}
  movq mm0, [eax + ecx]
  movq [edx + ecx], mm0
{$endif}
  {Are there another 8 bytes to move?}
  add ecx, 8
  js @MMXMoveLoop
  {Exit MMX state}
{$ifdef Delphi4or5}
  {Delphi 5 compatibility}
  db $0f, $77
{$else}
  emms
{$endif}
  {Do the last 4 bytes}
  mov eax, [eax + ecx]
  mov [edx + ecx], eax
  ret
{$endif}
{FPU code is only used if MMX is not forced}
{$ifndef ForceMMX}
@FPUMoveLoop:
  {Move an 8 byte block}
  fild qword ptr [eax + ecx]
  fistp qword ptr [edx + ecx]
  {Are there another 8 bytes to move?}
  add ecx, 8
  js @FPUMoveLoop
  {Do the last 4 bytes}
  mov eax, [eax + ecx]
  mov [edx + ecx], eax
  ret
{$endif}
@FourBytesOrLess:
  {Four or less bytes to move}
  mov eax, [eax]
  mov [edx], eax
{$else}
.noframe
  {Make the counter negative based}
  add rcx, r8
  add rdx, r8
  neg r8
@MoveLoop:
  {Move an 8 byte block}
  mov r9, [rcx + r8]
  mov [rdx + r8], r9
  {Are there another 8 bytes to move?}
  add r8, 8
  js @MoveLoop
{$endif}
end;

{----------------Windows Emulation Functions for Kylix / OS X Support-----------------}

{$ifdef POSIX}

const
  {Messagebox constants}
  MB_OK = 0;
  MB_ICONERROR = $10;
  MB_TASKMODAL = $2000;
  MB_DEFAULT_DESKTOP_ONLY = $20000;
  {Virtual memory constants}
  MEM_COMMIT = $1000;
  MEM_RELEASE = $8000;
  MEM_TOP_DOWN = $100000;
  PAGE_READWRITE = 4;

procedure MessageBoxA(hWnd: Cardinal; AMessageText, AMessageTitle: PAnsiChar; uType: Cardinal); stdcall;
begin
  if FastMMIsInstalled then
    writeln(AMessageText)
  else
    __write(STDERR_FILENO, AMessageText, StrLen(AMessageText));
end;

function VirtualAlloc(lpvAddress: Pointer; dwSize, flAllocationType, flProtect: Cardinal): Pointer; stdcall;
begin
  Result := valloc(dwSize);
end;

function VirtualFree(lpAddress: Pointer; dwSize, dwFreeType: Cardinal): LongBool; stdcall;
begin
  free(lpAddress);
  Result := True;
end;

function WriteFile(hFile: THandle; const Buffer; nNumberOfBytesToWrite: Cardinal;
  var lpNumberOfBytesWritten: Cardinal; lpOverlapped: Pointer): Boolean; stdcall;
begin
  lpNumberOfBytesWritten := __write(hFile, @Buffer, nNumberOfBytesToWrite);
  if lpNumberOfBytesWritten = Cardinal(-1) then
  begin
    lpNumberOfBytesWritten := 0;
    Result := False;
  end
  else
    Result := True;
end;

{$ifndef NeverSleepOnThreadContention}
procedure Sleep(dwMilliseconds: Cardinal); stdcall;
begin
  {Convert to microseconds (more or less)}
  usleep(dwMilliseconds shl 10);
end;
{$endif}
{$endif}

{-----------------Debugging Support Functions and Procedures------------------}

{$ifdef FullDebugMode}

{Returns the current thread ID}
function GetThreadID: Cardinal;
{$ifdef 32Bit}
asm
  mov eax, FS:[$24]
end;
{$else}
begin
  Result := GetCurrentThreadId;
end;
{$endif}

{Fills a block of memory with the given dword (32-bit) or qword (64-bit).
 Always fills a multiple of SizeOf(Pointer) bytes}
procedure DebugFillMem(var AAddress; AByteCount: NativeInt; AFillValue: NativeUInt);
asm
{$ifdef 32Bit}
  {On Entry:
   eax = AAddress
   edx = AByteCount
   ecx = AFillValue}
  add eax, edx
  neg edx
  jns @Done
@FillLoop:
  mov [eax + edx], ecx
  add edx, 4
  js @FillLoop
@Done:
{$else}
  {On Entry:
   rcx = AAddress
   rdx = AByteCount
   r8 = AFillValue}
  add rcx, rdx
  neg rdx
  jns @Done
@FillLoop:
  mov [rcx + rdx], r8
  add rdx, 8
  js @FillLoop
@Done:
{$endif}
end;

  {$ifndef LoadDebugDLLDynamically}

{The stack trace procedure. The stack trace module is external since it may
 raise handled access violations that result in the creation of exception
 objects and the stack trace code is not re-entrant.}
procedure GetStackTrace(AReturnAddresses: PNativeUInt;
  AMaxDepth, ASkipFrames: Cardinal); external FullDebugModeLibraryName
  name {$ifdef RawStackTraces}'GetRawStackTrace'{$else}'GetFrameBasedStackTrace'{$endif};

{The exported procedure in the FastMM_FullDebugMode.dll library used to convert
 the return addresses of a stack trace to a text string.}
function LogStackTrace(AReturnAddresses: PNativeUInt;
  AMaxDepth: Cardinal; ABuffer: PAnsiChar): PAnsiChar; external FullDebugModeLibraryName
  name 'LogStackTrace';

  {$else}

  {Default no-op stack trace and logging handlers}
  procedure NoOpGetStackTrace(AReturnAddresses: PNativeUInt;
    AMaxDepth, ASkipFrames: Cardinal);
  begin
    DebugFillMem(AReturnAddresses^, AMaxDepth * SizeOf(Pointer), 0);
  end;

  function NoOpLogStackTrace(AReturnAddresses: PNativeUInt;
    AMaxDepth: Cardinal; ABuffer: PAnsiChar): PAnsiChar;
  begin
    Result := ABuffer;
  end;

var

  {Handle to the FullDebugMode DLL}
  FullDebugModeDLL: HMODULE;

  GetStackTrace: procedure (AReturnAddresses: PNativeUInt;
    AMaxDepth, ASkipFrames: Cardinal) = NoOpGetStackTrace;

  LogStackTrace: function (AReturnAddresses: PNativeUInt;
    AMaxDepth: Cardinal; ABuffer: PAnsiChar): PAnsiChar = NoOpLogStackTrace;

  {$endif}

{$endif}

{$ifndef POSIX}
function DelphiIsRunning: Boolean;
begin
  Result := FindWindowA('TAppBuilder', nil) <> 0;
end;
{$endif}

{Converts an unsigned integer to string at the buffer location, returning the
 new buffer position. Note: The 32-bit asm version only supports numbers up to
 2^31 - 1.}
function NativeUIntToStrBuf(ANum: NativeUInt; APBuffer: PAnsiChar): PAnsiChar;
{$ifndef Use32BitAsm}
const
  MaxDigits = 20;
var
  LDigitBuffer: array[0..MaxDigits - 1] of AnsiChar;
  LCount: Cardinal;
  LDigit: NativeUInt;
begin
  {Generate the digits in the local buffer}
  LCount := 0;
  repeat
    LDigit := ANum;
    ANum := ANum div 10;
    LDigit := LDigit - ANum * 10;
    Inc(LCount);
    LDigitBuffer[MaxDigits - LCount] := AnsiChar(Ord('0') + LDigit);
  until ANum = 0;
  {Copy the digits to the output buffer and advance it}
  System.Move(LDigitBuffer[MaxDigits - LCount], APBuffer^, LCount);
  Result := APBuffer + LCount;
end;
{$else}
asm
  {On entry: eax = ANum, edx = ABuffer}
  push edi
  mov edi, edx                //Pointer to the first character in edi
  {Calculate leading digit: divide the number by 1e9}
  add eax, 1                  //Increment the number
  mov edx, $89705F41          //1e9 reciprocal
  mul edx                     //Multplying with reciprocal
  shr eax, 30                 //Save fraction bits
  mov ecx, edx                //First digit in bits <31:29>
  and edx, $1FFFFFFF          //Filter fraction part edx<28:0>
  shr ecx, 29                 //Get leading digit into accumulator
  lea edx, [edx + 4 * edx]    //Calculate ...
  add edx, eax                //... 5*fraction
  mov eax, ecx                //Copy leading digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #2}
  mov eax, edx                //Point format such that 1.0 = 2^28
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 28                 //Next digit
  and edx, $0fffffff          //Fraction part edx<27:0>
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #3}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:27>
  lea edx, [edx * 4 + edx]    //5*fraction, new fraction edx<26:0>
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 27                 //Next digit
  and edx, $07ffffff          //Fraction part
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #4}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:26>
  lea edx, [edx * 4 + edx]    //5*fraction, new fraction edx<25:0>
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 26                 //Next digit
  and edx, $03ffffff          //Fraction part
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #5}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:25>
  lea edx, [edx * 4 + edx]    //5*fraction, new fraction edx<24:0>
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 25                 //Next digit
  and edx, $01ffffff          //Fraction part
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #6}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:24>
  lea edx, [edx * 4 + edx]    //5*fraction, new fraction edx<23:0>
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 24                 //Next digit
  and edx, $00ffffff          //Fraction part
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #7}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:23>
  lea edx, [edx * 4 + edx]    //5*fraction, new fraction edx<31:23>
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 23                 //Next digit
  and edx, $007fffff          //Fraction part
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #8}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:22>
  lea edx, [edx * 4 + edx]    //5*fraction, new fraction edx<22:0>
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 22                 //Next digit
  and edx, $003fffff          //Fraction part
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #9}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:21>
  lea edx, [edx * 4 + edx]    //5*fraction, new fraction edx<21:0>
  cmp ecx, 1                  //Any non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 21                 //Next digit
  and edx, $001fffff          //Fraction part
  or ecx, eax                 //Accumulate next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store digit out to memory
  {Calculate digit #10}
  lea eax, [edx * 4 + edx]    //5*fraction, new digit eax<31:20>
  cmp ecx, 1                  //Any-non-zero digit yet ?
  sbb edi, -1                 //Yes->increment ptr, No->keep old ptr
  shr eax, 20                 //Next digit
  or eax, '0'                 //Convert digit to ASCII
  mov [edi], al               //Store last digit and end marker out to memory
  {Return a pointer to the next character}
  lea eax, [edi + 1]
  {Restore edi}
  pop edi
end;
{$endif}

{Converts an unsigned integer to a hexadecimal string at the buffer location,
 returning the new buffer position.}
function NativeUIntToHexBuf(ANum: NativeUInt; APBuffer: PAnsiChar): PAnsiChar;
{$ifndef Use32BitAsm}
const
  MaxDigits = 16;
var
  LDigitBuffer: array[0..MaxDigits - 1] of AnsiChar;
  LCount: Cardinal;
  LDigit: NativeUInt;
begin
  {Generate the digits in the local buffer}
  LCount := 0;
  repeat
    LDigit := ANum;
    ANum := ANum div 16;
    LDigit := LDigit - ANum * 16;
    Inc(LCount);
    LDigitBuffer[MaxDigits - LCount] := HexTable[LDigit];
  until ANum = 0;
  {Copy the digits to the output buffer and advance it}
  System.Move(LDigitBuffer[MaxDigits - LCount], APBuffer^, LCount);
  Result := APBuffer + LCount;
end;
{$else}
asm
  {On entry:
    eax = ANum
    edx = ABuffer}
  push ebx
  push edi
  {Save ANum in ebx}
  mov ebx, eax
  {Get a pointer to the first character in edi}
  mov edi, edx
  {Get the number in ecx as well}
  mov ecx, eax
  {Keep the low nibbles in ebx and the high nibbles in ecx}
  and ebx, $0f0f0f0f
  and ecx, $f0f0f0f0
  {Swap the bytes into the right order}
  ror ebx, 16
  ror ecx, 20
  {Get nibble 7}
  movzx eax, ch
  mov dl, ch
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  cmp dl, 1
  sbb edi, -1
  {Get nibble 6}
  movzx eax, bh
  or dl, bh
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  cmp dl, 1
  sbb edi, -1
  {Get nibble 5}
  movzx eax, cl
  or dl, cl
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  cmp dl, 1
  sbb edi, -1
  {Get nibble 4}
  movzx eax, bl
  or dl, bl
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  cmp dl, 1
  sbb edi, -1
  {Rotate ecx and ebx so we get access to the rest}
  shr ebx, 16
  shr ecx, 16
  {Get nibble 3}
  movzx eax, ch
  or dl, ch
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  cmp dl, 1
  sbb edi, -1
  {Get nibble 2}
  movzx eax, bh
  or dl, bh
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  cmp dl, 1
  sbb edi, -1
  {Get nibble 1}
  movzx eax, cl
  or dl, cl
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  cmp dl, 1
  sbb edi, -1
  {Get nibble 0}
  movzx eax, bl
  mov al, byte ptr HexTable[eax]
  mov [edi], al
  {Return a pointer to the end of the string}
  lea eax, [edi + 1]
  {Restore registers}
  pop edi
  pop ebx
end;
{$endif}

{Appends the source text to the destination and returns the new destination
 position}
function AppendStringToBuffer(const ASource, ADestination: PAnsiChar; ACount: Cardinal): PAnsiChar;
begin
  System.Move(ASource^, ADestination^, ACount);
  Result := Pointer(PByte(ADestination) + ACount);
end;

{Appends the name of the class to the destination buffer and returns the new
 destination position}
function AppendClassNameToBuffer(AClass: TClass; ADestination: PAnsiChar): PAnsiChar;
var
  LPClassName: PShortString;
begin
  {Get a pointer to the class name}
  if AClass <> nil then
  begin
    LPClassName := PShortString(PPointer(PByte(AClass) + vmtClassName)^);
    {Append the class name}
    Result := AppendStringToBuffer(@LPClassName^[1], ADestination, Length(LPClassName^));
  end
  else
  begin
    Result := AppendStringToBuffer(UnknownClassNameMsg, ADestination, Length(UnknownClassNameMsg));
  end;
end;

{Shows a message box if the program is not showing one already.}
procedure ShowMessageBox(AText, ACaption: PAnsiChar);
begin
  if (not ShowingMessageBox) and (not SuppressMessageBoxes) then
  begin
    ShowingMessageBox := True;
    MessageBoxA(0, AText, ACaption,
      MB_OK or MB_ICONERROR or MB_TASKMODAL or MB_DEFAULT_DESKTOP_ONLY);
    ShowingMessageBox := False;
  end;
end;

{Returns the class for a memory block. Returns nil if it is not a valid class}
function DetectClassInstance(APointer: Pointer): TClass;
{$ifndef POSIX}
var
  LMemInfo: TMemoryBasicInformation;

  {Checks whether the given address is a valid address for a VMT entry.}
  function IsValidVMTAddress(APAddress: Pointer): Boolean;
  begin
    {Do some basic pointer checks: Must be dword aligned and beyond 64K}
    if (UIntPtr(APAddress) > 65535)
      and (UIntPtr(APAddress) and 3 = 0) then
    begin
      {Do we need to recheck the virtual memory?}
      if (UIntPtr(LMemInfo.BaseAddress) > UIntPtr(APAddress))
        or ((UIntPtr(LMemInfo.BaseAddress) + LMemInfo.RegionSize) < (UIntPtr(APAddress) + 4)) then
      begin
        {Get the VM status for the pointer}
        LMemInfo.RegionSize := 0;
        VirtualQuery(APAddress,  LMemInfo, SizeOf(LMemInfo));
      end;
      {Check the readability of the memory address}
      Result := (LMemInfo.RegionSize >= 4)
        and (LMemInfo.State = MEM_COMMIT)
        and (LMemInfo.Protect and (PAGE_READONLY or PAGE_READWRITE or PAGE_EXECUTE or PAGE_EXECUTE_READ or PAGE_EXECUTE_READWRITE or PAGE_EXECUTE_WRITECOPY) <> 0)
        and (LMemInfo.Protect and PAGE_GUARD = 0);
    end
    else
      Result := False;
  end;

  {Returns true if AClassPointer points to a class VMT}
  function InternalIsValidClass(AClassPointer: Pointer; ADepth: Integer = 0): Boolean;
  var
    LParentClassSelfPointer: PPointer;
  begin
    {Check that the self pointer as well as parent class self pointer addresses
     are valid}
    if (ADepth < 1000)
      and IsValidVMTAddress(Pointer(PByte(AClassPointer) + vmtSelfPtr))
      and IsValidVMTAddress(Pointer(PByte(AClassPointer) + vmtParent)) then
    begin
      {Get a pointer to the parent class' self pointer}
      LParentClassSelfPointer := PPointer(PByte(AClassPointer) + vmtParent)^;
      {Check that the self pointer as well as the parent class is valid}
      Result := (PPointer(PByte(AClassPointer) + vmtSelfPtr)^ = AClassPointer)
        and ((LParentClassSelfPointer = nil)
          or (IsValidVMTAddress(LParentClassSelfPointer)
            and InternalIsValidClass(LParentClassSelfPointer^, ADepth + 1)));
    end
    else
      Result := False;
  end;

begin
  {Get the class pointer from the (suspected) object}
  Result := TClass(PPointer(APointer)^);
  {No VM info yet}
  LMemInfo.RegionSize := 0;
  {Check the block}
  if (not InternalIsValidClass(Pointer(Result), 0))
{$ifdef FullDebugMode}
    or (Result = @FreedObjectVMT.VMTMethods[0])
{$endif}
  then
    Result := nil;
end;
{$else}
begin
  {Not currently supported under Linux / OS X}
  Result := nil;
end;
{$endif}

{Gets the available size inside a block}
function GetAvailableSpaceInBlock(APointer: Pointer): NativeUInt;
var
  LBlockHeader: NativeUInt;
  LPSmallBlockPool: PSmallBlockPoolHeader;
begin
  LBlockHeader := PNativeUInt(PByte(APointer) - BlockHeaderSize)^;
  if LBlockHeader and (IsMediumBlockFlag or IsLargeBlockFlag) = 0 then
  begin
    LPSmallBlockPool := PSmallBlockPoolHeader(LBlockHeader and DropSmallFlagsMask);
    Result := LPSmallBlockPool.BlockType.BlockSize - BlockHeaderSize;
  end
  else
  begin
    Result := (LBlockHeader and DropMediumAndLargeFlagsMask) - BlockHeaderSize;
    if (LBlockHeader and IsMediumBlockFlag) = 0 then
      Dec(Result, LargeBlockHeaderSize);
  end;
end;

{-----------------Small Block Management------------------}

{Locks all small block types}
procedure LockAllSmallBlockTypes;
var
  LInd: Cardinal;
begin
  {Lock the medium blocks}
{$ifndef AssumeMultiThreaded}
  if IsMultiThread then
{$endif}
  begin
    for LInd := 0 to NumSmallBlockTypes - 1 do
    begin
      while LockCmpxchg(0, 1, @SmallBlockTypes[LInd].BlockTypeLocked) <> 0 do
      begin
{$ifdef NeverSleepOnThreadContention}
  {$ifdef UseSwitchToThread}
        SwitchToThread;
  {$endif}
{$else}
        Sleep(InitialSleepTime);
        if LockCmpxchg(0, 1, @SmallBlockTypes[LInd].BlockTypeLocked) = 0 then
          Break;
        Sleep(AdditionalSleepTime);
{$endif}
      end;
    end;
  end;
end;

{Gets the first and last block pointer for a small block pool}
procedure GetFirstAndLastSmallBlockInPool(APSmallBlockPool: PSmallBlockPoolHeader;
  var AFirstPtr, ALastPtr: Pointer);
var
  LBlockSize: NativeUInt;
begin
  {Get the pointer to the first block}
  AFirstPtr := Pointer(PByte(APSmallBlockPool) + SmallBlockPoolHeaderSize);
  {Get a pointer to the last block}
  if (APSmallBlockPool.BlockType.CurrentSequentialFeedPool <> APSmallBlockPool)
    or (UIntPtr(APSmallBlockPool.BlockType.NextSequentialFeedBlockAddress) > UIntPtr(APSmallBlockPool.BlockType.MaxSequentialFeedBlockAddress)) then
  begin
    {Not the sequential feed - point to the end of the block}
    LBlockSize := PNativeUInt(PByte(APSmallBlockPool) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask;
    ALastPtr := Pointer(PByte(APSmallBlockPool) + LBlockSize - APSmallBlockPool.BlockType.BlockSize);
  end
  else
  begin
    {The sequential feed pool - point to before the next sequential feed block}
    ALastPtr := Pointer(PByte(APSmallBlockPool.BlockType.NextSequentialFeedBlockAddress) - 1);
  end;
end;

{-----------------Medium Block Management------------------}

{Advances to the next medium block. Returns nil if the end of the medium block
 pool has been reached}
function NextMediumBlock(APMediumBlock: Pointer): Pointer;
var
  LBlockSize: NativeUInt;
begin
  {Get the size of this block}
  LBlockSize := PNativeUInt(PByte(APMediumBlock) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask;
  {Advance the pointer}
  Result := Pointer(PByte(APMediumBlock) + LBlockSize);
  {Is the next block the end of medium pool marker?}
  LBlockSize := PNativeUInt(PByte(Result) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask;
  if LBlockSize = 0 then
    Result := nil;
end;

{Gets the first medium block in the medium block pool}
function GetFirstMediumBlockInPool(APMediumBlockPoolHeader: PMediumBlockPoolHeader): Pointer;
begin
  if (MediumSequentialFeedBytesLeft = 0)
    or (UIntPtr(LastSequentiallyFedMediumBlock) < UIntPtr(APMediumBlockPoolHeader))
    or (UIntPtr(LastSequentiallyFedMediumBlock) > UIntPtr(APMediumBlockPoolHeader) + MediumBlockPoolSize) then
  begin
    Result := Pointer(PByte(APMediumBlockPoolHeader) + MediumBlockPoolHeaderSize);
  end
  else
  begin
    {Is the sequential feed pool empty?}
    if MediumSequentialFeedBytesLeft <> MediumBlockPoolSize - MediumBlockPoolHeaderSize then
      Result := LastSequentiallyFedMediumBlock
    else
      Result := nil;
  end;
end;

{Locks the medium blocks. Note that the 32-bit asm version is assumed to
 preserve all registers except eax.}
{$ifndef Use32BitAsm}
procedure LockMediumBlocks;
begin
  {Lock the medium blocks}
{$ifndef AssumeMultiThreaded}
  if IsMultiThread then
{$endif}
  begin
    while LockCmpxchg(0, 1, @MediumBlocksLocked) <> 0 do
    begin
{$ifdef NeverSleepOnThreadContention}
  {$ifdef UseSwitchToThread}
      SwitchToThread;
  {$endif}
{$else}
      Sleep(InitialSleepTime);
      if LockCmpxchg(0, 1, @MediumBlocksLocked) = 0 then
        Break;
      Sleep(AdditionalSleepTime);
{$endif}
    end;
  end;
end;
{$else}
procedure LockMediumBlocks;
asm
  {Note: This routine is assumed to preserve all registers except eax}
@MediumBlockLockLoop:
  mov eax, $100
  {Attempt to lock the medium blocks}
  lock cmpxchg MediumBlocksLocked, ah
  je @Done
{$ifdef NeverSleepOnThreadContention}
  {Pause instruction (improves performance on P4)}
  rep nop
  {$ifdef UseSwitchToThread}
  push ecx
  push edx
  call SwitchToThread
  pop edx
  pop ecx
  {$endif}
  {Try again}
  jmp @MediumBlockLockLoop
{$else}
  {Couldn't lock the medium blocks - sleep and try again}
  push ecx
  push edx
  push InitialSleepTime
  call Sleep
  pop edx
  pop ecx
  {Try again}
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg MediumBlocksLocked, ah
  je @Done
  {Couldn't lock the medium blocks - sleep and try again}
  push ecx
  push edx
  push AdditionalSleepTime
  call Sleep
  pop edx
  pop ecx
  {Try again}
  jmp @MediumBlockLockLoop
{$endif}
@Done:
end;
{$endif}

{Removes a medium block from the circular linked list of free blocks.
 Does not change any header flags. Medium blocks should be locked
 before calling this procedure.}
procedure RemoveMediumFreeBlock(APMediumFreeBlock: PMediumFreeBlock);
{$ifndef ASMVersion}
var
  LPreviousFreeBlock, LNextFreeBlock: PMediumFreeBlock;
  LBinNumber, LBinGroupNumber: Cardinal;
begin
  {Get the current previous and next blocks}
  LNextFreeBlock := APMediumFreeBlock.NextFreeBlock;
  LPreviousFreeBlock := APMediumFreeBlock.PreviousFreeBlock;
  {Remove this block from the linked list}
  LPreviousFreeBlock.NextFreeBlock := LNextFreeBlock;
  LNextFreeBlock.PreviousFreeBlock := LPreviousFreeBlock;
  {Is this bin now empty? If the previous and next free block pointers are
   equal, they must point to the bin.}
  if LPreviousFreeBlock = LNextFreeBlock then
  begin
    {Get the bin number for this block size}
    LBinNumber := (UIntPtr(LNextFreeBlock) - UIntPtr(@MediumBlockBins)) div SizeOf(TMediumFreeBlock);
    LBinGroupNumber := LBinNumber div 32;
    {Flag this bin as empty}
    MediumBlockBinBitmaps[LBinGroupNumber] := MediumBlockBinBitmaps[LBinGroupNumber]
      and (not (1 shl (LBinNumber and 31)));
    {Is the group now entirely empty?}
    if MediumBlockBinBitmaps[LBinGroupNumber] = 0 then
    begin
      {Flag this group as empty}
      MediumBlockBinGroupBitmap := MediumBlockBinGroupBitmap
        and (not (1 shl LBinGroupNumber));
    end;
  end;
end;
{$else}
{$ifdef 32Bit}
asm
  {On entry: eax = APMediumFreeBlock}
  {Get the current previous and next blocks}
  mov ecx, TMediumFreeBlock[eax].NextFreeBlock
  mov edx, TMediumFreeBlock[eax].PreviousFreeBlock
  {Is this bin now empty? If the previous and next free block pointers are
   equal, they must point to the bin.}
  cmp ecx, edx
  {Remove this block from the linked list}
  mov TMediumFreeBlock[ecx].PreviousFreeBlock, edx
  mov TMediumFreeBlock[edx].NextFreeBlock, ecx
  {Is this bin now empty? If the previous and next free block pointers are
   equal, they must point to the bin.}
  je @BinIsNowEmpty
@Done:
  ret
  {Align branch target}
  nop
@BinIsNowEmpty:
  {Get the bin number for this block size in ecx}
  sub ecx, offset MediumBlockBins
  mov edx, ecx
  shr ecx, 3
  {Get the group number in edx}
  movzx edx, dh
  {Flag this bin as empty}
  mov eax, -2
  rol eax, cl
  and dword ptr [MediumBlockBinBitmaps + edx * 4], eax
  jnz @Done
  {Flag this group as empty}
  mov eax, -2
  mov ecx, edx
  rol eax, cl
  and MediumBlockBinGroupBitmap, eax
end;
{$else}
asm
  {On entry: rcx = APMediumFreeBlock}
  mov rax, rcx
  {Get the current previous and next blocks}
  mov rcx, TMediumFreeBlock[rax].NextFreeBlock
  mov rdx, TMediumFreeBlock[rax].PreviousFreeBlock
  {Is this bin now empty? If the previous and next free block pointers are
   equal, they must point to the bin.}
  cmp rcx, rdx
  {Remove this block from the linked list}
  mov TMediumFreeBlock[rcx].PreviousFreeBlock, rdx
  mov TMediumFreeBlock[rdx].NextFreeBlock, rcx
  {Is this bin now empty? If the previous and next free block pointers are
   equal, they must point to the bin.}
  jne @Done
  {Get the bin number for this block size in rcx}
  lea r8, MediumBlockBins
  sub rcx, r8
  mov edx, ecx
  shr ecx, 4
  {Get the group number in edx}
  shr edx, 9
  {Flag this bin as empty}
  mov eax, -2
  rol eax, cl
  lea r8, MediumBlockBinBitmaps
  and dword ptr [r8 + rdx * 4], eax
  jnz @Done
  {Flag this group as empty}
  mov eax, -2
  mov ecx, edx
  rol eax, cl
  and MediumBlockBinGroupBitmap, eax
@Done:
end;
{$endif}
{$endif}

{Inserts a medium block into the appropriate medium block bin.}
procedure InsertMediumBlockIntoBin(APMediumFreeBlock: PMediumFreeBlock; AMediumBlockSize: Cardinal);
{$ifndef ASMVersion}
var
  LBinNumber, LBinGroupNumber: Cardinal;
  LPBin, LPFirstFreeBlock: PMediumFreeBlock;
begin
  {Get the bin number for this block size. Get the bin that holds blocks of at
   least this size.}
  LBinNumber := (AMediumBlockSize - MinimumMediumBlockSize) div MediumBlockGranularity;
  if LBinNumber >= MediumBlockBinCount then
    LBinNumber := MediumBlockBinCount - 1;
  {Get the bin}
  LPBin := @MediumBlockBins[LBinNumber];
  {Bins are LIFO, se we insert this block as the first free block in the bin}
  LPFirstFreeBlock := LPBin.NextFreeBlock;
  APMediumFreeBlock.PreviousFreeBlock := LPBin;
  APMediumFreeBlock.NextFreeBlock := LPFirstFreeBlock;
  LPFirstFreeBlock.PreviousFreeBlock := APMediumFreeBlock;
  LPBin.NextFreeBlock := APMediumFreeBlock;
  {Was this bin empty?}
  if LPFirstFreeBlock = LPBin then
  begin
    {Get the group number}
    LBinGroupNumber := LBinNumber div 32;
    {Flag this bin as used}
    MediumBlockBinBitmaps[LBinGroupNumber] := MediumBlockBinBitmaps[LBinGroupNumber]
      or (1 shl (LBinNumber and 31));
    {Flag the group as used}
    MediumBlockBinGroupBitmap := MediumBlockBinGroupBitmap
      or (1 shl LBinGroupNumber);
  end;
end;
{$else}
{$ifdef 32Bit}
asm
  {On entry: eax = APMediumFreeBlock, edx = AMediumBlockSize}
  {Get the bin number for this block size. Get the bin that holds blocks of at
   least this size.}
  sub edx, MinimumMediumBlockSize
  shr edx, 8
  {Validate the bin number}
  sub edx, MediumBlockBinCount - 1
  sbb ecx, ecx
  and edx, ecx
  add edx, MediumBlockBinCount - 1
  {Get the bin in ecx}
  lea ecx, [MediumBlockBins + edx * 8]
  {Bins are LIFO, se we insert this block as the first free block in the bin}
  mov edx, TMediumFreeBlock[ecx].NextFreeBlock
  {Was this bin empty?}
  cmp edx, ecx
  mov TMediumFreeBlock[eax].PreviousFreeBlock, ecx
  mov TMediumFreeBlock[eax].NextFreeBlock, edx
  mov TMediumFreeBlock[edx].PreviousFreeBlock, eax
  mov TMediumFreeBlock[ecx].NextFreeBlock, eax
  {Was this bin empty?}
  je @BinWasEmpty
  ret
  {Align branch target}
  nop
  nop
@BinWasEmpty:
  {Get the bin number in ecx}
  sub ecx, offset MediumBlockBins
  mov edx, ecx
  shr ecx, 3
  {Get the group number in edx}
  movzx edx, dh
  {Flag this bin as not empty}
  mov eax, 1
  shl eax, cl
  or dword ptr [MediumBlockBinBitmaps + edx * 4], eax
  {Flag the group as not empty}
  mov eax, 1
  mov ecx, edx
  shl eax, cl
  or MediumBlockBinGroupBitmap, eax
end;
{$else}
asm
  {On entry: rax = APMediumFreeBlock, edx = AMediumBlockSize}
  mov rax, rcx
  {Get the bin number for this block size. Get the bin that holds blocks of at
   least this size.}
  sub edx, MinimumMediumBlockSize
  shr edx, 8
  {Validate the bin number}
  sub edx, MediumBlockBinCount - 1
  sbb ecx, ecx
  and edx, ecx
  add edx, MediumBlockBinCount - 1
  mov r9, rdx
  {Get the bin address in rcx}
  lea rcx, MediumBlockBins
  shl edx, 4
  add rcx, rdx
  {Bins are LIFO, se we insert this block as the first free block in the bin}
  mov rdx, TMediumFreeBlock[rcx].NextFreeBlock
  {Was this bin empty?}
  cmp rdx, rcx
  mov TMediumFreeBlock[rax].PreviousFreeBlock, rcx
  mov TMediumFreeBlock[rax].NextFreeBlock, rdx
  mov TMediumFreeBlock[rdx].PreviousFreeBlock, rax
  mov TMediumFreeBlock[rcx].NextFreeBlock, rax
  {Was this bin empty?}
  jne @Done
  {Get the bin number in ecx}
  mov rcx, r9
  {Get the group number in edx}
  mov rdx, r9
  shr edx, 5
  {Flag this bin as not empty}
  mov eax, 1
  shl eax, cl
  lea r8, MediumBlockBinBitmaps
  or dword ptr [r8 + rdx * 4], eax
  {Flag the group as not empty}
  mov eax, 1
  mov ecx, edx
  shl eax, cl
  or MediumBlockBinGroupBitmap, eax
@Done:
end;
{$endif}
{$endif}

{Bins what remains in the current sequential feed medium block pool. Medium
 blocks must be locked.}
procedure BinMediumSequentialFeedRemainder;
{$ifndef ASMVersion}
var
  LSequentialFeedFreeSize, LNextBlockSizeAndFlags: NativeUInt;
  LPRemainderBlock, LNextMediumBlock: Pointer;
begin
  LSequentialFeedFreeSize := MediumSequentialFeedBytesLeft;
  if LSequentialFeedFreeSize > 0 then
  begin
    {Get the block after the open space}
    LNextMediumBlock := LastSequentiallyFedMediumBlock;
    LNextBlockSizeAndFlags := PNativeUInt(PByte(LNextMediumBlock) - BlockHeaderSize)^;
    {Point to the remainder}
    LPRemainderBlock := Pointer(PByte(LNextMediumBlock) - LSequentialFeedFreeSize);
{$ifndef FullDebugMode}
    {Can the next block be combined with the remainder?}
    if (LNextBlockSizeAndFlags and IsFreeBlockFlag) <> 0 then
    begin
      {Increase the size of this block}
      Inc(LSequentialFeedFreeSize, LNextBlockSizeAndFlags and DropMediumAndLargeFlagsMask);
      {Remove the next block as well}
      if (LNextBlockSizeAndFlags and DropMediumAndLargeFlagsMask) >= MinimumMediumBlockSize then
        RemoveMediumFreeBlock(LNextMediumBlock);
    end
    else
    begin
{$endif}
      {Set the "previous block is free" flag of the next block}
      PNativeUInt(PByte(LNextMediumBlock) - BlockHeaderSize)^ := LNextBlockSizeAndFlags or PreviousMediumBlockIsFreeFlag;
{$ifndef FullDebugMode}
    end;
{$endif}
    {Store the size of the block as well as the flags}
    PNativeUInt(PByte(LPRemainderBlock) - BlockHeaderSize)^ := LSequentialFeedFreeSize or IsMediumBlockFlag or IsFreeBlockFlag;
    {Store the trailing size marker}
    PNativeUInt(PByte(LPRemainderBlock) + LSequentialFeedFreeSize - BlockHeaderSize * 2)^ := LSequentialFeedFreeSize;
{$ifdef FullDebugMode}
    {In full debug mode the sequential feed remainder will never be too small to
     fit a full debug header.}
    {Clear the user area of the block}
    DebugFillMem(Pointer(PByte(LPRemainderBlock) + SizeOf(TFullDebugBlockHeader) + SizeOf(NativeUInt))^,
      LSequentialFeedFreeSize - FullDebugBlockOverhead - SizeOf(NativeUInt),
      {$ifndef CatchUseOfFreedInterfaces}DebugFillPattern{$else}NativeUInt(@VMTBadInterface){$endif});
    {We need to set a valid debug header and footer in the remainder}
    PFullDebugBlockHeader(LPRemainderBlock).HeaderCheckSum := NativeUInt(LPRemainderBlock);
    PNativeUInt(PByte(LPRemainderBlock) + SizeOf(TFullDebugBlockHeader))^ := not NativeUInt(LPRemainderBlock);
{$endif}
    {Bin this medium block}
    if LSequentialFeedFreeSize >= MinimumMediumBlockSize then
      InsertMediumBlockIntoBin(LPRemainderBlock, LSequentialFeedFreeSize);
  end;
end;
{$else}
{$ifdef 32Bit}
asm
  cmp MediumSequentialFeedBytesLeft, 0
  jne @MustBinMedium
  {Nothing to bin}
  ret
  {Align branch target}
  nop
  nop
@MustBinMedium:
  {Get a pointer to the last sequentially allocated medium block}
  mov eax, LastSequentiallyFedMediumBlock
  {Is the block that was last fed sequentially free?}
  test byte ptr [eax - 4], IsFreeBlockFlag
  jnz @LastBlockFedIsFree
  {Set the "previous block is free" flag in the last block fed}
  or dword ptr [eax - 4], PreviousMediumBlockIsFreeFlag
  {Get the remainder in edx}
  mov edx, MediumSequentialFeedBytesLeft
  {Point eax to the start of the remainder}
  sub eax, edx
@BinTheRemainder:
  {Status: eax = start of remainder, edx = size of remainder}
  {Store the size of the block as well as the flags}
  lea ecx, [edx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [eax - 4], ecx
  {Store the trailing size marker}
  mov [eax + edx - 8], edx
  {Bin this medium block}
  cmp edx, MinimumMediumBlockSize
  jnb InsertMediumBlockIntoBin
  ret
  {Align branch target}
  nop
  nop
@LastBlockFedIsFree:
  {Drop the flags}
  mov edx, DropMediumAndLargeFlagsMask
  and edx, [eax - 4]
  {Free the last block fed}
  cmp edx, MinimumMediumBlockSize
  jb @DontRemoveLastFed
  {Last fed block is free - remove it from its size bin}
  call RemoveMediumFreeBlock
  {Re-read eax and edx}
  mov eax, LastSequentiallyFedMediumBlock
  mov edx, DropMediumAndLargeFlagsMask
  and edx, [eax - 4]
@DontRemoveLastFed:
  {Get the number of bytes left in ecx}
  mov ecx, MediumSequentialFeedBytesLeft
  {Point eax to the start of the remainder}
  sub eax, ecx
  {edx = total size of the remainder}
  add edx, ecx
  jmp @BinTheRemainder
@Done:
end;
{$else}
asm
  .params 2
  xor eax, eax
  cmp MediumSequentialFeedBytesLeft, eax
  je @Done
  {Get a pointer to the last sequentially allocated medium block}
  mov rax, LastSequentiallyFedMediumBlock
  {Is the block that was last fed sequentially free?}
  test byte ptr [rax - BlockHeaderSize], IsFreeBlockFlag
  jnz @LastBlockFedIsFree
  {Set the "previous block is free" flag in the last block fed}
  or qword ptr [rax - BlockHeaderSize], PreviousMediumBlockIsFreeFlag
  {Get the remainder in edx}
  mov edx, MediumSequentialFeedBytesLeft
  {Point eax to the start of the remainder}
  sub rax, rdx
@BinTheRemainder:
  {Status: rax = start of remainder, edx = size of remainder}
  {Store the size of the block as well as the flags}
  lea rcx, [rdx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [rax - BlockHeaderSize], rcx
  {Store the trailing size marker}
  mov [rax + rdx - 2 * BlockHeaderSize], rdx
  {Bin this medium block}
  cmp edx, MinimumMediumBlockSize
  jb @Done
  mov rcx, rax
  call InsertMediumBlockIntoBin
  jmp @Done
@LastBlockFedIsFree:
  {Drop the flags}
  mov rdx, DropMediumAndLargeFlagsMask
  and rdx, [rax - BlockHeaderSize]
  {Free the last block fed}
  cmp edx, MinimumMediumBlockSize
  jb @DontRemoveLastFed
  {Last fed block is free - remove it from its size bin}
  mov rcx, rax
  call RemoveMediumFreeBlock
  {Re-read rax and rdx}
  mov rax, LastSequentiallyFedMediumBlock
  mov rdx, DropMediumAndLargeFlagsMask
  and rdx, [rax - BlockHeaderSize]
@DontRemoveLastFed:
  {Get the number of bytes left in ecx}
  mov ecx, MediumSequentialFeedBytesLeft
  {Point rax to the start of the remainder}
  sub rax, rcx
  {edx = total size of the remainder}
  add edx, ecx
  jmp @BinTheRemainder
@Done:
end;
{$endif}
{$endif}

{Allocates a new sequential feed medium block pool and immediately splits off a
 block of the requested size. The block size must be a multiple of 16 and
 medium blocks must be locked.}
function AllocNewSequentialFeedMediumPool(AFirstBlockSize: Cardinal): Pointer;
var
  LOldFirstMediumBlockPool: PMediumBlockPoolHeader;
  LNewPool: Pointer;
begin
  {Bin the current sequential feed remainder}
  BinMediumSequentialFeedRemainder;
  {Allocate a new sequential feed block pool}
  LNewPool := VirtualAlloc(nil, MediumBlockPoolSize,
    MEM_COMMIT{$ifdef AlwaysAllocateTopDown} or MEM_TOP_DOWN{$endif}, PAGE_READWRITE);
  if LNewPool <> nil then
  begin
    {Insert this block pool into the list of block pools}
    LOldFirstMediumBlockPool := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
    PMediumBlockPoolHeader(LNewPool).PreviousMediumBlockPoolHeader := @MediumBlockPoolsCircularList;
    MediumBlockPoolsCircularList.NextMediumBlockPoolHeader := LNewPool;
    PMediumBlockPoolHeader(LNewPool).NextMediumBlockPoolHeader := LOldFirstMediumBlockPool;
    LOldFirstMediumBlockPool.PreviousMediumBlockPoolHeader := LNewPool;
    {Store the sequential feed pool trailer}
    PNativeUInt(PByte(LNewPool) + MediumBlockPoolSize - BlockHeaderSize)^ := IsMediumBlockFlag;
    {Get the number of bytes still available}
    MediumSequentialFeedBytesLeft := (MediumBlockPoolSize - MediumBlockPoolHeaderSize) - AFirstBlockSize;
    {Get the result}
    Result := Pointer(PByte(LNewPool) + MediumBlockPoolSize - AFirstBlockSize);
    LastSequentiallyFedMediumBlock := Result;
    {Store the block header}
    PNativeUInt(PByte(Result) - BlockHeaderSize)^ := AFirstBlockSize or IsMediumBlockFlag;
  end
  else
  begin
    {Out of memory}
    MediumSequentialFeedBytesLeft := 0;
    Result := nil;
  end;
end;

{-----------------Large Block Management------------------}

{Locks the large blocks}
procedure LockLargeBlocks;
begin
  {Lock the large blocks}
{$ifndef AssumeMultiThreaded}
  if IsMultiThread then
{$endif}
  begin
    while LockCmpxchg(0, 1, @LargeBlocksLocked) <> 0 do
    begin
{$ifdef NeverSleepOnThreadContention}
  {$ifdef UseSwitchToThread}
      SwitchToThread;
  {$endif}
{$else}
      Sleep(InitialSleepTime);
      if LockCmpxchg(0, 1, @LargeBlocksLocked) = 0 then
        Break;
      Sleep(AdditionalSleepTime);
{$endif}
    end;
  end;
end;

{Allocates a Large block of at least ASize (actual size may be larger to
 allow for alignment etc.). ASize must be the actual user requested size. This
 procedure will pad it to the appropriate page boundary and also add the space
 required by the header.}
function AllocateLargeBlock(ASize: NativeUInt): Pointer;
var
  LLargeUsedBlockSize: NativeUInt;
  LOldFirstLargeBlock: PLargeBlockHeader;
begin
  {Pad the block size to include the header and granularity. We also add a
   SizeOf(Pointer) overhead so a huge block size is a multiple of 16 bytes less
   SizeOf(Pointer) (so we can use a single move function for reallocating all
   block types)}
  LLargeUsedBlockSize := (ASize + LargeBlockHeaderSize + LargeBlockGranularity - 1 + BlockHeaderSize)
    and -LargeBlockGranularity;
  {Get the Large block}
  Result := VirtualAlloc(nil, LLargeUsedBlockSize, MEM_COMMIT or MEM_TOP_DOWN,
    PAGE_READWRITE);
  {Set the Large block fields}
  if Result <> nil then
  begin
    {Set the large block size and flags}
    PLargeBlockHeader(Result).UserAllocatedSize := ASize;
    PLargeBlockHeader(Result).BlockSizeAndFlags := LLargeUsedBlockSize or IsLargeBlockFlag;
    {Insert the large block into the linked list of large blocks}
    LockLargeBlocks;
    LOldFirstLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
    PLargeBlockHeader(Result).PreviousLargeBlockHeader := @LargeBlocksCircularList;
    LargeBlocksCircularList.NextLargeBlockHeader := Result;
    PLargeBlockHeader(Result).NextLargeBlockHeader := LOldFirstLargeBlock;
    LOldFirstLargeBlock.PreviousLargeBlockHeader := Result;
    LargeBlocksLocked := False;
    {Add the size of the header}
    Inc(PByte(Result), LargeBlockHeaderSize);
{$ifdef FullDebugMode}
    {Since large blocks are never reused, the user area is not initialized to
     the debug fill pattern, but the debug header and footer must be set.}
    PFullDebugBlockHeader(Result).HeaderCheckSum := NativeUInt(Result);
    PNativeUInt(PByte(Result) + SizeOf(TFullDebugBlockHeader))^ := not NativeUInt(Result);
{$endif}
  end;
end;

{Frees a large block, returning 0 on success, -1 otherwise}
function FreeLargeBlock(APointer: Pointer): Integer;
var
  LPreviousLargeBlockHeader, LNextLargeBlockHeader: PLargeBlockHeader;
{$ifndef POSIX}
  LRemainingSize: NativeUInt;
  LCurrentSegment: Pointer;
  LMemInfo: TMemoryBasicInformation;
{$endif}
begin
{$ifdef ClearLargeBlocksBeforeReturningToOS}
  FillChar(APointer^,
    (PLargeBlockHeader(PByte(APointer) - LargeBlockHeaderSize).BlockSizeAndFlags
      and DropMediumAndLargeFlagsMask) - LargeBlockHeaderSize, 0);
{$endif}
  {Point to the start of the large block}
  APointer := Pointer(PByte(APointer) - LargeBlockHeaderSize);
  {Get the previous and next large blocks}
  LockLargeBlocks;
  LPreviousLargeBlockHeader := PLargeBlockHeader(APointer).PreviousLargeBlockHeader;
  LNextLargeBlockHeader := PLargeBlockHeader(APointer).NextLargeBlockHeader;
{$ifndef POSIX}
  {Is the large block segmented?}
  if PLargeBlockHeader(APointer).BlockSizeAndFlags and LargeBlockIsSegmented = 0 then
  begin
{$endif}
    {Single segment large block: Try to free it}
    if VirtualFree(APointer, 0, MEM_RELEASE) then
      Result := 0
    else
      Result := -1;
{$ifndef POSIX}
  end
  else
  begin
    {The large block is segmented - free all segments}
    LCurrentSegment := APointer;
    LRemainingSize := PLargeBlockHeader(APointer).BlockSizeAndFlags and DropMediumAndLargeFlagsMask;
    Result := 0;
    while True do
    begin
      {Get the size of the current segment}
      VirtualQuery(LCurrentSegment, LMemInfo, SizeOf(LMemInfo));
      {Free the segment}
      if not VirtualFree(LCurrentSegment, 0, MEM_RELEASE) then
      begin
        Result := -1;
        Break;
      end;
      {Done?}
      if NativeUInt(LMemInfo.RegionSize) >= LRemainingSize then
        Break;
      {Decrement the remaining size}
      Dec(LRemainingSize, NativeUInt(LMemInfo.RegionSize));
      Inc(PByte(LCurrentSegment), NativeUInt(LMemInfo.RegionSize));
    end;
  end;
{$endif}
  {Success?}
  if Result = 0 then
  begin
    {Remove the large block from the linked list}
    LNextLargeBlockHeader.PreviousLargeBlockHeader := LPreviousLargeBlockHeader;
    LPreviousLargeBlockHeader.NextLargeBlockHeader := LNextLargeBlockHeader;
  end;
  {Unlock the large blocks}
  LargeBlocksLocked := False;
end;

{$ifndef FullDebugMode}
{Reallocates a large block to at least the requested size. Returns the new
 pointer, or nil on error}
function ReallocateLargeBlock(APointer: Pointer; ANewSize: NativeUInt): Pointer;
var
  LOldAvailableSize, LBlockHeader, LOldUserSize, LMinimumUpsize,
    LNewAllocSize: NativeUInt;
{$ifndef POSIX}
  LNewSegmentSize: NativeUInt;
  LNextSegmentPointer: Pointer;
  LMemInfo: TMemoryBasicInformation;
{$endif}
begin
  {Get the block header}
  LBlockHeader := PNativeUInt(PByte(APointer) - BlockHeaderSize)^;
  {Large block - size is (16 + 4) less than the allocated size}
  LOldAvailableSize := (LBlockHeader and DropMediumAndLargeFlagsMask) - (LargeBlockHeaderSize + BlockHeaderSize);
  {Is it an upsize or a downsize?}
  if ANewSize > LOldAvailableSize then
  begin
    {This pointer is being reallocated to a larger block and therefore it is
     logical to assume that it may be enlarged again. Since reallocations are
     expensive, there is a minimum upsize percentage to avoid unnecessary
     future move operations.}
    {Add 25% for large block upsizes}
    LMinimumUpsize := LOldAvailableSize + (LOldAvailableSize shr 2);
    if ANewSize < LMinimumUpsize then
      LNewAllocSize := LMinimumUpsize
    else
      LNewAllocSize := ANewSize;
{$ifndef POSIX}
    {Can another large block segment be allocated directly after this segment,
     thus negating the need to move the data?}
    LNextSegmentPointer := Pointer(PByte(APointer) - LargeBlockHeaderSize + (LBlockHeader and DropMediumAndLargeFlagsMask));
    VirtualQuery(LNextSegmentPointer, LMemInfo, SizeOf(LMemInfo));
    if LMemInfo.State = MEM_FREE then
    begin
      {Round the region size to the previous 64K}
      LMemInfo.RegionSize := LMemInfo.RegionSize and -LargeBlockGranularity;
      {Enough space to grow in place?}
      if NativeUInt(LMemInfo.RegionSize) > (ANewSize - LOldAvailableSize) then
      begin
        {There is enough space after the block to extend it - determine by how
         much}
        LNewSegmentSize := (LNewAllocSize - LOldAvailableSize + LargeBlockGranularity - 1) and -LargeBlockGranularity;
        if LNewSegmentSize > LMemInfo.RegionSize then
          LNewSegmentSize := LMemInfo.RegionSize;
        {Attempy to reserve the address range (which will fail if another
         thread has just reserved it) and commit it immediately afterwards.}
        if (VirtualAlloc(LNextSegmentPointer, LNewSegmentSize, MEM_RESERVE, PAGE_READWRITE) <> nil)
          and (VirtualAlloc(LNextSegmentPointer, LNewSegmentSize, MEM_COMMIT, PAGE_READWRITE) <> nil) then
        begin
          {Update the requested size}
          PLargeBlockHeader(PByte(APointer) - LargeBlockHeaderSize).UserAllocatedSize := ANewSize;
          PLargeBlockHeader(PByte(APointer) - LargeBlockHeaderSize).BlockSizeAndFlags :=
            (PLargeBlockHeader(PByte(APointer) - LargeBlockHeaderSize).BlockSizeAndFlags + LNewSegmentSize)
            or LargeBlockIsSegmented;
          {Success}
          Result := APointer;
          Exit;
        end;
      end;
    end;
{$endif}
    {Could not resize in place: Allocate the new block}
    Result := FastGetMem(LNewAllocSize);
    if Result <> nil then
    begin
      {If it's a large block - store the actual user requested size (it may
       not be if the block that is being reallocated from was previously
       downsized)}
      if LNewAllocSize > (MaximumMediumBlockSize - BlockHeaderSize) then
        PLargeBlockHeader(PByte(Result) - LargeBlockHeaderSize).UserAllocatedSize := ANewSize;
      {The user allocated size is stored for large blocks}
      LOldUserSize := PLargeBlockHeader(PByte(APointer) - LargeBlockHeaderSize).UserAllocatedSize;
      {The number of bytes to move is the old user size.}
{$ifdef UseCustomVariableSizeMoveRoutines}
      MoveX16LP(APointer^, Result^, LOldUserSize);
{$else}
      System.Move(APointer^, Result^, LOldUserSize);
{$endif}
      {Free the old block}
      FastFreeMem(APointer);
    end;
  end
  else
  begin
    {It's a downsize: do we need to reallocate? Only if the new size is less
     than half the old size}
    if ANewSize >= (LOldAvailableSize shr 1) then
    begin
      {No need to reallocate}
      Result := APointer;
      {Update the requested size}
      PLargeBlockHeader(PByte(APointer) - LargeBlockHeaderSize).UserAllocatedSize := ANewSize;
    end
    else
    begin
      {The block is less than half the old size, and the current size is
       greater than the minimum block size allowing a downsize: reallocate}
      Result := FastGetMem(ANewSize);
      if Result <> nil then
      begin
        {Still a large block? -> Set the user size}
        if ANewSize > (MaximumMediumBlockSize - BlockHeaderSize) then
          PLargeBlockHeader(PByte(APointer) - LargeBlockHeaderSize).UserAllocatedSize := ANewSize;
        {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
{$ifdef Align16Bytes}
        MoveX16LP(APointer^, Result^, ANewSize);
{$else}
        MoveX8LP(APointer^, Result^, ANewSize);
{$endif}
{$else}
        System.Move(APointer^, Result^, ANewSize);
{$endif}
        {Free the old block}
        FastFreeMem(APointer);
      end;
    end;
  end;
end;
{$endif}

{---------------------Replacement Memory Manager Interface---------------------}

{Replacement for SysGetMem}

function FastGetMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
{$ifndef ASMVersion}
var
  LMediumBlock{$ifndef FullDebugMode}, LNextFreeBlock, LSecondSplit{$endif}: PMediumFreeBlock;
  LNextMediumBlockHeader: PNativeUInt;
  LBlockSize, LAvailableBlockSize{$ifndef FullDebugMode}, LSecondSplitSize{$endif},
    LSequentialFeedFreeSize: NativeUInt;
  LPSmallBlockType: PSmallBlockType;
  LPSmallBlockPool, LPNewFirstPool: PSmallBlockPoolHeader;
  LNewFirstFreeBlock: Pointer;
  LPMediumBin: PMediumFreeBlock;
  LBinNumber, {$ifndef FullDebugMode}LBinGroupsMasked, {$endif}LBinGroupMasked,
    LBinGroupNumber: Cardinal;
begin
  {Is it a small block? -> Take the header size into account when
   determining the required block size}
  if NativeUInt(ASize) <= (MaximumSmallBlockSize - BlockHeaderSize) then
  begin
    {-------------------------Allocate a small block---------------------------}
    {Get the block type from the size}
    LPSmallBlockType := PSmallBlockType(AllocSize2SmallBlockTypeIndX4[
      (NativeUInt(ASize) + (BlockHeaderSize - 1)) div SmallBlockGranularity]
      * (SizeOf(TSmallBlockType) div 4)
      + UIntPtr(@SmallBlockTypes));
    {Lock the block type}
{$ifndef AssumeMultiThreaded}
    if IsMultiThread then
{$endif}
    begin
      while True do
      begin
        {Try to lock the small block type}
        if LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) = 0 then
          Break;
        {Try the next block type}
        Inc(PByte(LPSmallBlockType), SizeOf(TSmallBlockType));
        if LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) = 0 then
          Break;
        {Try up to two sizes past the requested size}
        Inc(PByte(LPSmallBlockType), SizeOf(TSmallBlockType));
        if LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) = 0 then
          Break;
        {All three sizes locked - given up and sleep}
        Dec(PByte(LPSmallBlockType), 2 * SizeOf(TSmallBlockType));
{$ifdef NeverSleepOnThreadContention}
  {$ifdef UseSwitchToThread}
        SwitchToThread;
  {$endif}
{$else}
        {Both this block type and the next is in use: sleep}
        Sleep(InitialSleepTime);
        {Try the lock again}
        if LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) = 0 then
          Break;
        {Sleep longer}
        Sleep(AdditionalSleepTime);
{$endif}
      end;
    end;
    {Get the first pool with free blocks}
    LPSmallBlockPool := LPSmallBlockType.NextPartiallyFreePool;
    {Is the pool valid?}
    if UIntPtr(LPSmallBlockPool) <> UIntPtr(LPSmallBlockType) then
    begin
      {Get the first free offset}
      Result := LPSmallBlockPool.FirstFreeBlock;
      {Get the new first free block}
      LNewFirstFreeBlock := PPointer(PByte(Result) - BlockHeaderSize)^;
{$ifdef CheckHeapForCorruption}
      {The block should be free}
      if (NativeUInt(LNewFirstFreeBlock) and ExtractSmallFlagsMask) <> IsFreeBlockFlag then
  {$ifdef BCB6OrDelphi7AndUp}
        System.Error(reInvalidPtr);
  {$else}
        System.RunError(reInvalidPtr);
  {$endif}
{$endif}
      LNewFirstFreeBlock := Pointer(UIntPtr(LNewFirstFreeBlock) and DropSmallFlagsMask);
      {Increment the number of used blocks}
      Inc(LPSmallBlockPool.BlocksInUse);
      {Set the new first free block}
      LPSmallBlockPool.FirstFreeBlock := LNewFirstFreeBlock;
      {Is the pool now full?}
      if LNewFirstFreeBlock = nil then
      begin
        {Pool is full - remove it from the partially free list}
        LPNewFirstPool := LPSmallBlockPool.NextPartiallyFreePool;
        LPSmallBlockType.NextPartiallyFreePool := LPNewFirstPool;
        LPNewFirstPool.PreviousPartiallyFreePool := PSmallBlockPoolHeader(LPSmallBlockType);
      end;
    end
    else
    begin
      {Try to feed a small block sequentially}
      Result := LPSmallBlockType.NextSequentialFeedBlockAddress;
      {Can another block fit?}
      if UIntPtr(Result) <= UIntPtr(LPSmallBlockType.MaxSequentialFeedBlockAddress) then
      begin
        {Get the sequential feed block pool}
        LPSmallBlockPool := LPSmallBlockType.CurrentSequentialFeedPool;
        {Increment the number of used blocks in the sequential feed pool}
        Inc(LPSmallBlockPool.BlocksInUse);
        {Store the next sequential feed block address}
        LPSmallBlockType.NextSequentialFeedBlockAddress := Pointer(PByte(Result) + LPSmallBlockType.BlockSize);
      end
      else
      begin
        {Need to allocate a pool: Lock the medium blocks}
        LockMediumBlocks;
{$ifndef FullDebugMode}
        {Are there any available blocks of a suitable size?}
        LBinGroupsMasked := MediumBlockBinGroupBitmap and ($ffffff00 or LPSmallBlockType.AllowedGroupsForBlockPoolBitmap);
        if LBinGroupsMasked <> 0 then
        begin
          {Get the bin group with free blocks}
          LBinGroupNumber := FindFirstSetBit(LBinGroupsMasked);
          {Get the bin in the group with free blocks}
          LBinNumber := FindFirstSetBit(MediumBlockBinBitmaps[LBinGroupNumber])
            + LBinGroupNumber * 32;
          LPMediumBin := @MediumBlockBins[LBinNumber];
          {Get the first block in the bin}
          LMediumBlock := LPMediumBin.NextFreeBlock;
          {Remove the first block from the linked list (LIFO)}
          LNextFreeBlock := LMediumBlock.NextFreeBlock;
          LPMediumBin.NextFreeBlock := LNextFreeBlock;
          LNextFreeBlock.PreviousFreeBlock := LPMediumBin;
          {Is this bin now empty?}
          if LNextFreeBlock = LPMediumBin then
          begin
            {Flag this bin as empty}
            MediumBlockBinBitmaps[LBinGroupNumber] := MediumBlockBinBitmaps[LBinGroupNumber]
              and (not (1 shl (LBinNumber and 31)));
            {Is the group now entirely empty?}
            if MediumBlockBinBitmaps[LBinGroupNumber] = 0 then
            begin
              {Flag this group as empty}
              MediumBlockBinGroupBitmap := MediumBlockBinGroupBitmap
                and (not (1 shl LBinGroupNumber));
            end;
          end;
          {Get the size of the available medium block}
          LBlockSize := PNativeUInt(PByte(LMediumBlock) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask;
  {$ifdef CheckHeapForCorruption}
          {Check that this block is actually free and the next and previous blocks
           are both in use.}
          if ((PNativeUInt(PByte(LMediumBlock) - BlockHeaderSize)^ and ExtractMediumAndLargeFlagsMask) <> (IsMediumBlockFlag or IsFreeBlockFlag))
            or ((PNativeUInt(PByte(LMediumBlock) + (PNativeUInt(PByte(LMediumBlock) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask) - BlockHeaderSize)^ and IsFreeBlockFlag) <> 0)
          then
          begin
    {$ifdef BCB6OrDelphi7AndUp}
            System.Error(reInvalidPtr);
    {$else}
            System.RunError(reInvalidPtr);
    {$endif}
          end;
  {$endif}
          {Should the block be split?}
          if LBlockSize >= MaximumSmallBlockPoolSize then
          begin
            {Get the size of the second split}
            LSecondSplitSize := LBlockSize - LPSmallBlockType.OptimalBlockPoolSize;
            {Adjust the block size}
            LBlockSize := LPSmallBlockType.OptimalBlockPoolSize;
            {Split the block in two}
            LSecondSplit := PMediumFreeBlock(PByte(LMediumBlock) + LBlockSize);
            PNativeUInt(PByte(LSecondSplit) - BlockHeaderSize)^ := LSecondSplitSize or (IsMediumBlockFlag or IsFreeBlockFlag);
            {Store the size of the second split as the second last dword/qword}
            PNativeUInt(PByte(LSecondSplit) + LSecondSplitSize - 2 * BlockHeaderSize)^ := LSecondSplitSize;
            {Put the remainder in a bin (it will be big enough)}
            InsertMediumBlockIntoBin(LSecondSplit, LSecondSplitSize);
          end
          else
          begin
            {Mark this block as used in the block following it}
            LNextMediumBlockHeader := PNativeUInt(PByte(LMediumBlock) + LBlockSize - BlockHeaderSize);
            LNextMediumBlockHeader^ := LNextMediumBlockHeader^ and (not PreviousMediumBlockIsFreeFlag);
          end;
        end
        else
        begin
{$endif}
          {Check the sequential feed medium block pool for space}
          LSequentialFeedFreeSize := MediumSequentialFeedBytesLeft;
          if LSequentialFeedFreeSize >= LPSmallBlockType.MinimumBlockPoolSize then
          begin
            {Enough sequential feed space: Will the remainder be usable?}
            if LSequentialFeedFreeSize >= (LPSmallBlockType.OptimalBlockPoolSize + MinimumMediumBlockSize) then
            begin
              LBlockSize := LPSmallBlockType.OptimalBlockPoolSize;
            end
            else
              LBlockSize := LSequentialFeedFreeSize;
            {Get the block}
            LMediumBlock := Pointer(PByte(LastSequentiallyFedMediumBlock) - LBlockSize);
            {Update the sequential feed parameters}
            LastSequentiallyFedMediumBlock := LMediumBlock;
            MediumSequentialFeedBytesLeft := LSequentialFeedFreeSize - LBlockSize;
          end
          else
          begin
            {Need to allocate a new sequential feed medium block pool: use the
             optimal size for this small block pool}
            LBlockSize := LPSmallBlockType.OptimalBlockPoolSize;
            {Allocate the medium block pool}
            LMediumBlock := AllocNewSequentialFeedMediumPool(LBlockSize);
            if LMediumBlock = nil then
            begin
              {Out of memory}
              {Unlock the medium blocks}
              MediumBlocksLocked := False;
              {Unlock the block type}
              LPSmallBlockType.BlockTypeLocked := False;
              {Failed}
              Result := nil;
              {done}
              Exit;
            end;
          end;
{$ifndef FullDebugMode}
        end;
{$endif}
        {Mark this block as in use}
        {Set the size and flags for this block}
        PNativeUInt(PByte(LMediumBlock) - BlockHeaderSize)^ := LBlockSize or IsMediumBlockFlag or IsSmallBlockPoolInUseFlag;
        {Unlock medium blocks}
        MediumBlocksLocked := False;
        {Set up the block pool}
        LPSmallBlockPool := PSmallBlockPoolHeader(LMediumBlock);
        LPSmallBlockPool.BlockType := LPSmallBlockType;
        LPSmallBlockPool.FirstFreeBlock := nil;
        LPSmallBlockPool.BlocksInUse := 1;
        {Set it up for sequential block serving}
        LPSmallBlockType.CurrentSequentialFeedPool := LPSmallBlockPool;
        Result := Pointer(PByte(LPSmallBlockPool) + SmallBlockPoolHeaderSize);
        LPSmallBlockType.NextSequentialFeedBlockAddress := Pointer(PByte(Result) + LPSmallBlockType.BlockSize);
        LPSmallBlockType.MaxSequentialFeedBlockAddress := Pointer(PByte(LPSmallBlockPool) + LBlockSize - LPSmallBlockType.BlockSize);
      end;
{$ifdef FullDebugMode}
      {Clear the user area of the block}
      DebugFillMem(Pointer(PByte(Result) + (SizeOf(TFullDebugBlockHeader) + SizeOf(NativeUInt)))^,
        LPSmallBlockType.BlockSize - FullDebugBlockOverhead - SizeOf(NativeUInt),
        {$ifndef CatchUseOfFreedInterfaces}DebugFillPattern{$else}NativeUInt(@VMTBadInterface){$endif});
      {Block was fed sequentially - we need to set a valid debug header. Use
       the block address.}
      PFullDebugBlockHeader(Result).HeaderCheckSum := NativeUInt(Result);
      PNativeUInt(PByte(Result) + SizeOf(TFullDebugBlockHeader))^ := not NativeUInt(Result);
{$endif}
    end;
    {Unlock the block type}
    LPSmallBlockType.BlockTypeLocked := False;
    {Set the block header}
    PNativeUInt(PByte(Result) - BlockHeaderSize)^ := UIntPtr(LPSmallBlockPool);
  end
  else
  begin
    {Medium block or Large block?}
    if NativeUInt(ASize) <= (MaximumMediumBlockSize - BlockHeaderSize) then
    begin
      {------------------------Allocate a medium block--------------------------}
      {Get the block size and bin number for this block size. Block sizes are
       rounded up to the next bin size.}
      LBlockSize := ((NativeUInt(ASize) + (MediumBlockGranularity - 1 + BlockHeaderSize - MediumBlockSizeOffset))
        and -MediumBlockGranularity) + MediumBlockSizeOffset;
      {Get the bin number}
      LBinNumber := (LBlockSize - MinimumMediumBlockSize) div MediumBlockGranularity;
      {Lock the medium blocks}
      LockMediumBlocks;
      {Calculate the bin group}
      LBinGroupNumber := LBinNumber div 32;
      {Is there a suitable block inside this group?}
      LBinGroupMasked := MediumBlockBinBitmaps[LBinGroupNumber] and -(1 shl (LBinNumber and 31));
      if LBinGroupMasked <> 0 then
      begin
        {Get the actual bin number}
        LBinNumber := FindFirstSetBit(LBinGroupMasked) + LBinGroupNumber * 32;
      end
      else
      begin
{$ifndef FullDebugMode}
        {Try all groups greater than this group}
        LBinGroupsMasked := MediumBlockBinGroupBitmap and -(2 shl LBinGroupNumber);
        if LBinGroupsMasked <> 0 then
        begin
          {There is a suitable group with space: get the bin number}
          LBinGroupNumber := FindFirstSetBit(LBinGroupsMasked);
          {Get the bin in the group with free blocks}
          LBinNumber := FindFirstSetBit(MediumBlockBinBitmaps[LBinGroupNumber])
            + LBinGroupNumber * 32;
        end
        else
        begin
{$endif}
          {There are no bins with a suitable block: Sequentially feed the required block}
          LSequentialFeedFreeSize := MediumSequentialFeedBytesLeft;
          if LSequentialFeedFreeSize >= LBlockSize then
          begin
{$ifdef FullDebugMode}
            {In full debug mode a medium block must have enough bytes to fit
             all the debug info, so we must make sure there are no tiny medium
             blocks at the start of the pool.}
            if LSequentialFeedFreeSize - LBlockSize < (FullDebugBlockOverhead + BlockHeaderSize) then
              LBlockSize := LSequentialFeedFreeSize;
{$endif}
            {Block can be fed sequentially}
            Result := Pointer(PByte(LastSequentiallyFedMediumBlock) - LBlockSize);
            {Store the last sequentially fed block}
            LastSequentiallyFedMediumBlock := Result;
            {Store the remaining bytes}
            MediumSequentialFeedBytesLeft := LSequentialFeedFreeSize - LBlockSize;
            {Set the flags for the block}
            PNativeUInt(PByte(Result) - BlockHeaderSize)^ := LBlockSize or IsMediumBlockFlag;
          end
          else
          begin
            {Need to allocate a new sequential feed block}
            Result := AllocNewSequentialFeedMediumPool(LBlockSize);
          end;
{$ifdef FullDebugMode}
          {Block was fed sequentially - we need to set a valid debug header}
          if Result <> nil then
          begin
            PFullDebugBlockHeader(Result).HeaderCheckSum := NativeUInt(Result);
            PNativeUInt(PByte(Result) + SizeOf(TFullDebugBlockHeader))^ := not NativeUInt(Result);
            {Clear the user area of the block}
            DebugFillMem(Pointer(PByte(Result) + SizeOf(TFullDebugBlockHeader) + SizeOf(NativeUInt))^,
              LBlockSize - FullDebugBlockOverhead - SizeOf(NativeUInt),
              {$ifndef CatchUseOfFreedInterfaces}DebugFillPattern{$else}NativeUInt(@VMTBadInterface){$endif});
          end;
{$endif}
          {Done}
          MediumBlocksLocked := False;
          Exit;
{$ifndef FullDebugMode}
        end;
{$endif}
      end;
      {If we get here we have a valid LBinGroupNumber and LBinNumber:
       Use the first block in the bin, splitting it if necessary}
      {Get a pointer to the bin}
      LPMediumBin := @MediumBlockBins[LBinNumber];
      {Get the result}
      Result := LPMediumBin.NextFreeBlock;
{$ifdef CheckHeapForCorruption}
      {Check that this block is actually free and the next and previous blocks
       are both in use (except in full debug mode).}
      if ((PNativeUInt(PByte(Result) - BlockHeaderSize)^ and {$ifndef FullDebugMode}ExtractMediumAndLargeFlagsMask{$else}(IsMediumBlockFlag or IsFreeBlockFlag){$endif}) <> (IsFreeBlockFlag or IsMediumBlockFlag))
  {$ifndef FullDebugMode}
        or ((PNativeUInt(PByte(Result) + (PNativeUInt(PByte(Result) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask) - BlockHeaderSize)^ and (ExtractMediumAndLargeFlagsMask - IsSmallBlockPoolInUseFlag)) <> (IsMediumBlockFlag or PreviousMediumBlockIsFreeFlag))
  {$endif}
      then
      begin
  {$ifdef BCB6OrDelphi7AndUp}
        System.Error(reInvalidPtr);
  {$else}
        System.RunError(reInvalidPtr);
  {$endif}
      end;
{$endif}
      {Remove the block from the bin containing it}
      RemoveMediumFreeBlock(Result);
      {Get the block size}
      LAvailableBlockSize := PNativeUInt(PByte(Result) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask;
{$ifndef FullDebugMode}
      {Is it an exact fit or not?}
      LSecondSplitSize := LAvailableBlockSize - LBlockSize;
      if LSecondSplitSize <> 0 then
      begin
        {Split the block in two}
        LSecondSplit := PMediumFreeBlock(PByte(Result) + LBlockSize);
        {Set the size of the second split}
        PNativeUInt(PByte(LSecondSplit) - BlockHeaderSize)^ := LSecondSplitSize or (IsMediumBlockFlag or IsFreeBlockFlag);
        {Store the size of the second split}
        PNativeUInt(PByte(LSecondSplit) + LSecondSplitSize - 2 * BlockHeaderSize)^ := LSecondSplitSize;
        {Put the remainder in a bin if it is big enough}
        if LSecondSplitSize >= MinimumMediumBlockSize then
          InsertMediumBlockIntoBin(LSecondSplit, LSecondSplitSize);
      end
      else
      begin
{$else}
        {In full debug mode blocks are never split or coalesced}
        LBlockSize := LAvailableBlockSize;
{$endif}
        {Mark this block as used in the block following it}
        LNextMediumBlockHeader := Pointer(PByte(Result) + LBlockSize - BlockHeaderSize);
{$ifndef FullDebugMode}
  {$ifdef CheckHeapForCorruption}
        {The next block must be in use}
        if (LNextMediumBlockHeader^ and (ExtractMediumAndLargeFlagsMask - IsSmallBlockPoolInUseFlag)) <> (IsMediumBlockFlag or PreviousMediumBlockIsFreeFlag) then
    {$ifdef BCB6OrDelphi7AndUp}
        System.Error(reInvalidPtr);
    {$else}
        System.RunError(reInvalidPtr);
    {$endif}
  {$endif}
{$endif}
        LNextMediumBlockHeader^ :=
          LNextMediumBlockHeader^ and (not PreviousMediumBlockIsFreeFlag);
{$ifndef FullDebugMode}
      end;
      {Set the size and flags for this block}
      PNativeUInt(PByte(Result) - BlockHeaderSize)^ := LBlockSize or IsMediumBlockFlag;
{$else}
      {In full debug mode blocks are never split or coalesced}
      Dec(PNativeUInt(PByte(Result) - BlockHeaderSize)^, IsFreeBlockFlag);
{$endif}
      {Unlock the medium blocks}
      MediumBlocksLocked := False;
    end
    else
    begin
      {Allocate a Large block}
      if ASize > 0 then
        Result := AllocateLargeBlock(ASize)
      else
        Result := nil;
    end;
  end;
end;
{$else}
{$ifdef 32Bit}
asm
  {On entry:
    eax = ASize}
  {Since most allocations are for small blocks, determine the small block type
   index so long}
  lea edx, [eax + BlockHeaderSize - 1]
{$ifdef Align16Bytes}
  shr edx, 4
{$else}
  shr edx, 3
{$endif}
  {Is it a small block?}
  cmp eax, (MaximumSmallBlockSize - BlockHeaderSize)
  {Save ebx}
  push ebx
  {Get the IsMultiThread variable so long}
{$ifndef AssumeMultiThreaded}
  mov cl, IsMultiThread
{$endif}
  {Is it a small block?}
  ja @NotASmallBlock
  {Do we need to lock the block type?}
{$ifndef AssumeMultiThreaded}
  test cl, cl
{$endif}
  {Get the small block type in ebx}
  movzx eax, byte ptr [AllocSize2SmallBlockTypeIndX4 + edx]
  lea ebx, [SmallBlockTypes + eax * 8]
  {Do we need to lock the block type?}
{$ifndef AssumeMultiThreaded}
  jnz @LockBlockTypeLoop
{$else}
  jmp @LockBlockTypeLoop
  {Align branch target}
  nop
  nop
{$endif}
@GotLockOnSmallBlockType:
  {Find the next free block: Get the first pool with free blocks in edx}
  mov edx, TSmallBlockType[ebx].NextPartiallyFreePool
  {Get the first free block (or the next sequential feed address if edx = ebx)}
  mov eax, TSmallBlockPoolHeader[edx].FirstFreeBlock
  {Get the drop flags mask in ecx so long}
  mov ecx, DropSmallFlagsMask
  {Is there a pool with free blocks?}
  cmp edx, ebx
  je @TrySmallSequentialFeed
  {Increment the number of used blocks}
  add TSmallBlockPoolHeader[edx].BlocksInUse, 1
  {Get the new first free block}
  and ecx, [eax - 4]
  {Set the new first free block}
  mov TSmallBlockPoolHeader[edx].FirstFreeBlock, ecx
  {Set the block header}
  mov [eax - 4], edx
  {Is the chunk now full?}
  jz @RemoveSmallPool
  {Unlock the block type}
  mov TSmallBlockType[ebx].BlockTypeLocked, False
  {Restore ebx}
  pop ebx
  {All done}
  ret
  {Align branch target}
{$ifndef AssumeMultiThreaded}
  nop
  nop
{$endif}
  nop
@TrySmallSequentialFeed:
  {Try to feed a small block sequentially: Get the sequential feed block pool}
  mov edx, TSmallBlockType[ebx].CurrentSequentialFeedPool
  {Get the next sequential feed address so long}
  movzx ecx, TSmallBlockType[ebx].BlockSize
  add ecx, eax
  {Can another block fit?}
  cmp eax, TSmallBlockType[ebx].MaxSequentialFeedBlockAddress
  ja @AllocateSmallBlockPool
  {Increment the number of used blocks in the sequential feed pool}
  add TSmallBlockPoolHeader[edx].BlocksInUse, 1
  {Store the next sequential feed block address}
  mov TSmallBlockType[ebx].NextSequentialFeedBlockAddress, ecx
  {Unlock the block type}
  mov TSmallBlockType[ebx].BlockTypeLocked, False
  {Set the block header}
  mov [eax - 4], edx
  {Restore ebx}
  pop ebx
  {All done}
  ret
  {Align branch target}
  nop
  nop
  nop
@RemoveSmallPool:
  {Pool is full - remove it from the partially free list}
  mov ecx, TSmallBlockPoolHeader[edx].NextPartiallyFreePool
  mov TSmallBlockPoolHeader[ecx].PreviousPartiallyFreePool, ebx
  mov TSmallBlockType[ebx].NextPartiallyFreePool, ecx
  {Unlock the block type}
  mov TSmallBlockType[ebx].BlockTypeLocked, False
  {Restore ebx}
  pop ebx
  {All done}
  ret
  {Align branch target}
  nop
  nop
@LockBlockTypeLoop:
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([ebx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Try the next size}
  add ebx, Type(TSmallBlockType)
  mov eax, $100
  lock cmpxchg TSmallBlockType([ebx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Try the next size (up to two sizes larger)}
  add ebx, Type(TSmallBlockType)
  mov eax, $100
  lock cmpxchg TSmallBlockType([ebx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Block type and two sizes larger are all locked - give up and sleep}
  sub ebx, 2 * Type(TSmallBlockType)
{$ifdef NeverSleepOnThreadContention}
  {Pause instruction (improves performance on P4)}
  rep nop
  {$ifdef UseSwitchToThread}
  call SwitchToThread
  {$endif}
  {Try again}
  jmp @LockBlockTypeLoop
  {Align branch target}
  nop
  {$ifndef UseSwitchToThread}
  nop
  {$endif}
{$else}
  {Couldn't grab the block type - sleep and try again}
  push InitialSleepTime
  call Sleep
  {Try again}
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([ebx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Couldn't grab the block type - sleep and try again}
  push AdditionalSleepTime
  call Sleep
  {Try again}
  jmp @LockBlockTypeLoop
  {Align branch target}
  nop
  nop
  nop
{$endif}
@AllocateSmallBlockPool:
  {save additional registers}
  push esi
  push edi
  {Do we need to lock the medium blocks?}
{$ifndef AssumeMultiThreaded}
  cmp IsMultiThread, False
  je @MediumBlocksLockedForPool
{$endif}
  call LockMediumBlocks
@MediumBlocksLockedForPool:
  {Are there any available blocks of a suitable size?}
  movsx esi, TSmallBlockType[ebx].AllowedGroupsForBlockPoolBitmap
  and esi, MediumBlockBinGroupBitmap
  jz @NoSuitableMediumBlocks
  {Get the bin group number with free blocks in eax}
  bsf eax, esi
  {Get the bin number in ecx}
  lea esi, [eax * 8]
  mov ecx, dword ptr [MediumBlockBinBitmaps + eax * 4]
  bsf ecx, ecx
  lea ecx, [ecx + esi * 4]
  {Get a pointer to the bin in edi}
  lea edi, [MediumBlockBins + ecx * 8]
  {Get the free block in esi}
  mov esi, TMediumFreeBlock[edi].NextFreeBlock
  {Remove the first block from the linked list (LIFO)}
  mov edx, TMediumFreeBlock[esi].NextFreeBlock
  mov TMediumFreeBlock[edi].NextFreeBlock, edx
  mov TMediumFreeBlock[edx].PreviousFreeBlock, edi
  {Is this bin now empty?}
  cmp edi, edx
  jne @MediumBinNotEmpty
  {eax = bin group number, ecx = bin number, edi = @bin, esi = free block, ebx = block type}
  {Flag this bin as empty}
  mov edx, -2
  rol edx, cl
  and dword ptr [MediumBlockBinBitmaps + eax * 4], edx
  jnz @MediumBinNotEmpty
  {Flag the group as empty}
  btr MediumBlockBinGroupBitmap, eax
@MediumBinNotEmpty:
  {esi = free block, ebx = block type}
  {Get the size of the available medium block in edi}
  mov edi, DropMediumAndLargeFlagsMask
  and edi, [esi - 4]
  cmp edi, MaximumSmallBlockPoolSize
  jb @UseWholeBlock
  {Split the block: get the size of the second part, new block size is the
   optimal size}
  mov edx, edi
  movzx edi, TSmallBlockType[ebx].OptimalBlockPoolSize
  sub edx, edi
  {Split the block in two}
  lea eax, [esi + edi]
  lea ecx, [edx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [eax - 4], ecx
  {Store the size of the second split as the second last dword}
  mov [eax + edx - 8], edx
  {Put the remainder in a bin (it will be big enough)}
  call InsertMediumBlockIntoBin
  jmp @GotMediumBlock
  {Align branch target}
{$ifdef AssumeMultiThreaded}
  nop
{$endif}
@NoSuitableMediumBlocks:
  {Check the sequential feed medium block pool for space}
  movzx ecx, TSmallBlockType[ebx].MinimumBlockPoolSize
  mov edi, MediumSequentialFeedBytesLeft
  cmp edi, ecx
  jb @AllocateNewSequentialFeed
  {Get the address of the last block that was fed}
  mov esi, LastSequentiallyFedMediumBlock
  {Enough sequential feed space: Will the remainder be usable?}
  movzx ecx, TSmallBlockType[ebx].OptimalBlockPoolSize
  lea edx, [ecx + MinimumMediumBlockSize]
  cmp edi, edx
  jb @NotMuchSpace
  mov edi, ecx
@NotMuchSpace:
  sub esi, edi
  {Update the sequential feed parameters}
  sub MediumSequentialFeedBytesLeft, edi
  mov LastSequentiallyFedMediumBlock, esi
  {Get the block pointer}
  jmp @GotMediumBlock
  {Align branch target}
@AllocateNewSequentialFeed:
  {Need to allocate a new sequential feed medium block pool: use the
   optimal size for this small block pool}
  movzx eax, TSmallBlockType[ebx].OptimalBlockPoolSize
  mov edi, eax
  {Allocate the medium block pool}
  call AllocNewSequentialFeedMediumPool
  mov esi, eax
  test eax, eax
  jnz @GotMediumBlock
  mov MediumBlocksLocked, al
  mov TSmallBlockType[ebx].BlockTypeLocked, al
  pop edi
  pop esi
  pop ebx
  ret
  {Align branch target}
@UseWholeBlock:
  {esi = free block, ebx = block type, edi = block size}
  {Mark this block as used in the block following it}
  and byte ptr [esi + edi - 4], not PreviousMediumBlockIsFreeFlag
@GotMediumBlock:
  {esi = free block, ebx = block type, edi = block size}
  {Set the size and flags for this block}
  lea ecx, [edi + IsMediumBlockFlag + IsSmallBlockPoolInUseFlag]
  mov [esi - 4], ecx
  {Unlock medium blocks}
  xor eax, eax
  mov MediumBlocksLocked, al
  {Set up the block pool}
  mov TSmallBlockPoolHeader[esi].BlockType, ebx
  mov TSmallBlockPoolHeader[esi].FirstFreeBlock, eax
  mov TSmallBlockPoolHeader[esi].BlocksInUse, 1
  {Set it up for sequential block serving}
  mov TSmallBlockType[ebx].CurrentSequentialFeedPool, esi
  {Return the pointer to the first block}
  lea eax, [esi + SmallBlockPoolHeaderSize]
  movzx ecx, TSmallBlockType[ebx].BlockSize
  lea edx, [eax + ecx]
  mov TSmallBlockType[ebx].NextSequentialFeedBlockAddress, edx
  add edi, esi
  sub edi, ecx
  mov TSmallBlockType[ebx].MaxSequentialFeedBlockAddress, edi
  {Unlock the small block type}
  mov TSmallBlockType[ebx].BlockTypeLocked, False
  {Set the small block header}
  mov [eax - 4], esi
  {Restore registers}
  pop edi
  pop esi
  pop ebx
  {Done}
  ret
{-------------------Medium block allocation-------------------}
  {Align branch target}
  nop
@NotASmallBlock:
  cmp eax, (MaximumMediumBlockSize - BlockHeaderSize)
  ja @IsALargeBlockRequest
  {Get the bin size for this block size. Block sizes are
   rounded up to the next bin size.}
  lea ebx, [eax + MediumBlockGranularity - 1 + BlockHeaderSize - MediumBlockSizeOffset]
  and ebx, -MediumBlockGranularity
  add ebx, MediumBlockSizeOffset
  {Do we need to lock the medium blocks?}
{$ifndef AssumeMultiThreaded}
  test cl, cl
  jz @MediumBlocksLocked
{$endif}
  call LockMediumBlocks
@MediumBlocksLocked:
  {Get the bin number in ecx and the group number in edx}
  lea edx, [ebx - MinimumMediumBlockSize]
  mov ecx, edx
  shr edx, 8 + 5
  shr ecx, 8
  {Is there a suitable block inside this group?}
  mov eax, -1
  shl eax, cl
  and eax, dword ptr [MediumBlockBinBitmaps + edx * 4]
  jz @GroupIsEmpty
  {Get the actual bin number}
  and ecx, -32
  bsf eax, eax
  or ecx, eax
  jmp @GotBinAndGroup
  {Align branch target}
  nop
@GroupIsEmpty:
  {Try all groups greater than this group}
  mov eax, -2
  mov ecx, edx
  shl eax, cl
  and eax, MediumBlockBinGroupBitmap
  jz @TrySequentialFeedMedium
  {There is a suitable group with space: get the bin number}
  bsf edx, eax
  {Get the bin in the group with free blocks}
  mov eax, dword ptr [MediumBlockBinBitmaps + edx * 4]
  bsf ecx, eax
  mov eax, edx
  shl eax, 5
  or ecx, eax
  jmp @GotBinAndGroup
  {Align branch target}
  nop
@TrySequentialFeedMedium:
  mov ecx, MediumSequentialFeedBytesLeft
  {Block can be fed sequentially?}
  sub ecx, ebx
  jc @AllocateNewSequentialFeedForMedium
  {Get the block address}
  mov eax, LastSequentiallyFedMediumBlock
  sub eax, ebx
  mov LastSequentiallyFedMediumBlock, eax
  {Store the remaining bytes}
  mov MediumSequentialFeedBytesLeft, ecx
  {Set the flags for the block}
  or ebx, IsMediumBlockFlag
  mov [eax - 4], ebx
  jmp @MediumBlockGetDone
  {Align branch target}
@AllocateNewSequentialFeedForMedium:
  mov eax, ebx
  call AllocNewSequentialFeedMediumPool
@MediumBlockGetDone:
  mov MediumBlocksLocked, False
  pop ebx
  ret
  {Align branch target}
@GotBinAndGroup:
  {ebx = block size, ecx = bin number, edx = group number}
  push esi
  push edi
  {Get a pointer to the bin in edi}
  lea edi, [MediumBlockBins + ecx * 8]
  {Get the free block in esi}
  mov esi, TMediumFreeBlock[edi].NextFreeBlock
  {Remove the first block from the linked list (LIFO)}
  mov eax, TMediumFreeBlock[esi].NextFreeBlock
  mov TMediumFreeBlock[edi].NextFreeBlock, eax
  mov TMediumFreeBlock[eax].PreviousFreeBlock, edi
  {Is this bin now empty?}
  cmp edi, eax
  jne @MediumBinNotEmptyForMedium
  {eax = bin group number, ecx = bin number, edi = @bin, esi = free block, ebx = block size}
  {Flag this bin as empty}
  mov eax, -2
  rol eax, cl
  and dword ptr [MediumBlockBinBitmaps + edx * 4], eax
  jnz @MediumBinNotEmptyForMedium
  {Flag the group as empty}
  btr MediumBlockBinGroupBitmap, edx
@MediumBinNotEmptyForMedium:
  {esi = free block, ebx = block size}
  {Get the size of the available medium block in edi}
  mov edi, DropMediumAndLargeFlagsMask
  and edi, [esi - 4]
  {Get the size of the second split in edx}
  mov edx, edi
  sub edx, ebx
  jz @UseWholeBlockForMedium
  {Split the block in two}
  lea eax, [esi + ebx]
  lea ecx, [edx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [eax - 4], ecx
  {Store the size of the second split as the second last dword}
  mov [eax + edx - 8], edx
  {Put the remainder in a bin}
  cmp edx, MinimumMediumBlockSize
  jb @GotMediumBlockForMedium
  call InsertMediumBlockIntoBin
  jmp @GotMediumBlockForMedium
  {Align branch target}
  nop
  nop
  nop
@UseWholeBlockForMedium:
  {Mark this block as used in the block following it}
  and byte ptr [esi + edi - 4], not PreviousMediumBlockIsFreeFlag
@GotMediumBlockForMedium:
  {Set the size and flags for this block}
  lea ecx, [ebx + IsMediumBlockFlag]
  mov [esi - 4], ecx
  {Unlock medium blocks}
  mov MediumBlocksLocked, False
  mov eax, esi
  pop edi
  pop esi
  pop ebx
  ret
{-------------------Large block allocation-------------------}
  {Align branch target}
@IsALargeBlockRequest:
  pop ebx
  test eax, eax
  jns AllocateLargeBlock
  xor eax, eax
end;
{$else}
{64-bit BASM implementation}
asm
  {On entry:
    rcx = ASize}
  .params 2
  .pushnv rbx
  .pushnv rsi
  .pushnv rdi
  {Since most allocations are for small blocks, determine the small block type
   index so long}
  lea edx, [ecx + BlockHeaderSize - 1]
{$ifdef Align16Bytes}
  shr edx, 4
{$else}
  shr edx, 3
{$endif}
  {Preload the addresses of some small block structures}
  lea r8, AllocSize2SmallBlockTypeIndX4
  lea rbx, SmallBlockTypes
{$ifndef AssumeMultiThreaded}
  {Get the IsMultiThread variable so long}
  movzx esi, IsMultiThread
{$endif}
  {Is it a small block?}
  cmp rcx, (MaximumSmallBlockSize - BlockHeaderSize)
  ja @NotASmallBlock
  {Get the small block type pointer in rbx}
  movzx ecx, byte ptr [r8 + rdx]
  shl ecx, 4 //SizeOf(TSmallBlockType) = 64
  add rbx, rcx
  {Do we need to lock the block type?}
{$ifndef AssumeMultiThreaded}
  test esi, esi
  jnz @LockBlockTypeLoop
{$else}
  jmp @LockBlockTypeLoop
{$endif}
@GotLockOnSmallBlockType:
  {Find the next free block: Get the first pool with free blocks in rdx}
  mov rdx, TSmallBlockType[rbx].NextPartiallyFreePool
  {Get the first free block (or the next sequential feed address if rdx = rbx)}
  mov rax, TSmallBlockPoolHeader[rdx].FirstFreeBlock
  {Get the drop flags mask in rcx so long}
  mov rcx, DropSmallFlagsMask
  {Is there a pool with free blocks?}
  cmp rdx, rbx
  je @TrySmallSequentialFeed
  {Increment the number of used blocks}
  add TSmallBlockPoolHeader[rdx].BlocksInUse, 1
  {Get the new first free block}
  and rcx, [rax - BlockHeaderSize]
  {Set the new first free block}
  mov TSmallBlockPoolHeader[rdx].FirstFreeBlock, rcx
  {Set the block header}
  mov [rax - BlockHeaderSize], rdx
  {Is the chunk now full?}
  jz @RemoveSmallPool
  {Unlock the block type}
  mov TSmallBlockType[rbx].BlockTypeLocked, False
  jmp @Done
@TrySmallSequentialFeed:
  {Try to feed a small block sequentially: Get the sequential feed block pool}
  mov rdx, TSmallBlockType[rbx].CurrentSequentialFeedPool
  {Get the next sequential feed address so long}
  movzx ecx, TSmallBlockType[rbx].BlockSize
  add rcx, rax
  {Can another block fit?}
  cmp rax, TSmallBlockType[rbx].MaxSequentialFeedBlockAddress
  ja @AllocateSmallBlockPool
  {Increment the number of used blocks in the sequential feed pool}
  add TSmallBlockPoolHeader[rdx].BlocksInUse, 1
  {Store the next sequential feed block address}
  mov TSmallBlockType[rbx].NextSequentialFeedBlockAddress, rcx
  {Unlock the block type}
  mov TSmallBlockType[rbx].BlockTypeLocked, False
  {Set the block header}
  mov [rax - BlockHeaderSize], rdx
  jmp @Done
@RemoveSmallPool:
  {Pool is full - remove it from the partially free list}
  mov rcx, TSmallBlockPoolHeader[rdx].NextPartiallyFreePool
  mov TSmallBlockPoolHeader[rcx].PreviousPartiallyFreePool, rbx
  mov TSmallBlockType[rbx].NextPartiallyFreePool, rcx
  {Unlock the block type}
  mov TSmallBlockType[rbx].BlockTypeLocked, False
  jmp @Done
@LockBlockTypeLoop:
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([rbx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Try the next size}
  add rbx, Type(TSmallBlockType)
  mov eax, $100
  lock cmpxchg TSmallBlockType([rbx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Try the next size (up to two sizes larger)}
  add rbx, Type(TSmallBlockType)
  mov eax, $100
  lock cmpxchg TSmallBlockType([rbx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Block type and two sizes larger are all locked - give up and sleep}
  sub rbx, 2 * Type(TSmallBlockType)
{$ifdef NeverSleepOnThreadContention}
  {Pause instruction (improves performance on P4)}
  pause
  {$ifdef UseSwitchToThread}
  call SwitchToThread
  {$endif}
  {Try again}
  jmp @LockBlockTypeLoop
{$else}
  {Couldn't grab the block type - sleep and try again}
  mov ecx, InitialSleepTime
  call Sleep
  {Try again}
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([rbx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Couldn't grab the block type - sleep and try again}
  mov ecx, AdditionalSleepTime
  call Sleep
  {Try again}
  jmp @LockBlockTypeLoop
{$endif}
@AllocateSmallBlockPool:
  {Do we need to lock the medium blocks?}
{$ifndef AssumeMultiThreaded}
  test esi, esi
  jz @MediumBlocksLockedForPool
{$endif}
  call LockMediumBlocks
@MediumBlocksLockedForPool:
  {Are there any available blocks of a suitable size?}
  movsx esi, TSmallBlockType[rbx].AllowedGroupsForBlockPoolBitmap
  and esi, MediumBlockBinGroupBitmap
  jz @NoSuitableMediumBlocks
  {Get the bin group number with free blocks in eax}
  bsf eax, esi
  {Get the bin number in ecx}
  lea r8, MediumBlockBinBitmaps
  lea r9, [rax * 4]
  mov ecx, [r8 + r9]
  bsf ecx, ecx
  lea ecx, [ecx + r9d * 8]
  {Get a pointer to the bin in edi}
  lea rdi, MediumBlockBins
  lea esi, [ecx * 8]
  lea rdi, [rdi + rsi * 2] //SizeOf(TMediumBlockBin) = 16
  {Get the free block in rsi}
  mov rsi, TMediumFreeBlock[rdi].NextFreeBlock
  {Remove the first block from the linked list (LIFO)}
  mov rdx, TMediumFreeBlock[rsi].NextFreeBlock
  mov TMediumFreeBlock[rdi].NextFreeBlock, rdx
  mov TMediumFreeBlock[rdx].PreviousFreeBlock, rdi
  {Is this bin now empty?}
  cmp rdi, rdx
  jne @MediumBinNotEmpty
  {r8 = @MediumBlockBinBitmaps, eax = bin group number,
   r9 = bin group number * 4, ecx = bin number, edi = @bin, esi = free block,
   ebx = block type}
  {Flag this bin as empty}
  mov edx, -2
  rol edx, cl
  and [r8 + r9], edx
  jnz @MediumBinNotEmpty
  {Flag the group as empty}
  btr MediumBlockBinGroupBitmap, eax
@MediumBinNotEmpty:
  {esi = free block, ebx = block type}
  {Get the size of the available medium block in edi}
  mov rdi, DropMediumAndLargeFlagsMask
  and rdi, [rsi - BlockHeaderSize]
  cmp edi, MaximumSmallBlockPoolSize
  jb @UseWholeBlock
  {Split the block: get the size of the second part, new block size is the
   optimal size}
  mov edx, edi
  movzx edi, TSmallBlockType[rbx].OptimalBlockPoolSize
  sub edx, edi
  {Split the block in two}
  lea rcx, [rsi + rdi]
  lea rax, [rdx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [rcx - BlockHeaderSize], rax
  {Store the size of the second split as the second last qword}
  mov [rcx + rdx - BlockHeaderSize * 2], rdx
  {Put the remainder in a bin (it will be big enough)}
  call InsertMediumBlockIntoBin
  jmp @GotMediumBlock
@NoSuitableMediumBlocks:
  {Check the sequential feed medium block pool for space}
  movzx ecx, TSmallBlockType[rbx].MinimumBlockPoolSize
  mov edi, MediumSequentialFeedBytesLeft
  cmp edi, ecx
  jb @AllocateNewSequentialFeed
  {Get the address of the last block that was fed}
  mov rsi, LastSequentiallyFedMediumBlock
  {Enough sequential feed space: Will the remainder be usable?}
  movzx ecx, TSmallBlockType[rbx].OptimalBlockPoolSize
  lea edx, [ecx + MinimumMediumBlockSize]
  cmp edi, edx
  jb @NotMuchSpace
  mov edi, ecx
@NotMuchSpace:
  sub rsi, rdi
  {Update the sequential feed parameters}
  sub MediumSequentialFeedBytesLeft, edi
  mov LastSequentiallyFedMediumBlock, rsi
  {Get the block pointer}
  jmp @GotMediumBlock
  {Align branch target}
@AllocateNewSequentialFeed:
  {Need to allocate a new sequential feed medium block pool: use the
   optimal size for this small block pool}
  movzx ecx, TSmallBlockType[rbx].OptimalBlockPoolSize
  mov edi, ecx
  {Allocate the medium block pool}
  call AllocNewSequentialFeedMediumPool
  mov rsi, rax
  test rax, rax
  jnz @GotMediumBlock
  mov MediumBlocksLocked, al
  mov TSmallBlockType[rbx].BlockTypeLocked, al
  jmp @Done
@UseWholeBlock:
  {rsi = free block, rbx = block type, edi = block size}
  {Mark this block as used in the block following it}
  and byte ptr [rsi + rdi - BlockHeaderSize], not PreviousMediumBlockIsFreeFlag
@GotMediumBlock:
  {rsi = free block, rbx = block type, edi = block size}
  {Set the size and flags for this block}
  lea ecx, [edi + IsMediumBlockFlag + IsSmallBlockPoolInUseFlag]
  mov [rsi - BlockHeaderSize], rcx
  {Unlock medium blocks}
  xor eax, eax
  mov MediumBlocksLocked, al
  {Set up the block pool}
  mov TSmallBlockPoolHeader[rsi].BlockType, rbx
  mov TSmallBlockPoolHeader[rsi].FirstFreeBlock, rax
  mov TSmallBlockPoolHeader[rsi].BlocksInUse, 1
  {Set it up for sequential block serving}
  mov TSmallBlockType[rbx].CurrentSequentialFeedPool, rsi
  {Return the pointer to the first block}
  lea rax, [rsi + SmallBlockPoolHeaderSize]
  movzx ecx, TSmallBlockType[rbx].BlockSize
  lea rdx, [rax + rcx]
  mov TSmallBlockType[rbx].NextSequentialFeedBlockAddress, rdx
  add rdi, rsi
  sub rdi, rcx
  mov TSmallBlockType[rbx].MaxSequentialFeedBlockAddress, rdi
  {Unlock the small block type}
  mov TSmallBlockType[rbx].BlockTypeLocked, False
  {Set the small block header}
  mov [rax - BlockHeaderSize], rsi
  jmp @Done
{-------------------Medium block allocation-------------------}
@NotASmallBlock:
  cmp rcx, (MaximumMediumBlockSize - BlockHeaderSize)
  ja @IsALargeBlockRequest
  {Get the bin size for this block size. Block sizes are
   rounded up to the next bin size.}
  lea ebx, [ecx + MediumBlockGranularity - 1 + BlockHeaderSize - MediumBlockSizeOffset]
  and ebx, -MediumBlockGranularity
  add ebx, MediumBlockSizeOffset
  {Do we need to lock the medium blocks?}
{$ifndef AssumeMultiThreaded}
  test esi, esi
  jz @MediumBlocksLocked
{$endif}
  call LockMediumBlocks
@MediumBlocksLocked:
  {Get the bin number in ecx and the group number in edx}
  lea edx, [ebx - MinimumMediumBlockSize]
  mov ecx, edx
  shr edx, 8 + 5
  shr ecx, 8
  {Is there a suitable block inside this group?}
  mov eax, -1
  shl eax, cl
  lea r8, MediumBlockBinBitmaps
  and eax, [r8 + rdx * 4]
  jz @GroupIsEmpty
  {Get the actual bin number}
  and ecx, -32
  bsf eax, eax
  or ecx, eax
  jmp @GotBinAndGroup
@GroupIsEmpty:
  {Try all groups greater than this group}
  mov eax, -2
  mov ecx, edx
  shl eax, cl
  and eax, MediumBlockBinGroupBitmap
  jz @TrySequentialFeedMedium
  {There is a suitable group with space: get the bin number}
  bsf edx, eax
  {Get the bin in the group with free blocks}
  mov eax, [r8 + rdx * 4]
  bsf ecx, eax
  mov eax, edx
  shl eax, 5
  or ecx, eax
  jmp @GotBinAndGroup
@TrySequentialFeedMedium:
  mov ecx, MediumSequentialFeedBytesLeft
  {Block can be fed sequentially?}
  sub ecx, ebx
  jc @AllocateNewSequentialFeedForMedium
  {Get the block address}
  mov rax, LastSequentiallyFedMediumBlock
  sub rax, rbx
  mov LastSequentiallyFedMediumBlock, rax
  {Store the remaining bytes}
  mov MediumSequentialFeedBytesLeft, ecx
  {Set the flags for the block}
  or rbx, IsMediumBlockFlag
  mov [rax - BlockHeaderSize], rbx
  jmp @MediumBlockGetDone
@AllocateNewSequentialFeedForMedium:
  mov ecx, ebx
  call AllocNewSequentialFeedMediumPool
@MediumBlockGetDone:
  xor cl, cl
  mov MediumBlocksLocked, cl //workaround for QC99023
  jmp @Done
@GotBinAndGroup:
  {ebx = block size, ecx = bin number, edx = group number}
  {Get a pointer to the bin in edi}
  lea rdi, MediumBlockBins
  lea eax, [ecx + ecx]
  lea rdi, [rdi + rax * 8]
  {Get the free block in esi}
  mov rsi, TMediumFreeBlock[rdi].NextFreeBlock
  {Remove the first block from the linked list (LIFO)}
  mov rax, TMediumFreeBlock[rsi].NextFreeBlock
  mov TMediumFreeBlock[rdi].NextFreeBlock, rax
  mov TMediumFreeBlock[rax].PreviousFreeBlock, rdi
  {Is this bin now empty?}
  cmp rdi, rax
  jne @MediumBinNotEmptyForMedium
  {edx = bin group number, ecx = bin number, rdi = @bin, rsi = free block, ebx = block size}
  {Flag this bin as empty}
  mov eax, -2
  rol eax, cl
  lea r8, MediumBlockBinBitmaps
  and [r8 + rdx * 4], eax
  jnz @MediumBinNotEmptyForMedium
  {Flag the group as empty}
  btr MediumBlockBinGroupBitmap, edx
@MediumBinNotEmptyForMedium:
  {rsi = free block, ebx = block size}
  {Get the size of the available medium block in edi}
  mov rdi, DropMediumAndLargeFlagsMask
  and rdi, [rsi - BlockHeaderSize]
  {Get the size of the second split in edx}
  mov edx, edi
  sub edx, ebx
  jz @UseWholeBlockForMedium
  {Split the block in two}
  lea rcx, [rsi + rbx]
  lea rax, [rdx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [rcx - BlockHeaderSize], rax
  {Store the size of the second split as the second last dword}
  mov [rcx + rdx - BlockHeaderSize * 2], rdx
  {Put the remainder in a bin}
  cmp edx, MinimumMediumBlockSize
  jb @GotMediumBlockForMedium
  call InsertMediumBlockIntoBin
  jmp @GotMediumBlockForMedium
@UseWholeBlockForMedium:
  {Mark this block as used in the block following it}
  and byte ptr [rsi + rdi - BlockHeaderSize], not PreviousMediumBlockIsFreeFlag
@GotMediumBlockForMedium:
  {Set the size and flags for this block}
  lea rcx, [rbx + IsMediumBlockFlag]
  mov [rsi - BlockHeaderSize], rcx
  {Unlock medium blocks}
  xor cl, cl
  mov MediumBlocksLocked, cl //workaround for QC99023
  mov rax, rsi
  jmp @Done
{-------------------Large block allocation-------------------}
@IsALargeBlockRequest:
  xor rax, rax
  test rcx, rcx
  js @Done
  call AllocateLargeBlock
@Done:
end;
{$endif}
{$endif}

{$ifndef ASMVersion}
{Frees a medium block, returning 0 on success, -1 otherwise}
function FreeMediumBlock(APointer: Pointer): Integer;
var
  LNextMediumBlock{$ifndef FullDebugMode}, LPreviousMediumBlock{$endif}: PMediumFreeBlock;
  LNextMediumBlockSizeAndFlags: NativeUInt;
  LBlockSize{$ifndef FullDebugMode}, LPreviousMediumBlockSize{$endif}: Cardinal;
{$ifndef FullDebugMode}
  LPPreviousMediumBlockPoolHeader, LPNextMediumBlockPoolHeader: PMediumBlockPoolHeader;
{$endif}
  LBlockHeader: NativeUInt;
begin
  {Get the block header}
  LBlockHeader := PNativeUInt(PByte(APointer) - BlockHeaderSize)^;
  {Get the medium block size}
  LBlockSize := LBlockHeader and DropMediumAndLargeFlagsMask;
  {Lock the medium blocks}
  LockMediumBlocks;
  {Can we combine this block with the next free block?}
  LNextMediumBlock := PMediumFreeBlock(PByte(APointer) + LBlockSize);
  LNextMediumBlockSizeAndFlags := PNativeUInt(PByte(LNextMediumBlock) - BlockHeaderSize)^;
{$ifndef FullDebugMode}
{$ifdef CheckHeapForCorruption}
  {Check that this block was flagged as in use in the next block}
  if (LNextMediumBlockSizeAndFlags and PreviousMediumBlockIsFreeFlag) <> 0 then
{$ifdef BCB6OrDelphi7AndUp}
    System.Error(reInvalidPtr);
{$else}
    System.RunError(reInvalidPtr);
{$endif}
{$endif}
  if (LNextMediumBlockSizeAndFlags and IsFreeBlockFlag) <> 0 then
  begin
    {Increase the size of this block}
    Inc(LBlockSize, LNextMediumBlockSizeAndFlags and DropMediumAndLargeFlagsMask);
    {Remove the next block as well}
    if LNextMediumBlockSizeAndFlags >= MinimumMediumBlockSize then
      RemoveMediumFreeBlock(LNextMediumBlock);
  end
  else
  begin
{$endif}
    {Reset the "previous in use" flag of the next block}
    PNativeUInt(PByte(LNextMediumBlock) - BlockHeaderSize)^ := LNextMediumBlockSizeAndFlags or PreviousMediumBlockIsFreeFlag;
{$ifndef FullDebugMode}
  end;
  {Can we combine this block with the previous free block? We need to
   re-read the flags since it could have changed before we could lock the
   medium blocks.}
  if (PNativeUInt(PByte(APointer) - BlockHeaderSize)^ and PreviousMediumBlockIsFreeFlag) <> 0 then
  begin
    {Get the size of the free block just before this one}
    LPreviousMediumBlockSize := PNativeUInt(PByte(APointer) - 2 * BlockHeaderSize)^;
    {Get the start of the previous block}
    LPreviousMediumBlock := PMediumFreeBlock(PByte(APointer) - LPreviousMediumBlockSize);
{$ifdef CheckHeapForCorruption}
    {Check that the previous block is actually free}
    if (PNativeUInt(PByte(LPreviousMediumBlock) - BlockHeaderSize)^ and ExtractMediumAndLargeFlagsMask) <> (IsMediumBlockFlag or IsFreeBlockFlag) then
{$ifdef BCB6OrDelphi7AndUp}
    System.Error(reInvalidPtr);
{$else}
    System.RunError(reInvalidPtr);
{$endif}
{$endif}
    {Set the new block size}
    Inc(LBlockSize, LPreviousMediumBlockSize);
    {This is the new current block}
    APointer := LPreviousMediumBlock;
    {Remove the previous block from the linked list}
    if LPreviousMediumBlockSize >= MinimumMediumBlockSize then
      RemoveMediumFreeBlock(LPreviousMediumBlock);
  end;
{$ifdef CheckHeapForCorruption}
  {Check that the previous block is currently flagged as in use}
  if (PNativeUInt(PByte(APointer) - BlockHeaderSize)^ and PreviousMediumBlockIsFreeFlag) <> 0 then
{$ifdef BCB6OrDelphi7AndUp}
    System.Error(reInvalidPtr);
{$else}
    System.RunError(reInvalidPtr);
{$endif}
{$endif}
  {Is the entire medium block pool free, and there are other free blocks
   that can fit the largest possible medium block? -> free it. (Except in
   full debug mode where medium pools are never freed.)}
  if (LBlockSize <> (MediumBlockPoolSize - MediumBlockPoolHeaderSize)) then
  begin
    {Store the size of the block as well as the flags}
    PNativeUInt(PByte(APointer) - BlockHeaderSize)^ := LBlockSize or (IsMediumBlockFlag or IsFreeBlockFlag);
{$else}
    {Mark the block as free}
    Inc(PNativeUInt(PByte(APointer) - BlockHeaderSize)^, IsFreeBlockFlag);
{$endif}
    {Store the trailing size marker}
    PNativeUInt(PByte(APointer) + LBlockSize - 2 * BlockHeaderSize)^ := LBlockSize;
    {Insert this block back into the bins: Size check not required here,
     since medium blocks that are in use are not allowed to be
     shrunk smaller than MinimumMediumBlockSize}
    InsertMediumBlockIntoBin(APointer, LBlockSize);
{$ifndef FullDebugMode}
{$ifdef CheckHeapForCorruption}
    {Check that this block is actually free and the next and previous blocks are both in use.}
    if ((PNativeUInt(PByte(APointer) - BlockHeaderSize)^ and ExtractMediumAndLargeFlagsMask) <> (IsMediumBlockFlag or IsFreeBlockFlag))
      or ((PNativeUInt(PByte(APointer) + (PNativeUInt(PByte(APointer) - BlockHeaderSize)^ and DropMediumAndLargeFlagsMask) - BlockHeaderSize)^ and IsFreeBlockFlag) <> 0) then
    begin
{$ifdef BCB6OrDelphi7AndUp}
    System.Error(reInvalidPtr);
{$else}
    System.RunError(reInvalidPtr);
{$endif}
    end;
{$endif}
{$endif}
    {Unlock medium blocks}
    MediumBlocksLocked := False;
    {All OK}
    Result := 0;
{$ifndef FullDebugMode}
  end
  else
  begin
    {Should this become the new sequential feed?}
    if MediumSequentialFeedBytesLeft <> MediumBlockPoolSize - MediumBlockPoolHeaderSize then
    begin
      {Bin the current sequential feed}
      BinMediumSequentialFeedRemainder;
      {Set this medium pool up as the new sequential feed pool:
       Store the sequential feed pool trailer}
      PNativeUInt(PByte(APointer) + LBlockSize - BlockHeaderSize)^ := IsMediumBlockFlag;
      {Store the number of bytes available in the sequential feed chunk}
      MediumSequentialFeedBytesLeft := MediumBlockPoolSize - MediumBlockPoolHeaderSize;
      {Set the last sequentially fed block}
      LastSequentiallyFedMediumBlock := Pointer(PByte(APointer) + LBlockSize);
      {Unlock medium blocks}
      MediumBlocksLocked := False;
      {Success}
      Result := 0;
    end
    else
    begin
      {Remove this medium block pool from the linked list}
      Dec(PByte(APointer), MediumBlockPoolHeaderSize);
      LPPreviousMediumBlockPoolHeader := PMediumBlockPoolHeader(APointer).PreviousMediumBlockPoolHeader;
      LPNextMediumBlockPoolHeader := PMediumBlockPoolHeader(APointer).NextMediumBlockPoolHeader;
      LPPreviousMediumBlockPoolHeader.NextMediumBlockPoolHeader := LPNextMediumBlockPoolHeader;
      LPNextMediumBlockPoolHeader.PreviousMediumBlockPoolHeader := LPPreviousMediumBlockPoolHeader;
      {Unlock medium blocks}
      MediumBlocksLocked := False;
{$ifdef ClearMediumBlockPoolsBeforeReturningToOS}
      FillChar(APointer^, MediumBlockPoolSize, 0);
{$endif}
      {Free the medium block pool}
      if VirtualFree(APointer, 0, MEM_RELEASE) then
        Result := 0
      else
        Result := -1;
    end;
  end;
{$endif}
end;
{$endif}

{Replacement for SysFreeMem}
function FastFreeMem(APointer: Pointer): Integer;
{$ifndef ASMVersion}
var
  LPSmallBlockPool{$ifndef FullDebugMode}, LPPreviousPool, LPNextPool{$endif},
    LPOldFirstPool: PSmallBlockPoolHeader;
  LPSmallBlockType: PSmallBlockType;
  LOldFirstFreeBlock: Pointer;
  LBlockHeader: NativeUInt;
begin
  {Get the small block header: Is it actually a small block?}
  LBlockHeader := PNativeUInt(PByte(APointer) - BlockHeaderSize)^;
  {Is it a small block that is in use?}
  if LBlockHeader and (IsFreeBlockFlag or IsMediumBlockFlag or IsLargeBlockFlag) = 0 then
  begin
    {Get a pointer to the block pool}
    LPSmallBlockPool := PSmallBlockPoolHeader(LBlockHeader);
    {Get the block type}
    LPSmallBlockType := LPSmallBlockPool.BlockType;
{$ifdef ClearSmallAndMediumBlocksInFreeMem}
    FillChar(APointer^, LPSmallBlockType.BlockSize - BlockHeaderSize, 0);
{$endif}
    {Lock the block type}
{$ifndef AssumeMultiThreaded}
    if IsMultiThread then
{$endif}
    begin
      while (LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) <> 0) do
      begin
{$ifdef NeverSleepOnThreadContention}
  {$ifdef UseSwitchToThread}
        SwitchToThread;
  {$endif}
{$else}
        Sleep(InitialSleepTime);
        if LockCmpxchg(0, 1, @LPSmallBlockType.BlockTypeLocked) = 0 then
          Break;
        Sleep(AdditionalSleepTime);
{$endif}
      end;
    end;
    {Get the old first free block}
    LOldFirstFreeBlock := LPSmallBlockPool.FirstFreeBlock;
    {Was the pool manager previously full?}
    if LOldFirstFreeBlock = nil then
    begin
      {Insert this as the first partially free pool for the block size}
      LPOldFirstPool := LPSmallBlockType.NextPartiallyFreePool;
      LPSmallBlockPool.NextPartiallyFreePool := LPOldFirstPool;
      LPOldFirstPool.PreviousPartiallyFreePool := LPSmallBlockPool;
      LPSmallBlockPool.PreviousPartiallyFreePool := PSmallBlockPoolHeader(LPSmallBlockType);
      LPSmallBlockType.NextPartiallyFreePool := LPSmallBlockPool;
    end;
    {Store the old first free block}
    PNativeUInt(PByte(APointer) - BlockHeaderSize)^ := UIntPtr(LOldFirstFreeBlock) or IsFreeBlockFlag;
    {Store this as the new first free block}
    LPSmallBlockPool.FirstFreeBlock := APointer;
    {Decrement the number of allocated blocks}
    Dec(LPSmallBlockPool.BlocksInUse);
    {Small block pools are never freed in full debug mode. This increases the
     likehood of success in catching objects still being used after being
     destroyed.}
{$ifndef FullDebugMode}
    {Is the entire pool now free? -> Free it.}
    if LPSmallBlockPool.BlocksInUse = 0 then
    begin
      {Get the previous and next chunk managers}
      LPPreviousPool := LPSmallBlockPool.PreviousPartiallyFreePool;
      LPNextPool := LPSmallBlockPool.NextPartiallyFreePool;
      {Remove this manager}
      LPPreviousPool.NextPartiallyFreePool := LPNextPool;
      LPNextPool.PreviousPartiallyFreePool := LPPreviousPool;
      {Is this the sequential feed pool? If so, stop sequential feeding}
      if (LPSmallBlockType.CurrentSequentialFeedPool = LPSmallBlockPool) then
        LPSmallBlockType.MaxSequentialFeedBlockAddress := nil;
      {Unlock this block type}
      LPSmallBlockType.BlockTypeLocked := False;
      {Free the block pool}
      FreeMediumBlock(LPSmallBlockPool);
    end
    else
    begin
{$endif}
      {Unlock this block type}
      LPSmallBlockType.BlockTypeLocked := False;
{$ifndef FullDebugMode}
    end;
{$endif}
    {No error}
    Result := 0;
  end
  else
  begin
    {Is this a medium block or a large block?}
    if LBlockHeader and (IsFreeBlockFlag or IsLargeBlockFlag) = 0 then
    begin
{$ifdef ClearSmallAndMediumBlocksInFreeMem}
      {Get the block header, extract the block size and clear the block it.}
      LBlockHeader := PNativeUInt(PByte(APointer) - BlockHeaderSize)^;
      FillChar(APointer^,
        (LBlockHeader and DropMediumAndLargeFlagsMask) - BlockHeaderSize, 0);
{$endif}
      Result := FreeMediumBlock(APointer);
    end
    else
    begin
      {Validate: Is this actually a Large block, or is it an attempt to free an
       already freed small block?}
      if LBlockHeader and (IsFreeBlockFlag or IsMediumBlockFlag) = 0 then
        Result := FreeLargeBlock(APointer)
      else
        Result := -1;
    end;
  end;
end;
{$else}
{$ifdef 32Bit}
asm
  {Get the block header in edx}
  mov edx, [eax - 4]
  {Is it a small block in use?}
  test dl, IsFreeBlockFlag + IsMediumBlockFlag + IsLargeBlockFlag
  {Save the pointer in ecx}
  mov ecx, eax
  {Save ebx}
  push ebx
  {Get the IsMultiThread variable in bl}
{$ifndef AssumeMultiThreaded}
  mov bl, IsMultiThread
{$endif}
  {Is it a small block that is in use?}
  jnz @NotSmallBlockInUse
{$ifdef ClearSmallAndMediumBlocksInFreeMem}
  push edx
  push ecx
  mov edx, TSmallBlockPoolHeader[edx].BlockType
  movzx edx, TSmallBlockType(edx).BlockSize
  sub edx, BlockHeaderSize
  xor ecx, ecx
  call System.@FillChar
  pop ecx
  pop edx
{$endif}
  {Do we need to lock the block type?}
{$ifndef AssumeMultiThreaded}
  test bl, bl
{$endif}
  {Get the small block type in ebx}
  mov ebx, TSmallBlockPoolHeader[edx].BlockType
  {Do we need to lock the block type?}
{$ifndef AssumeMultiThreaded}
  jnz @LockBlockTypeLoop
{$else}
  jmp @LockBlockTypeLoop
  {Align branch target}
  nop
{$endif}
@GotLockOnSmallBlockType:
  {Current state: edx = @SmallBlockPoolHeader, ecx = APointer, ebx = @SmallBlockType}
  {Decrement the number of blocks in use}
  sub TSmallBlockPoolHeader[edx].BlocksInUse, 1
  {Get the old first free block}
  mov eax, TSmallBlockPoolHeader[edx].FirstFreeBlock
  {Is the pool now empty?}
  jz @PoolIsNowEmpty
  {Was the pool full?}
  test eax, eax
  {Store this as the new first free block}
  mov TSmallBlockPoolHeader[edx].FirstFreeBlock, ecx
  {Store the previous first free block as the block header}
  lea eax, [eax + IsFreeBlockFlag]
  mov [ecx - 4], eax
  {Insert the pool back into the linked list if it was full}
  jz @SmallPoolWasFull
  {All ok}
  xor eax, eax
  {Unlock the block type}
  mov TSmallBlockType[ebx].BlockTypeLocked, al
  {Restore registers}
  pop ebx
  {Done}
  ret
  {Align branch target}
{$ifndef AssumeMultiThreaded}
  nop
{$endif}
@SmallPoolWasFull:
  {Insert this as the first partially free pool for the block size}
  mov ecx, TSmallBlockType[ebx].NextPartiallyFreePool
  mov TSmallBlockPoolHeader[edx].PreviousPartiallyFreePool, ebx
  mov TSmallBlockPoolHeader[edx].NextPartiallyFreePool, ecx
  mov TSmallBlockPoolHeader[ecx].PreviousPartiallyFreePool, edx
  mov TSmallBlockType[ebx].NextPartiallyFreePool, edx
  {Unlock the block type}
  mov TSmallBlockType[ebx].BlockTypeLocked, False
  {All ok}
  xor eax, eax
  {Restore registers}
  pop ebx
  {Done}
  ret
  {Align branch target}
  nop
  nop
@PoolIsNowEmpty:
  {Was this pool actually in the linked list of pools with space? If not, it
   can only be the sequential feed pool (it is the only pool that may contain
   only one block, i.e. other blocks have not been split off yet)}
  test eax, eax
  jz @IsSequentialFeedPool
  {Pool is now empty: Remove it from the linked list and free it}
  mov eax, TSmallBlockPoolHeader[edx].PreviousPartiallyFreePool
  mov ecx, TSmallBlockPoolHeader[edx].NextPartiallyFreePool
  {Remove this manager}
  mov TSmallBlockPoolHeader[eax].NextPartiallyFreePool, ecx
  mov TSmallBlockPoolHeader[ecx].PreviousPartiallyFreePool, eax
  {Zero out eax}
  xor eax, eax
  {Is this the sequential feed pool? If so, stop sequential feeding}
  cmp TSmallBlockType[ebx].CurrentSequentialFeedPool, edx
  jne @NotSequentialFeedPool
@IsSequentialFeedPool:
  mov TSmallBlockType[ebx].MaxSequentialFeedBlockAddress, eax
@NotSequentialFeedPool:
  {Unlock the block type}
  mov TSmallBlockType[ebx].BlockTypeLocked, al
  {Release this pool}
  mov eax, edx
  mov edx, [edx - 4]
{$ifndef AssumeMultiThreaded}
  mov bl, IsMultiThread
{$endif}
  jmp @FreeMediumBlock
  {Align branch target}
{$ifndef AssumeMultiThreaded}
  nop
  nop
{$endif}
  nop
@LockBlockTypeLoop:
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([ebx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
{$ifdef NeverSleepOnThreadContention}
  {Pause instruction (improves performance on P4)}
  rep nop
  {$ifdef UseSwitchToThread}
  push ecx
  push edx
  call SwitchToThread
  pop edx
  pop ecx
  {$endif}
  {Try again}
  jmp @LockBlockTypeLoop
  {Align branch target}
  {$ifndef UseSwitchToThread}
  nop
  {$endif}
{$else}
  {Couldn't grab the block type - sleep and try again}
  push ecx
  push edx
  push InitialSleepTime
  call Sleep
  pop edx
  pop ecx
  {Try again}
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([ebx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Couldn't grab the block type - sleep and try again}
  push ecx
  push edx
  push AdditionalSleepTime
  call Sleep
  pop edx
  pop ecx
  {Try again}
  jmp @LockBlockTypeLoop
  {Align branch target}
  nop
  nop
{$endif}
  {---------------------Medium blocks------------------------------}
  {Align branch target}
@NotSmallBlockInUse:
  {Not a small block in use: is it a medium or large block?}
  test dl, IsFreeBlockFlag + IsLargeBlockFlag
  jnz @NotASmallOrMediumBlock
@FreeMediumBlock:
{$ifdef ClearSmallAndMediumBlocksInFreeMem}
  push eax
  push edx
  and edx, DropMediumAndLargeFlagsMask
  sub edx, BlockHeaderSize
  xor ecx, ecx
  call System.@FillChar
  pop edx
  pop eax
{$endif}
  {Drop the flags}
  and edx, DropMediumAndLargeFlagsMask
  {Free the medium block pointed to by eax, header in edx, bl = IsMultiThread}
{$ifndef AssumeMultiThreaded}
  {Do we need to lock the medium blocks?}
  test bl, bl
{$endif}
  {Block size in ebx}
  mov ebx, edx
  {Save registers}
  push esi
  {Pointer in esi}
  mov esi, eax
  {Do we need to lock the medium blocks?}
{$ifndef AssumeMultiThreaded}
  jz @MediumBlocksLocked
{$endif}
  call LockMediumBlocks
@MediumBlocksLocked:
  {Can we combine this block with the next free block?}
  test dword ptr [esi + ebx - 4], IsFreeBlockFlag
  {Get the next block size and flags in ecx}
  mov ecx, [esi + ebx - 4]
  jnz @NextBlockIsFree
  {Set the "PreviousIsFree" flag in the next block}
  or ecx, PreviousMediumBlockIsFreeFlag
  mov [esi + ebx - 4], ecx
@NextBlockChecked:
  {Can we combine this block with the previous free block? We need to
   re-read the flags since it could have changed before we could lock the
   medium blocks.}
  test byte ptr [esi - 4], PreviousMediumBlockIsFreeFlag
  jnz @PreviousBlockIsFree
@PreviousBlockChecked:
  {Is the entire medium block pool free, and there are other free blocks
   that can fit the largest possible medium block -> free it.}
  cmp ebx, (MediumBlockPoolSize - MediumBlockPoolHeaderSize)
  je @EntireMediumPoolFree
@BinFreeMediumBlock:
  {Store the size of the block as well as the flags}
  lea eax, [ebx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [esi - 4], eax
  {Store the trailing size marker}
  mov [esi + ebx - 8], ebx
  {Insert this block back into the bins: Size check not required here,
   since medium blocks that are in use are not allowed to be
   shrunk smaller than MinimumMediumBlockSize}
  mov eax, esi
  mov edx, ebx
  {Insert into bin}
  call InsertMediumBlockIntoBin
  {Unlock medium blocks}
  mov MediumBlocksLocked, False;
  {All OK}
  xor eax, eax
  {Restore registers}
  pop esi
  pop ebx
  {Return}
  ret
  {Align branch target}
@NextBlockIsFree:
  {Get the next block address in eax}
  lea eax, [esi + ebx]
  {Increase the size of this block}
  and ecx, DropMediumAndLargeFlagsMask
  add ebx, ecx
  {Was the block binned?}
  cmp ecx, MinimumMediumBlockSize
  jb @NextBlockChecked
  call RemoveMediumFreeBlock
  jmp @NextBlockChecked
  {Align branch target}
  nop
@PreviousBlockIsFree:
  {Get the size of the free block just before this one}
  mov ecx, [esi - 8]
  {Include the previous block}
  sub esi, ecx
  {Set the new block size}
  add ebx, ecx
  {Remove the previous block from the linked list}
  cmp ecx, MinimumMediumBlockSize
  jb @PreviousBlockChecked
  mov eax, esi
  call RemoveMediumFreeBlock
  jmp @PreviousBlockChecked
  {Align branch target}
@EntireMediumPoolFree:
  {Should we make this the new sequential feed medium block pool? If the
   current sequential feed pool is not entirely free, we make this the new
   sequential feed pool.}
  cmp MediumSequentialFeedBytesLeft, MediumBlockPoolSize - MediumBlockPoolHeaderSize
  jne @MakeEmptyMediumPoolSequentialFeed
  {Point esi to the medium block pool header}
  sub esi, MediumBlockPoolHeaderSize
  {Remove this medium block pool from the linked list}
  mov eax, TMediumBlockPoolHeader[esi].PreviousMediumBlockPoolHeader
  mov edx, TMediumBlockPoolHeader[esi].NextMediumBlockPoolHeader
  mov TMediumBlockPoolHeader[eax].NextMediumBlockPoolHeader, edx
  mov TMediumBlockPoolHeader[edx].PreviousMediumBlockPoolHeader, eax
  {Unlock medium blocks}
  mov MediumBlocksLocked, False;
{$ifdef ClearMediumBlockPoolsBeforeReturningToOS}
  mov eax, esi
  mov edx, MediumBlockPoolSize
  xor ecx, ecx
  call System.@FillChar
{$endif}
  {Free the medium block pool}
  push MEM_RELEASE
  push 0
  push esi
  call VirtualFree
  {VirtualFree returns >0 if all is ok}
  cmp eax, 1
  {Return 0 on all ok}
  sbb eax, eax
  {Restore registers}
  pop esi
  pop ebx
  ret
  {Align branch target}
  nop
  nop
  nop
@MakeEmptyMediumPoolSequentialFeed:
  {Get a pointer to the end-marker block}
  lea ebx, [esi + MediumBlockPoolSize - MediumBlockPoolHeaderSize]
  {Bin the current sequential feed pool}
  call BinMediumSequentialFeedRemainder
  {Set this medium pool up as the new sequential feed pool:
   Store the sequential feed pool trailer}
  mov dword ptr [ebx - BlockHeaderSize], IsMediumBlockFlag
  {Store the number of bytes available in the sequential feed chunk}
  mov MediumSequentialFeedBytesLeft, MediumBlockPoolSize - MediumBlockPoolHeaderSize
  {Set the last sequentially fed block}
  mov LastSequentiallyFedMediumBlock, ebx
  {Unlock medium blocks}
  mov MediumBlocksLocked, False;
  {Success}
  xor eax, eax
  {Restore registers}
  pop esi
  pop ebx
  ret
  {Align branch target}
  nop
  nop
@NotASmallOrMediumBlock:
  {Restore ebx}
  pop ebx
  {Is it in fact a large block?}
  test dl, IsFreeBlockFlag + IsMediumBlockFlag
  jz FreeLargeBlock
  {Attempt to free an already free block}
  mov eax, -1
end;

{$else}

{---------------64-bit BASM FastFreeMem---------------}
asm
  .params 3
  .pushnv rbx
  .pushnv rsi
  {Get the block header in rdx}
  mov rdx, [rcx - BlockHeaderSize]
  {Is it a small block in use?}
  test dl, IsFreeBlockFlag + IsMediumBlockFlag + IsLargeBlockFlag
  {Get the IsMultiThread variable in bl}
{$ifndef AssumeMultiThreaded}
  mov bl, IsMultiThread
{$endif}
  {Is it a small block that is in use?}
  jnz @NotSmallBlockInUse
{$ifdef ClearSmallAndMediumBlocksInFreeMem}
  mov rsi, rcx
  mov rdx, TSmallBlockPoolHeader[rdx].BlockType
  movzx edx, TSmallBlockType(rdx).BlockSize
  sub edx, BlockHeaderSize
  xor r8, r8
  call System.@FillChar
  mov rcx, rsi
  mov rdx, [rcx - BlockHeaderSize]
{$endif}
  {Do we need to lock the block type?}
{$ifndef AssumeMultiThreaded}
  test bl, bl
{$endif}
  {Get the small block type in rbx}
  mov rbx, TSmallBlockPoolHeader[rdx].BlockType
  {Do we need to lock the block type?}
{$ifndef AssumeMultiThreaded}
  jnz @LockBlockTypeLoop
{$else}
  jmp @LockBlockTypeLoop
{$endif}
@GotLockOnSmallBlockType:
  {Current state: rdx = @SmallBlockPoolHeader, rcx = APointer, rbx = @SmallBlockType}
  {Decrement the number of blocks in use}
  sub TSmallBlockPoolHeader[rdx].BlocksInUse, 1
  {Get the old first free block}
  mov rax, TSmallBlockPoolHeader[rdx].FirstFreeBlock
  {Is the pool now empty?}
  jz @PoolIsNowEmpty
  {Was the pool full?}
  test rax, rax
  {Store this as the new first free block}
  mov TSmallBlockPoolHeader[rdx].FirstFreeBlock, rcx
  {Store the previous first free block as the block header}
  lea rax, [rax + IsFreeBlockFlag]
  mov [rcx - BlockHeaderSize], rax
  {Insert the pool back into the linked list if it was full}
  jz @SmallPoolWasFull
  {All ok}
  xor eax, eax
  {Unlock the block type}
  mov TSmallBlockType[rbx].BlockTypeLocked, al
  jmp @Done
@SmallPoolWasFull:
  {Insert this as the first partially free pool for the block size}
  mov rcx, TSmallBlockType[rbx].NextPartiallyFreePool
  mov TSmallBlockPoolHeader[rdx].PreviousPartiallyFreePool, rbx
  mov TSmallBlockPoolHeader[rdx].NextPartiallyFreePool, rcx
  mov TSmallBlockPoolHeader[rcx].PreviousPartiallyFreePool, rdx
  mov TSmallBlockType[rbx].NextPartiallyFreePool, rdx
  {Unlock the block type}
  mov TSmallBlockType[rbx].BlockTypeLocked, False
  {All ok}
  xor eax, eax
  jmp @Done
@PoolIsNowEmpty:
  {Was this pool actually in the linked list of pools with space? If not, it
   can only be the sequential feed pool (it is the only pool that may contain
   only one block, i.e. other blocks have not been split off yet)}
  test rax, rax
  jz @IsSequentialFeedPool
  {Pool is now empty: Remove it from the linked list and free it}
  mov rax, TSmallBlockPoolHeader[rdx].PreviousPartiallyFreePool
  mov rcx, TSmallBlockPoolHeader[rdx].NextPartiallyFreePool
  {Remove this manager}
  mov TSmallBlockPoolHeader[rax].NextPartiallyFreePool, rcx
  mov TSmallBlockPoolHeader[rcx].PreviousPartiallyFreePool, rax
  {Zero out eax}
  xor rax, rax
  {Is this the sequential feed pool? If so, stop sequential feeding}
  cmp TSmallBlockType[rbx].CurrentSequentialFeedPool, rdx
  jne @NotSequentialFeedPool
@IsSequentialFeedPool:
  mov TSmallBlockType[rbx].MaxSequentialFeedBlockAddress, rax
@NotSequentialFeedPool:
  {Unlock the block type}
  mov TSmallBlockType[rbx].BlockTypeLocked, al
  {Release this pool}
  mov rcx, rdx
  mov rdx, [rdx - BlockHeaderSize]
{$ifndef AssumeMultiThreaded}
  mov bl, IsMultiThread
{$endif}
  jmp @FreeMediumBlock
@LockBlockTypeLoop:
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([rbx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
{$ifdef NeverSleepOnThreadContention}
  {Pause instruction (improves performance on P4)}
  pause
  {$ifdef UseSwitchToThread}
  mov rsi, rcx
  call SwitchToThread
  mov rcx, rsi
  mov rdx, [rcx - BlockHeaderSize]
  {$endif}
  {Try again}
  jmp @LockBlockTypeLoop
{$else}
  {Couldn't grab the block type - sleep and try again}
  mov rsi, rcx
  mov ecx, InitialSleepTime
  call Sleep
  mov rcx, rsi
  mov rdx, [rcx - BlockHeaderSize]
  {Try again}
  mov eax, $100
  {Attempt to grab the block type}
  lock cmpxchg TSmallBlockType([rbx]).BlockTypeLocked, ah
  je @GotLockOnSmallBlockType
  {Couldn't grab the block type - sleep and try again}
  mov rsi, rcx
  mov ecx, AdditionalSleepTime
  call Sleep
  mov rcx, rsi
  mov rdx, [rcx - BlockHeaderSize]
  {Try again}
  jmp @LockBlockTypeLoop
{$endif}
  {---------------------Medium blocks------------------------------}
@NotSmallBlockInUse:
  {Not a small block in use: is it a medium or large block?}
  test dl, IsFreeBlockFlag + IsLargeBlockFlag
  jnz @NotASmallOrMediumBlock
@FreeMediumBlock:
{$ifdef ClearSmallAndMediumBlocksInFreeMem}
  mov rsi, rcx
  and rdx, DropMediumAndLargeFlagsMask
  sub rdx, BlockHeaderSize
  xor r8, r8
  call System.@FillChar
  mov rcx, rsi
  mov rdx, [rcx - BlockHeaderSize]
{$endif}
  {Drop the flags}
  and rdx, DropMediumAndLargeFlagsMask
  {Free the medium block pointed to by eax, header in edx, bl = IsMultiThread}
{$ifndef AssumeMultiThreaded}
  {Do we need to lock the medium blocks?}
  test bl, bl
{$endif}
  {Block size in rbx}
  mov rbx, rdx
  {Pointer in rsi}
  mov rsi, rcx
  {Do we need to lock the medium blocks?}
{$ifndef AssumeMultiThreaded}
  jz @MediumBlocksLocked
{$endif}
  call LockMediumBlocks
@MediumBlocksLocked:
  {Can we combine this block with the next free block?}
  test qword ptr [rsi + rbx - BlockHeaderSize], IsFreeBlockFlag
  {Get the next block size and flags in rcx}
  mov rcx, [rsi + rbx - BlockHeaderSize]
  jnz @NextBlockIsFree
  {Set the "PreviousIsFree" flag in the next block}
  or rcx, PreviousMediumBlockIsFreeFlag
  mov [rsi + rbx - BlockHeaderSize], rcx
@NextBlockChecked:
  {Can we combine this block with the previous free block? We need to
   re-read the flags since it could have changed before we could lock the
   medium blocks.}
  test byte ptr [rsi - BlockHeaderSize], PreviousMediumBlockIsFreeFlag
  jnz @PreviousBlockIsFree
@PreviousBlockChecked:
  {Is the entire medium block pool free, and there are other free blocks
   that can fit the largest possible medium block -> free it.}
  cmp ebx, (MediumBlockPoolSize - MediumBlockPoolHeaderSize)
  je @EntireMediumPoolFree
@BinFreeMediumBlock:
  {Store the size of the block as well as the flags}
  lea rax, [rbx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [rsi - BlockHeaderSize], rax
  {Store the trailing size marker}
  mov [rsi + rbx - 2 * BlockHeaderSize], rbx
  {Insert this block back into the bins: Size check not required here,
   since medium blocks that are in use are not allowed to be
   shrunk smaller than MinimumMediumBlockSize}
  mov rcx, rsi
  mov rdx, rbx
  {Insert into bin}
  call InsertMediumBlockIntoBin
  {All OK}
  xor eax, eax
  {Unlock medium blocks}
  mov MediumBlocksLocked, al
  jmp @Done
@NextBlockIsFree:
  {Get the next block address in rax}
  lea rax, [rsi + rbx]
  {Increase the size of this block}
  and rcx, DropMediumAndLargeFlagsMask
  add rbx, rcx
  {Was the block binned?}
  cmp rcx, MinimumMediumBlockSize
  jb @NextBlockChecked
  mov rcx, rax
  call RemoveMediumFreeBlock
  jmp @NextBlockChecked
@PreviousBlockIsFree:
  {Get the size of the free block just before this one}
  mov rcx, [rsi - 2 * BlockHeaderSize]
  {Include the previous block}
  sub rsi, rcx
  {Set the new block size}
  add rbx, rcx
  {Remove the previous block from the linked list}
  cmp ecx, MinimumMediumBlockSize
  jb @PreviousBlockChecked
  mov rcx, rsi
  call RemoveMediumFreeBlock
  jmp @PreviousBlockChecked
@EntireMediumPoolFree:
  {Should we make this the new sequential feed medium block pool? If the
   current sequential feed pool is not entirely free, we make this the new
   sequential feed pool.}
  lea r8, MediumSequentialFeedBytesLeft
  cmp dword ptr [r8], MediumBlockPoolSize - MediumBlockPoolHeaderSize //workaround for QC99023
  jne @MakeEmptyMediumPoolSequentialFeed
  {Point esi to the medium block pool header}
  sub rsi, MediumBlockPoolHeaderSize
  {Remove this medium block pool from the linked list}
  mov rax, TMediumBlockPoolHeader[rsi].PreviousMediumBlockPoolHeader
  mov rdx, TMediumBlockPoolHeader[rsi].NextMediumBlockPoolHeader
  mov TMediumBlockPoolHeader[rax].NextMediumBlockPoolHeader, rdx
  mov TMediumBlockPoolHeader[rdx].PreviousMediumBlockPoolHeader, rax
  {Unlock medium blocks}
  xor eax, eax
  mov MediumBlocksLocked, al
{$ifdef ClearMediumBlockPoolsBeforeReturningToOS}
  mov rcx, rsi
  mov edx, MediumBlockPoolSize
  xor r8, r8
  call System.@FillChar
{$endif}
  {Free the medium block pool}
  mov rcx, rsi
  xor edx, edx
  mov r8d, MEM_RELEASE
  call VirtualFree
  {VirtualFree returns >0 if all is ok}
  cmp eax, 1
  {Return 0 on all ok}
  sbb eax, eax
  jmp @Done
@MakeEmptyMediumPoolSequentialFeed:
  {Get a pointer to the end-marker block}
  lea rbx, [rsi + MediumBlockPoolSize - MediumBlockPoolHeaderSize]
  {Bin the current sequential feed pool}
  call BinMediumSequentialFeedRemainder
  {Set this medium pool up as the new sequential feed pool:
   Store the sequential feed pool trailer}
  mov qword ptr [rbx - BlockHeaderSize], IsMediumBlockFlag
  {Store the number of bytes available in the sequential feed chunk}
  lea rax, MediumSequentialFeedBytesLeft
  mov dword ptr [rax], MediumBlockPoolSize - MediumBlockPoolHeaderSize //QC99023 workaround
  {Set the last sequentially fed block}
  mov LastSequentiallyFedMediumBlock, rbx
  {Success}
  xor eax, eax
  {Unlock medium blocks}
  mov MediumBlocksLocked, al
  jmp @Done
@NotASmallOrMediumBlock:
  {Attempt to free an already free block?}
  mov eax, -1
  {Is it in fact a large block?}
  test dl, IsFreeBlockFlag + IsMediumBlockFlag
  jnz @Done
  call FreeLargeBlock
@Done:
end;
{$endif}
{$endif}

{$ifndef FullDebugMode}
{Replacement for SysReallocMem}
function FastReallocMem(APointer: Pointer; ANewSize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
{$ifndef ASMVersion}
var
  LBlockHeader, LNextBlockSizeAndFlags, LNewAllocSize, LBlockFlags,
    LOldAvailableSize, LNextBlockSize, LNewAvailableSize, LMinimumUpsize,
    LSecondSplitSize, LNewBlockSize: NativeUInt;
  LPSmallBlockType: PSmallBlockType;
  LPNextBlock, LPNextBlockHeader: Pointer;

  {Upsizes a large block in-place. The following variables are assumed correct:
    LBlockFlags, LOldAvailableSize, LPNextBlock, LNextBlockSizeAndFlags,
    LNextBlockSize, LNewAvailableSize. Medium blocks must be locked on entry if
    required.}
  procedure MediumBlockInPlaceUpsize;
  begin
    {Remove the next block}
    if LNextBlockSizeAndFlags >= MinimumMediumBlockSize then
      RemoveMediumFreeBlock(LPNextBlock);
    {Add 25% for medium block in-place upsizes}
    LMinimumUpsize := LOldAvailableSize + (LOldAvailableSize shr 2);
    if NativeUInt(ANewSize) < LMinimumUpsize then
      LNewAllocSize := LMinimumUpsize
    else
      LNewAllocSize := NativeUInt(ANewSize);
    {Round up to the nearest block size granularity}
    LNewBlockSize := ((LNewAllocSize + (BlockHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset))
      and -MediumBlockGranularity) + MediumBlockSizeOffset;
    {Calculate the size of the second split}
    LSecondSplitSize := LNewAvailableSize + BlockHeaderSize - LNewBlockSize;
    {Does it fit?}
    if NativeInt(LSecondSplitSize) <= 0 then
    begin
      {The block size is the full available size plus header}
      LNewBlockSize := LNewAvailableSize + BlockHeaderSize;
      {Grab the whole block: Mark it as used in the block following it}
      LPNextBlockHeader := Pointer(PByte(APointer) + LNewAvailableSize);
      PNativeUInt(LPNextBlockHeader)^ :=
        PNativeUInt(LPNextBlockHeader)^ and (not PreviousMediumBlockIsFreeFlag);
    end
    else
    begin
      {Split the block in two}
      LPNextBlock := PMediumFreeBlock(PByte(APointer) + LNewBlockSize);
      {Set the size of the second split}
      PNativeUInt(PByte(LPNextBlock) - BlockHeaderSize)^ := LSecondSplitSize or (IsMediumBlockFlag or IsFreeBlockFlag);
      {Store the size of the second split before the header of the next block}
      PNativeUInt(PByte(LPNextBlock) + LSecondSplitSize - 2 * BlockHeaderSize)^ := LSecondSplitSize;
      {Put the remainder in a bin if it is big enough}
      if LSecondSplitSize >= MinimumMediumBlockSize then
        InsertMediumBlockIntoBin(LPNextBlock, LSecondSplitSize);
    end;
    {Set the size and flags for this block}
    PNativeUInt(PByte(APointer) - BlockHeaderSize)^ := LNewBlockSize or LBlockFlags;
  end;

  {In-place downsize of a medium block. On entry Size must be less than half of
   LOldAvailableSize.}
  procedure MediumBlockInPlaceDownsize;
  begin
    {Round up to the next medium block size}
    LNewBlockSize := ((ANewSize + (BlockHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset))
      and -MediumBlockGranularity) + MediumBlockSizeOffset;
    {Get the size of the second split}
    LSecondSplitSize := (LOldAvailableSize + BlockHeaderSize) - LNewBlockSize;
    {Lock the medium blocks}
    LockMediumBlocks;
    {Set the new size}
    PNativeUInt(PByte(APointer) - BlockHeaderSize)^ :=
      (PNativeUInt(PByte(APointer) - BlockHeaderSize)^ and ExtractMediumAndLargeFlagsMask)
      or LNewBlockSize;
    {Is the next block in use?}
    LPNextBlock := PNativeUInt(PByte(APointer) + LOldAvailableSize + BlockHeaderSize);
    LNextBlockSizeAndFlags := PNativeUInt(PByte(LPNextBlock) - BlockHeaderSize)^;
    if LNextBlockSizeAndFlags and IsFreeBlockFlag = 0 then
    begin
      {The next block is in use: flag its previous block as free}
      PNativeUInt(PByte(LPNextBlock) - BlockHeaderSize)^ :=
        LNextBlockSizeAndFlags or PreviousMediumBlockIsFreeFlag;
    end
    else
    begin
      {The next block is free: combine it}
      LNextBlockSizeAndFlags := LNextBlockSizeAndFlags and DropMediumAndLargeFlagsMask;
      Inc(LSecondSplitSize, LNextBlockSizeAndFlags);
      if LNextBlockSizeAndFlags >= MinimumMediumBlockSize then
        RemoveMediumFreeBlock(LPNextBlock);
    end;
    {Set the split}
    LPNextBlock := PNativeUInt(PByte(APointer) + LNewBlockSize);
    {Store the free part's header}
    PNativeUInt(PByte(LPNextBlock) - BlockHeaderSize)^ := LSecondSplitSize or (IsMediumBlockFlag or IsFreeBlockFlag);
    {Store the trailing size field}
    PNativeUInt(PByte(LPNextBlock) + LSecondSplitSize - 2 * BlockHeaderSize)^ := LSecondSplitSize;
    {Bin this free block}
    if LSecondSplitSize >= MinimumMediumBlockSize then
      InsertMediumBlockIntoBin(LPNextBlock, LSecondSplitSize);
    {Unlock the medium blocks}
    MediumBlocksLocked := False;
  end;

begin
  {Get the block header: Is it actually a small block?}
  LBlockHeader := PNativeUInt(PByte(APointer) - BlockHeaderSize)^;
  {Is it a small block that is in use?}
  if LBlockHeader and (IsFreeBlockFlag or IsMediumBlockFlag or IsLargeBlockFlag) = 0 then
  begin
    {-----------------------------------Small block-------------------------------------}
    {The block header is a pointer to the block pool: Get the block type}
    LPSmallBlockType := PSmallBlockPoolHeader(LBlockHeader).BlockType;
    {Get the available size inside blocks of this type.}
    LOldAvailableSize := LPSmallBlockType.BlockSize - BlockHeaderSize;
    {Is it an upsize or a downsize?}
    if LOldAvailableSize >= NativeUInt(ANewSize) then
    begin
      {It's a downsize. Do we need to allocate a smaller block? Only if the new
       block size is less than a quarter of the available size less
       SmallBlockDownsizeCheckAdder bytes}
      if (NativeUInt(ANewSize) * 4 + SmallBlockDownsizeCheckAdder) >= LOldAvailableSize then
      begin
        {In-place downsize - return the pointer}
        Result := APointer;
        Exit;
      end
      else
      begin
        {Allocate a smaller block}
        Result := FastGetMem(ANewSize);
        {Allocated OK?}
        if Result <> nil then
        begin
          {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
  {$ifdef Align16Bytes}
          MoveX16LP(APointer^, Result^, ANewSize);
  {$else}
          MoveX8LP(APointer^, Result^, ANewSize);
  {$endif}
{$else}
          System.Move(APointer^, Result^, ANewSize);
{$endif}
          {Free the old pointer}
          FastFreeMem(APointer);
        end;
      end;
    end
    else
    begin
      {This pointer is being reallocated to a larger block and therefore it is
       logical to assume that it may be enlarged again. Since reallocations are
       expensive, there is a minimum upsize percentage to avoid unnecessary
       future move operations.}
      {Must grow with at least 100% + x bytes}
      LNewAllocSize := LOldAvailableSize * 2 + SmallBlockUpsizeAdder;
      {Still not large enough?}
      if LNewAllocSize < NativeUInt(ANewSize) then
        LNewAllocSize := NativeUInt(ANewSize);
      {Allocate the new block}
      Result := FastGetMem(LNewAllocSize);
      {Allocated OK?}
      if Result <> nil then
      begin
        {Do we need to store the requested size? Only large blocks store the
         requested size.}
        if LNewAllocSize > (MaximumMediumBlockSize - BlockHeaderSize) then
          PLargeBlockHeader(PByte(Result) - LargeBlockHeaderSize).UserAllocatedSize := ANewSize;
        {Move the data across}
{$ifdef UseCustomFixedSizeMoveRoutines}
        LPSmallBlockType.UpsizeMoveProcedure(APointer^, Result^, LOldAvailableSize);
{$else}
        System.Move(APointer^, Result^, LOldAvailableSize);
{$endif}
        {Free the old pointer}
        FastFreeMem(APointer);
      end;
    end;
  end
  else
  begin
    {Is this a medium block or a large block?}
    if LBlockHeader and (IsFreeBlockFlag or IsLargeBlockFlag) = 0 then
    begin
      {-------------------------------Medium block--------------------------------------}
      {What is the available size in the block being reallocated?}
      LOldAvailableSize := (LBlockHeader and DropMediumAndLargeFlagsMask);
      {Get a pointer to the next block}
      LPNextBlock := PNativeUInt(PByte(APointer) + LOldAvailableSize);
      {Subtract the block header size from the old available size}
      Dec(LOldAvailableSize, BlockHeaderSize);
      {Is it an upsize or a downsize?}
      if NativeUInt(ANewSize) > LOldAvailableSize then
      begin
        {Can we do an in-place upsize?}
        LNextBlockSizeAndFlags := PNativeUInt(PByte(LPNextBlock) - BlockHeaderSize)^;
        {Is the next block free?}
        if LNextBlockSizeAndFlags and IsFreeBlockFlag <> 0 then
        begin
          LNextBlockSize := LNextBlockSizeAndFlags and DropMediumAndLargeFlagsMask;
          {The available size including the next block}
          LNewAvailableSize := LOldAvailableSize + LNextBlockSize;
          {Can the block fit?}
          if NativeUInt(ANewSize) <= LNewAvailableSize then
          begin
            {The next block is free and there is enough space to grow this
             block in place.}
{$ifndef AssumeMultiThreaded}
            if IsMultiThread then
            begin
{$endif}
              {Multi-threaded application - lock medium blocks and re-read the
               information on the blocks.}
              LockMediumBlocks;
              {Re-read the info for this block}
              LBlockFlags := PNativeUInt(PByte(APointer) - BlockHeaderSize)^ and ExtractMediumAndLargeFlagsMask;
              {Re-read the info for the next block}
              LNextBlockSizeAndFlags := PNativeUInt(PByte(LPNextBlock) - BlockHeaderSize)^;
              {Recalculate the next block size}
              LNextBlockSize := LNextBlockSizeAndFlags and DropMediumAndLargeFlagsMask;
              {The available size including the next block}
              LNewAvailableSize := LOldAvailableSize + LNextBlockSize;
              {Is the next block still free and the size still sufficient?}
              if (LNextBlockSizeAndFlags and IsFreeBlockFlag <> 0)
                and (NativeUInt(ANewSize) <= LNewAvailableSize) then
              begin
                {Upsize the block in-place}
                MediumBlockInPlaceUpsize;
                {Unlock the medium blocks}
                MediumBlocksLocked := False;
                {Return the result}
                Result := APointer;
                {Done}
                Exit;
              end;
              {Couldn't use the block: Unlock the medium blocks}
              MediumBlocksLocked := False;
{$ifndef AssumeMultiThreaded}
            end
            else
            begin
              {Extract the block flags}
              LBlockFlags := ExtractMediumAndLargeFlagsMask and LBlockHeader;
              {Upsize the block in-place}
              MediumBlockInPlaceUpsize;
              {Return the result}
              Result := APointer;
              {Done}
              Exit;
            end;
{$endif}
          end;
        end;
        {Couldn't upsize in place. Grab a new block and move the data across:
         If we have to reallocate and move medium blocks, we grow by at
         least 25%}
        LMinimumUpsize := LOldAvailableSize + (LOldAvailableSize shr 2);
        if NativeUInt(ANewSize) < LMinimumUpsize then
          LNewAllocSize := LMinimumUpsize
        else
          LNewAllocSize := NativeUInt(ANewSize);
        {Allocate the new block}
        Result := FastGetMem(LNewAllocSize);
        if Result <> nil then
        begin
          {If it's a large block - store the actual user requested size}
          if LNewAllocSize > (MaximumMediumBlockSize - BlockHeaderSize) then
            PLargeBlockHeader(PByte(Result) - LargeBlockHeaderSize).UserAllocatedSize := ANewSize;
          {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
          MoveX16LP(APointer^, Result^, LOldAvailableSize);
{$else}
          System.Move(APointer^, Result^, LOldAvailableSize);
{$endif}
          {Free the old block}
          FastFreeMem(APointer);
        end;
      end
      else
      begin
        {Must be less than half the current size or we don't bother resizing.}
        if NativeUInt(ANewSize * 2) >= LOldAvailableSize then
        begin
          Result := APointer;
        end
        else
        begin
          {In-place downsize? Balance the cost of moving the data vs. the cost
           of fragmenting the memory pool. Medium blocks in use may never be
           smaller than MinimumMediumBlockSize.}
          if NativeUInt(ANewSize) >= (MinimumMediumBlockSize - BlockHeaderSize) then
          begin
            MediumBlockInPlaceDownsize;
            Result := APointer;
          end
          else
          begin
            {The requested size is less than the minimum medium block size. If
             the requested size is less than the threshold value (currently a
             quarter of the minimum medium block size), move the data to a small
             block, otherwise shrink the medium block to the minimum allowable
             medium block size.}
            if NativeUInt(ANewSize) >= MediumInPlaceDownsizeLimit then
            begin
              {The request is for a size smaller than the minimum medium block
               size, but not small enough to justify moving data: Reduce the
               block size to the minimum medium block size}
              ANewSize := MinimumMediumBlockSize - BlockHeaderSize;
              {Is it already at the minimum medium block size?}
              if LOldAvailableSize > NativeUInt(ANewSize) then
                MediumBlockInPlaceDownsize;
              Result := APointer;
            end
            else
            begin
              {Allocate the new block}
              Result := FastGetMem(ANewSize);
              if Result <> nil then
              begin
                {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
  {$ifdef Align16Bytes}
                MoveX16LP(APointer^, Result^, ANewSize);
  {$else}
                MoveX8LP(APointer^, Result^, ANewSize);
  {$endif}
{$else}
                System.Move(APointer^, Result^, ANewSize);
{$endif}
                {Free the old block}
                FastFreeMem(APointer);
              end;
            end;
          end;
        end;
      end;
    end
    else
    begin
      {Is this a valid large block?}
      if LBlockHeader and (IsFreeBlockFlag or IsMediumBlockFlag) = 0 then
      begin
        {-----------------------Large block------------------------------}
        Result := ReallocateLargeBlock(APointer, ANewSize);
      end
      else
      begin
        {-----------------------Invalid block------------------------------}
        {Bad pointer: probably an attempt to reallocate a free memory block.}
        Result := nil;
      end;
    end;
  end;
end;
{$else}
{$ifdef 32Bit}
asm
  {On entry: eax = APointer; edx = ANewSize}
  {Get the block header: Is it actually a small block?}
  mov ecx, [eax - 4]
  {Is it a small block?}
  test cl, IsFreeBlockFlag + IsMediumBlockFlag + IsLargeBlockFlag
  {Save ebx}
  push ebx
  {Save esi}
  push esi
  {Save the original pointer in esi}
  mov esi, eax
  {Is it a small block?}
  jnz @NotASmallBlock
  {-----------------------------------Small block-------------------------------------}
  {Get the block type in ebx}
  mov ebx, TSmallBlockPoolHeader[ecx].BlockType
  {Get the available size inside blocks of this type.}
  movzx ecx, TSmallBlockType[ebx].BlockSize
  sub ecx, 4
  {Is it an upsize or a downsize?}
  cmp ecx, edx
  jb @SmallUpsize
  {It's a downsize. Do we need to allocate a smaller block? Only if the new
   size is less than a quarter of the available size less
   SmallBlockDownsizeCheckAdder bytes}
  lea ebx, [edx * 4 + SmallBlockDownsizeCheckAdder]
  cmp ebx, ecx
  jb @NotSmallInPlaceDownsize
  {In-place downsize - return the original pointer}
  pop esi
  pop ebx
  ret
  {Align branch target}
  nop
@NotSmallInPlaceDownsize:
  {Save the requested size}
  mov ebx, edx
  {Allocate a smaller block}
  mov eax, edx
  call FastGetMem
  {Allocated OK?}
  test eax, eax
  jz @SmallDownsizeDone
  {Move data across: count in ecx}
  mov ecx, ebx
  {Destination in edx}
  mov edx, eax
  {Save the result in ebx}
  mov ebx, eax
  {Original pointer in eax}
  mov eax, esi
  {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
  {$ifdef Align16Bytes}
  call MoveX16LP
  {$else}
  call MoveX8LP
  {$endif}
{$else}
  call System.Move
{$endif}
  {Free the original pointer}
  mov eax, esi
  call FastFreeMem
  {Return the pointer}
  mov eax, ebx
@SmallDownsizeDone:
  pop esi
  pop ebx
  ret
  {Align branch target}
  nop
  nop
@SmallUpsize:
  {State: esi = APointer, edx = ANewSize, ecx = Current Block Size, ebx = Current Block Type}
  {This pointer is being reallocated to a larger block and therefore it is
   logical to assume that it may be enlarged again. Since reallocations are
   expensive, there is a minimum upsize percentage to avoid unnecessary
   future move operations.}
  {Small blocks always grow with at least 100% + SmallBlockUpsizeAdder bytes}
  lea ecx, [ecx + ecx + SmallBlockUpsizeAdder]
  {save edi}
  push edi
  {Save the requested size in edi}
  mov edi, edx
  {New allocated size is the maximum of the requested size and the minimum
   upsize}
  xor eax, eax
  sub ecx, edx
  adc eax, -1
  and eax, ecx
  add eax, edx
  {Allocate the new block}
  call FastGetMem
  {Allocated OK?}
  test eax, eax
  jz @SmallUpsizeDone
  {Do we need to store the requested size? Only large blocks store the
   requested size.}
  cmp edi, MaximumMediumBlockSize - BlockHeaderSize
  jbe @NotSmallUpsizeToLargeBlock
  {Store the user requested size}
  mov [eax - 8], edi
@NotSmallUpsizeToLargeBlock:
  {Get the size to move across}
  movzx ecx, TSmallBlockType[ebx].BlockSize
  sub ecx, BlockHeaderSize
  {Move to the new block}
  mov edx, eax
  {Save the result in edi}
  mov edi, eax
  {Move from the old block}
  mov eax, esi
  {Move the data across}
{$ifdef UseCustomFixedSizeMoveRoutines}
  call TSmallBlockType[ebx].UpsizeMoveProcedure
{$else}
  call System.Move
{$endif}
  {Free the old pointer}
  mov eax, esi
  call FastFreeMem
  {Done}
  mov eax, edi
@SmallUpsizeDone:
  pop edi
  pop esi
  pop ebx
  ret
  {Align branch target}
  nop
@NotASmallBlock:
  {Is this a medium block or a large block?}
  test cl, IsFreeBlockFlag + IsLargeBlockFlag
  jnz @PossibleLargeBlock
  {-------------------------------Medium block--------------------------------------}
  {Status: ecx = Current Block Size + Flags, eax/esi = APointer,
   edx = Requested Size}
  mov ebx, ecx
  {Drop the flags from the header}
  and ecx, DropMediumAndLargeFlagsMask
  {Save edi}
  push edi
  {Get a pointer to the next block in edi}
  lea edi, [eax + ecx]
  {Subtract the block header size from the old available size}
  sub ecx, BlockHeaderSize
  {Get the complete flags in ebx}
  and ebx, ExtractMediumAndLargeFlagsMask
  {Is it an upsize or a downsize?}
  cmp edx, ecx
  {Save ebp}
  push ebp
  {Is it an upsize or a downsize?}
  ja @MediumBlockUpsize
  {Status: ecx = Current Block Size - 4, bl = Current Block Flags,
   edi = @Next Block, eax/esi = APointer, edx = Requested Size}
  {Must be less than half the current size or we don't bother resizing.}
  lea ebp, [edx + edx]
  cmp ebp, ecx
  jb @MediumMustDownsize
@MediumNoResize:
  {Restore registers}
  pop ebp
  pop edi
  pop esi
  pop ebx
  {Return}
  ret
  {Align branch target}
  nop
  nop
  nop
@MediumMustDownsize:
  {In-place downsize? Balance the cost of moving the data vs. the cost of
   fragmenting the memory pool. Medium blocks in use may never be smaller
   than MinimumMediumBlockSize.}
  cmp edx, MinimumMediumBlockSize - BlockHeaderSize
  jae @MediumBlockInPlaceDownsize
  {The requested size is less than the minimum medium block size. If the
  requested size is less than the threshold value (currently a quarter of the
  minimum medium block size), move the data to a small block, otherwise shrink
  the medium block to the minimum allowable medium block size.}
  cmp edx, MediumInPlaceDownsizeLimit
  jb @MediumDownsizeRealloc
  {The request is for a size smaller than the minimum medium block size, but
   not small enough to justify moving data: Reduce the block size to the
   minimum medium block size}
  mov edx, MinimumMediumBlockSize - BlockHeaderSize
  {Is it already at the minimum medium block size?}
  cmp ecx, edx
  jna @MediumNoResize
@MediumBlockInPlaceDownsize:
  {Round up to the next medium block size}
  lea ebp, [edx + BlockHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset]
  and ebp, -MediumBlockGranularity;
  add ebp, MediumBlockSizeOffset
  {Get the size of the second split}
  add ecx, BlockHeaderSize
  sub ecx, ebp
  {Lock the medium blocks}
{$ifndef AssumeMultiThreaded}
  cmp IsMultiThread, False
  je @DoMediumInPlaceDownsize
{$endif}
@DoMediumLockForDownsize:
  {Lock the medium blocks (ecx *must* be preserved)}
  call LockMediumBlocks
  {Reread the flags - they may have changed before medium blocks could be
   locked.}
  mov ebx, ExtractMediumAndLargeFlagsMask
  and ebx, [esi - 4]
@DoMediumInPlaceDownsize:
  {Set the new size}
  or ebx, ebp
  mov [esi - 4], ebx
  {Get the second split size in ebx}
  mov ebx, ecx
  {Is the next block in use?}
  mov edx, [edi - 4]
  test dl, IsFreeBlockFlag
  jnz @MediumDownsizeNextBlockFree
  {The next block is in use: flag its previous block as free}
  or edx, PreviousMediumBlockIsFreeFlag
  mov [edi - 4], edx
  jmp @MediumDownsizeDoSplit
  {Align branch target}
  nop
  nop
{$ifdef AssumeMultiThreaded}
  nop
{$endif}
@MediumDownsizeNextBlockFree:
  {The next block is free: combine it}
  mov eax, edi
  and edx, DropMediumAndLargeFlagsMask
  add ebx, edx
  add edi, edx
  cmp edx, MinimumMediumBlockSize
  jb @MediumDownsizeDoSplit
  call RemoveMediumFreeBlock
@MediumDownsizeDoSplit:
  {Store the trailing size field}
  mov [edi - 8], ebx
  {Store the free part's header}
  lea eax, [ebx + IsMediumBlockFlag + IsFreeBlockFlag];
  mov [esi + ebp - 4], eax
  {Bin this free block}
  cmp ebx, MinimumMediumBlockSize
  jb @MediumBlockDownsizeDone
  lea eax, [esi + ebp]
  mov edx, ebx
  call InsertMediumBlockIntoBin
@MediumBlockDownsizeDone:
  {Unlock the medium blocks}
  mov MediumBlocksLocked, False
  {Result = old pointer}
  mov eax, esi
  {Restore registers}
  pop ebp
  pop edi
  pop esi
  pop ebx
  {Return}
  ret
  {Align branch target}
@MediumDownsizeRealloc:
  {Save the requested size}
  mov edi, edx
  mov eax, edx
  {Allocate the new block}
  call FastGetMem
  test eax, eax
  jz @MediumBlockDownsizeExit
  {Save the result}
  mov ebp, eax
  mov edx, eax
  mov eax, esi
  mov ecx, edi
  {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
  {$ifdef Align16Bytes}
  call MoveX16LP
  {$else}
  call MoveX8LP
  {$endif}
{$else}
  call System.Move
{$endif}
  mov eax, esi
  call FastFreeMem
  {Return the result}
  mov eax, ebp
@MediumBlockDownsizeExit:
  pop ebp
  pop edi
  pop esi
  pop ebx
  ret
  {Align branch target}
@MediumBlockUpsize:
  {Status: ecx = Current Block Size - 4, bl = Current Block Flags,
   edi = @Next Block, eax/esi = APointer, edx = Requested Size}
  {Can we do an in-place upsize?}
  mov eax, [edi - 4]
  test al, IsFreeBlockFlag
  jz @CannotUpsizeMediumBlockInPlace
  {Get the total available size including the next block}
  and eax, DropMediumAndLargeFlagsMask
  {ebp = total available size including the next block (excluding the header)}
  lea ebp, [eax + ecx]
  {Can the block fit?}
  cmp edx, ebp
  ja @CannotUpsizeMediumBlockInPlace
  {The next block is free and there is enough space to grow this
   block in place.}
{$ifndef AssumeMultiThreaded}
  cmp IsMultiThread, False
  je @DoMediumInPlaceUpsize
{$endif}
@DoMediumLockForUpsize:
  {Lock the medium blocks (ecx and edx *must* be preserved}
  call LockMediumBlocks
  {Re-read the info for this block (since it may have changed before the medium
   blocks could be locked)}
  mov ebx, ExtractMediumAndLargeFlagsMask
  and ebx, [esi - 4]
  {Re-read the info for the next block}
  mov eax, [edi - 4]
  {Next block still free?}
  test al, IsFreeBlockFlag
  jz @NextMediumBlockChanged
  {Recalculate the next block size}
  and eax, DropMediumAndLargeFlagsMask
  {The available size including the next block}
  lea ebp, [eax + ecx]
  {Can the block still fit?}
  cmp edx, ebp
  ja @NextMediumBlockChanged
@DoMediumInPlaceUpsize:
  {Is the next block binnable?}
  cmp eax, MinimumMediumBlockSize
  {Remove the next block}
  jb @MediumInPlaceNoNextRemove
  mov eax, edi
  push ecx
  push edx
  call RemoveMediumFreeBlock
  pop edx
  pop ecx
@MediumInPlaceNoNextRemove:
  {Medium blocks grow a minimum of 25% in in-place upsizes}
  mov eax, ecx
  shr eax, 2
  add eax, ecx
  {Get the maximum of the requested size and the minimum growth size}
  xor edi, edi
  sub eax, edx
  adc edi, -1
  and eax, edi
  {Round up to the nearest block size granularity}
  lea eax, [eax + edx + BlockHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset]
  and eax, -MediumBlockGranularity
  add eax, MediumBlockSizeOffset
  {Calculate the size of the second split}
  lea edx, [ebp + BlockHeaderSize]
  sub edx, eax
  {Does it fit?}
  ja @MediumInPlaceUpsizeSplit
  {Grab the whole block: Mark it as used in the block following it}
  and dword ptr [esi + ebp], not PreviousMediumBlockIsFreeFlag
  {The block size is the full available size plus header}
  add ebp, 4
  {Upsize done}
  jmp @MediumUpsizeInPlaceDone
  {Align branch target}
{$ifndef AssumeMultiThreaded}
  nop
  nop
  nop
{$endif}
@MediumInPlaceUpsizeSplit:
  {Store the size of the second split as the second last dword}
  mov [esi + ebp - 4], edx
  {Set the second split header}
  lea edi, [edx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [esi + eax - 4], edi
  mov ebp, eax
  cmp edx, MinimumMediumBlockSize
  jb @MediumUpsizeInPlaceDone
  add eax, esi
  call InsertMediumBlockIntoBin
@MediumUpsizeInPlaceDone:
  {Set the size and flags for this block}
  or ebp, ebx
  mov [esi - 4], ebp
  {Unlock the medium blocks}
  mov MediumBlocksLocked, False
  {Result = old pointer}
  mov eax, esi
@MediumBlockResizeDone2:
  {Restore registers}
  pop ebp
  pop edi
  pop esi
  pop ebx
  {Return}
  ret
  {Align branch target for "@CannotUpsizeMediumBlockInPlace"}
  nop
  nop
@NextMediumBlockChanged:
  {The next medium block changed while the medium blocks were being locked}
  mov MediumBlocksLocked, False
@CannotUpsizeMediumBlockInPlace:
  {Couldn't upsize in place. Grab a new block and move the data across:
   If we have to reallocate and move medium blocks, we grow by at
   least 25%}
  mov eax, ecx
  shr eax, 2
  add eax, ecx
  {Get the maximum of the requested size and the minimum growth size}
  xor edi, edi
  sub eax, edx
  adc edi, -1
  and eax, edi
  add eax, edx
  {Save the size to allocate}
  mov ebp, eax
  {Save the size to move across}
  mov edi, ecx
  {Get the block}
  push edx
  call FastGetMem
  pop edx
  {Success?}
  test eax, eax
  jz @MediumBlockResizeDone2
  {If it's a Large block - store the actual user requested size}
  cmp ebp, MaximumMediumBlockSize - BlockHeaderSize
  jbe @MediumUpsizeNotLarge
  mov [eax - 8], edx
@MediumUpsizeNotLarge:
  {Save the result}
  mov ebp, eax
  {Move the data across}
  mov edx, eax
  mov eax, esi
  mov ecx, edi
{$ifdef UseCustomVariableSizeMoveRoutines}
  call MoveX16LP
{$else}
  call System.Move
{$endif}
  {Free the old block}
  mov eax, esi
  call FastFreeMem
  {Restore the result}
  mov eax, ebp
  {Restore registers}
  pop ebp
  pop edi
  pop esi
  pop ebx
  {Return}
  ret
  {Align branch target}
  nop
@PossibleLargeBlock:
  {-----------------------Large block------------------------------}
  {Restore registers}
  pop esi
  pop ebx
  {Is this a valid large block?}
  test cl, IsFreeBlockFlag + IsMediumBlockFlag
  jz ReallocateLargeBlock
  {-----------------------Invalid block------------------------------}
  xor eax, eax
end;

{$else}

{-----------------64-bit BASM FastReallocMem-----------------}
asm
  .params 3
  .pushnv rbx
  .pushnv rsi
  .pushnv rdi
  .pushnv r14
  .pushnv r15
  {On entry: rcx = APointer; rdx = ANewSize}
  {Save the original pointer in rsi}
  mov rsi, rcx
  {Get the block header}
  mov rcx, [rcx - BlockHeaderSize]
  {Is it a small block?}
  test cl, IsFreeBlockFlag + IsMediumBlockFlag + IsLargeBlockFlag
  jnz @NotASmallBlock
  {-----------------------------------Small block-------------------------------------}
  {Get the block type in rbx}
  mov rbx, TSmallBlockPoolHeader[rcx].BlockType
  {Get the available size inside blocks of this type.}
  movzx ecx, TSmallBlockType[rbx].BlockSize
  sub ecx, BlockHeaderSize
  {Is it an upsize or a downsize?}
  cmp rcx, rdx
  jb @SmallUpsize
  {It's a downsize. Do we need to allocate a smaller block? Only if the new
   size is less than a quarter of the available size less
   SmallBlockDownsizeCheckAdder bytes}
  lea ebx, [edx * 4 + SmallBlockDownsizeCheckAdder]
  cmp ebx, ecx
  jb @NotSmallInPlaceDownsize
  {In-place downsize - return the original pointer}
  mov rax, rsi
  jmp @Done
@NotSmallInPlaceDownsize:
  {Save the requested size}
  mov rbx, rdx
  {Allocate a smaller block}
  mov rcx, rdx
  call FastGetMem
  {Allocated OK?}
  test rax, rax
  jz @Done
  {Move data across: count in r8}
  mov r8, rbx
  {Destination in edx}
  mov rdx, rax
  {Save the result in ebx}
  mov rbx, rax
  {Original pointer in ecx}
  mov rcx, rsi
  {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
  {$ifdef Align16Bytes}
  call MoveX16LP
  {$else}
  call MoveX8LP
  {$endif}
{$else}
  call System.Move
{$endif}
  {Free the original pointer}
  mov rcx, rsi
  call FastFreeMem
  {Return the pointer}
  mov rax, rbx
  jmp @Done
@SmallUpsize:
  {State: rsi = APointer, rdx = ANewSize, rcx = Current Block Size, rbx = Current Block Type}
  {This pointer is being reallocated to a larger block and therefore it is
   logical to assume that it may be enlarged again. Since reallocations are
   expensive, there is a minimum upsize percentage to avoid unnecessary
   future move operations.}
  {Small blocks always grow with at least 100% + SmallBlockUpsizeAdder bytes}
  lea ecx, [ecx + ecx + SmallBlockUpsizeAdder]
  {Save the requested size in rdi}
  mov rdi, rdx
  {New allocated size is the maximum of the requested size and the minimum
   upsize}
  xor rax, rax
  sub rcx, rdx
  adc rax, -1
  and rcx, rax
  add rcx, rdx
  {Allocate the new block}
  call FastGetMem
  {Allocated OK?}
  test rax, rax
  jz @Done
  {Do we need to store the requested size? Only large blocks store the
   requested size.}
  cmp rdi, MaximumMediumBlockSize - BlockHeaderSize
  jbe @NotSmallUpsizeToLargeBlock
  {Store the user requested size}
  mov [rax - 2 * BlockHeaderSize], rdi
@NotSmallUpsizeToLargeBlock:
  {Get the size to move across}
  movzx r8d, TSmallBlockType[rbx].BlockSize
  sub r8d, BlockHeaderSize
  {Move to the new block}
  mov rdx, rax
  {Save the result in edi}
  mov rdi, rax
  {Move from the old block}
  mov rcx, rsi
  {Move the data across}
{$ifdef UseCustomFixedSizeMoveRoutines}
  call TSmallBlockType[rbx].UpsizeMoveProcedure
{$else}
  call System.Move
{$endif}
  {Free the old pointer}
  mov rcx, rsi
  call FastFreeMem
  {Done}
  mov rax, rdi
  jmp @Done
@NotASmallBlock:
  {Is this a medium block or a large block?}
  test cl, IsFreeBlockFlag + IsLargeBlockFlag
  jnz @PossibleLargeBlock
  {-------------------------------Medium block--------------------------------------}
  {Status: rcx = Current Block Size + Flags, rsi = APointer,
   rdx = Requested Size}
  mov rbx, rcx
  {Drop the flags from the header}
  and ecx, DropMediumAndLargeFlagsMask
  {Get a pointer to the next block in rdi}
  lea rdi, [rsi + rcx]
  {Subtract the block header size from the old available size}
  sub ecx, BlockHeaderSize
  {Get the complete flags in ebx}
  and ebx, ExtractMediumAndLargeFlagsMask
  {Is it an upsize or a downsize?}
  cmp rdx, rcx
  ja @MediumBlockUpsize
  {Status: ecx = Current Block Size - BlockHeaderSize, bl = Current Block Flags,
   rdi = @Next Block, rsi = APointer, rdx = Requested Size}
  {Must be less than half the current size or we don't bother resizing.}
  lea r15, [rdx + rdx]
  cmp r15, rcx
  jb @MediumMustDownsize
@MediumNoResize:
  mov rax, rsi
  jmp @Done
@MediumMustDownsize:
  {In-place downsize? Balance the cost of moving the data vs. the cost of
   fragmenting the memory pool. Medium blocks in use may never be smaller
   than MinimumMediumBlockSize.}
  cmp edx, MinimumMediumBlockSize - BlockHeaderSize
  jae @MediumBlockInPlaceDownsize
  {The requested size is less than the minimum medium block size. If the
  requested size is less than the threshold value (currently a quarter of the
  minimum medium block size), move the data to a small block, otherwise shrink
  the medium block to the minimum allowable medium block size.}
  cmp edx, MediumInPlaceDownsizeLimit
  jb @MediumDownsizeRealloc
  {The request is for a size smaller than the minimum medium block size, but
   not small enough to justify moving data: Reduce the block size to the
   minimum medium block size}
  mov edx, MinimumMediumBlockSize - BlockHeaderSize
  {Is it already at the minimum medium block size?}
  cmp ecx, edx
  jna @MediumNoResize
@MediumBlockInPlaceDownsize:
  {Round up to the next medium block size}
  lea r15, [rdx + BlockHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset]
  and r15, -MediumBlockGranularity
  add r15, MediumBlockSizeOffset
  {Get the size of the second split}
  add ecx, BlockHeaderSize
  sub ecx, r15d
  {Lock the medium blocks}
{$ifndef AssumeMultiThreaded}
  lea r8, IsMultiThread
  cmp byte ptr [r8], False
  je @DoMediumInPlaceDownsize
{$endif}
@DoMediumLockForDownsize:
  {Lock the medium blocks}
  mov ebx, ecx
  call LockMediumBlocks
  mov ecx, ebx
  {Reread the flags - they may have changed before medium blocks could be
   locked.}
  mov rbx, ExtractMediumAndLargeFlagsMask
  and rbx, [rsi - BlockHeaderSize]
@DoMediumInPlaceDownsize:
  {Set the new size}
  or rbx, r15
  mov [rsi - BlockHeaderSize], rbx
  {Get the second split size in ebx}
  mov ebx, ecx
  {Is the next block in use?}
  mov rdx, [rdi - BlockHeaderSize]
  test dl, IsFreeBlockFlag
  jnz @MediumDownsizeNextBlockFree
  {The next block is in use: flag its previous block as free}
  or rdx, PreviousMediumBlockIsFreeFlag
  mov [rdi - BlockHeaderSize], rdx
  jmp @MediumDownsizeDoSplit
@MediumDownsizeNextBlockFree:
  {The next block is free: combine it}
  mov rcx, rdi
  and rdx, DropMediumAndLargeFlagsMask
  add rbx, rdx
  add rdi, rdx
  cmp edx, MinimumMediumBlockSize
  jb @MediumDownsizeDoSplit
  call RemoveMediumFreeBlock
@MediumDownsizeDoSplit:
  {Store the trailing size field}
  mov [rdi - 2 * BlockHeaderSize], rbx
  {Store the free part's header}
  lea rcx, [rbx + IsMediumBlockFlag + IsFreeBlockFlag];
  mov [rsi + r15 - BlockHeaderSize], rcx
  {Bin this free block}
  cmp rbx, MinimumMediumBlockSize
  jb @MediumBlockDownsizeDone
  lea rcx, [rsi + r15]
  mov rdx, rbx
  call InsertMediumBlockIntoBin
@MediumBlockDownsizeDone:
  {Unlock the medium blocks}
  lea rax, MediumBlocksLocked
  mov byte ptr [rax], False
  {Result = old pointer}
  mov rax, rsi
  jmp @Done
@MediumDownsizeRealloc:
  {Save the requested size}
  mov rdi, rdx
  mov rcx, rdx
  {Allocate the new block}
  call FastGetMem
  test rax, rax
  jz @Done
  {Save the result}
  mov r15, rax
  mov rdx, rax
  mov rcx, rsi
  mov r8, rdi
  {Move the data across}
{$ifdef UseCustomVariableSizeMoveRoutines}
  {$ifdef Align16Bytes}
  call MoveX16LP
  {$else}
  call MoveX8LP
  {$endif}
{$else}
  call System.Move
{$endif}
  mov rcx, rsi
  call FastFreeMem
  {Return the result}
  mov rax, r15
  jmp @Done
@MediumBlockUpsize:
  {Status: ecx = Current Block Size - BlockHeaderSize, bl = Current Block Flags,
   rdi = @Next Block, rsi = APointer, rdx = Requested Size}
  {Can we do an in-place upsize?}
  mov rax, [rdi - BlockHeaderSize]
  test al, IsFreeBlockFlag
  jz @CannotUpsizeMediumBlockInPlace
  {Get the total available size including the next block}
  and rax, DropMediumAndLargeFlagsMask
  {r15 = total available size including the next block (excluding the header)}
  lea r15, [rax + rcx]
  {Can the block fit?}
  cmp rdx, r15
  ja @CannotUpsizeMediumBlockInPlace
  {The next block is free and there is enough space to grow this
   block in place.}
{$ifndef AssumeMultiThreaded}
  lea r8, IsMultiThread
  cmp byte ptr [r8], False
  je @DoMediumInPlaceUpsize
{$endif}
@DoMediumLockForUpsize:
  {Lock the medium blocks.}
  mov rbx, rcx
  mov r15, rdx
  call LockMediumBlocks
  mov rcx, rbx
  mov rdx, r15
  {Re-read the info for this block (since it may have changed before the medium
   blocks could be locked)}
  mov rbx, ExtractMediumAndLargeFlagsMask
  and rbx, [rsi - BlockHeaderSize]
  {Re-read the info for the next block}
  mov rax, [rdi - BlockheaderSize]
  {Next block still free?}
  test al, IsFreeBlockFlag
  jz @NextMediumBlockChanged
  {Recalculate the next block size}
  and eax, DropMediumAndLargeFlagsMask
  {The available size including the next block}
  lea r15, [rax + rcx]
  {Can the block still fit?}
  cmp rdx, r15
  ja @NextMediumBlockChanged
@DoMediumInPlaceUpsize:
  {Is the next block binnable?}
  cmp eax, MinimumMediumBlockSize
  {Remove the next block}
  jb @MediumInPlaceNoNextRemove
  mov r14, rcx
  mov rcx, rdi
  mov rdi, rdx
  call RemoveMediumFreeBlock
  mov rcx, r14
  mov rdx, rdi
@MediumInPlaceNoNextRemove:
  {Medium blocks grow a minimum of 25% in in-place upsizes}
  mov eax, ecx
  shr eax, 2
  add eax, ecx
  {Get the maximum of the requested size and the minimum growth size}
  xor edi, edi
  sub eax, edx
  adc edi, -1
  and eax, edi
  {Round up to the nearest block size granularity}
  lea eax, [eax + edx + BlockHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset]
  and eax, -MediumBlockGranularity
  add eax, MediumBlockSizeOffset
  {Calculate the size of the second split}
  lea rdx, [r15 + BlockHeaderSize]
  sub edx, eax
  {Does it fit?}
  ja @MediumInPlaceUpsizeSplit
  {Grab the whole block: Mark it as used in the block following it}
  and qword ptr [rsi + r15], not PreviousMediumBlockIsFreeFlag
  {The block size is the full available size plus header}
  add r15, BlockHeaderSize
  {Upsize done}
  jmp @MediumUpsizeInPlaceDone
@MediumInPlaceUpsizeSplit:
  {Store the size of the second split as the second last dword}
  mov [rsi + r15 - BlockHeaderSize], rdx
  {Set the second split header}
  lea edi, [edx + IsMediumBlockFlag + IsFreeBlockFlag]
  mov [rsi + rax - BlockHeaderSize], rdi
  mov r15, rax
  cmp edx, MinimumMediumBlockSize
  jb @MediumUpsizeInPlaceDone
  lea rcx, [rsi + rax]
  call InsertMediumBlockIntoBin
@MediumUpsizeInPlaceDone:
  {Set the size and flags for this block}
  or r15, rbx
  mov [rsi - BlockHeaderSize], r15
  {Unlock the medium blocks}
  lea rax, MediumBlocksLocked
  mov byte ptr [rax], False
  {Result = old pointer}
  mov rax, rsi
  jmp @Done
@NextMediumBlockChanged:
  {The next medium block changed while the medium blocks were being locked}
  lea rax, MediumBlocksLocked
  mov byte ptr [rax], False
@CannotUpsizeMediumBlockInPlace:
  {Couldn't upsize in place. Grab a new block and move the data across:
   If we have to reallocate and move medium blocks, we grow by at
   least 25%}
  mov eax, ecx
  shr eax, 2
  add eax, ecx
  {Get the maximum of the requested size and the minimum growth size}
  xor rdi, rdi
  sub rax, rdx
  adc rdi, -1
  and rax, rdi
  add rax, rdx
  {Save the size to allocate}
  mov r15, rax
  {Save the size to move across}
  mov edi, ecx
  {Save the requested size}
  mov rbx, rdx
  {Get the block}
  mov rcx, rax
  call FastGetMem
  mov rdx, rbx
  {Success?}
  test eax, eax
  jz @Done
  {If it's a Large block - store the actual user requested size}
  cmp r15, MaximumMediumBlockSize - BlockHeaderSize
  jbe @MediumUpsizeNotLarge
  mov [rax - 2 * BlockHeaderSize], rdx
@MediumUpsizeNotLarge:
  {Save the result}
  mov r15, rax
  {Move the data across}
  mov rdx, rax
  mov rcx, rsi
  mov r8, rdi
{$ifdef UseCustomVariableSizeMoveRoutines}
  call MoveX16LP
{$else}
  call System.Move
{$endif}
  {Free the old block}
  mov rcx, rsi
  call FastFreeMem
  {Restore the result}
  mov rax, r15
  jmp @Done
@PossibleLargeBlock:
  {-----------------------Large block------------------------------}
  {Is this a valid large block?}
  test cl, IsFreeBlockFlag + IsMediumBlockFlag
  jnz @Error
  mov rcx, rsi
  call ReallocateLargeBlock
  jmp @Done
  {-----------------------Invalid block------------------------------}
@Error:
  xor eax, eax
@Done:
end;
{$endif}
{$endif}
{$endif}

{Allocates a block and fills it with zeroes}
function FastAllocMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Cardinal{$endif}): Pointer;
{$ifndef ASMVersion}
begin
  Result := FastGetMem(ASize);
  {Large blocks are already zero filled}
  if (Result <> nil) and (ASize <= (MaximumMediumBlockSize - BlockHeaderSize)) then
    FillChar(Result^, ASize, 0);
end;
{$else}
{$ifdef 32Bit}
asm
  push ebx
  {Get the size rounded down to the previous multiple of 4 into ebx}
  lea ebx, [eax - 1]
  and ebx, -4
  {Get the block}
  call FastGetMem
  {Could a block be allocated? ecx = 0 if yes, $ffffffff if no}
  cmp eax, 1
  sbb ecx, ecx
  {Point edx to the last dword}
  lea edx, [eax + ebx]
  {ebx = $ffffffff if no block could be allocated, otherwise size rounded down
   to previous multiple of 4. If ebx = 0 then the block size is 1..4 bytes and
   the FPU based clearing loop should not be used (since it clears 8 bytes per
   iteration).}
  or ebx, ecx
  jz @ClearLastDWord
  {Large blocks are already zero filled}
  cmp ebx, MaximumMediumBlockSize - BlockHeaderSize
  jae @Done
  {Make the counter negative based}
  neg ebx
  {Load zero into st(0)}
  fldz
  {Clear groups of 8 bytes. Block sizes are always four less than a multiple
   of 8.}
@FillLoop:
  fst qword ptr [edx + ebx]
  add ebx, 8
  js @FillLoop
  {Clear st(0)}
  ffree st(0)
  {Correct the stack top}
  fincstp
  {Clear the last four bytes}
@ClearLastDWord:
  mov [edx], ecx
@Done:
  pop ebx
end;

{$else}

{---------------64-bit BASM FastAllocMem---------------}
asm
  .params 1
  .pushnv rbx
  {Get the size rounded down to the previous multiple of SizeOf(Pointer) into
   ebx}
  lea rbx, [rcx - 1]
  and rbx, -8
  {Get the block}
  call FastGetMem
  {Could a block be allocated? rcx = 0 if yes, -1 if no}
  cmp rax, 1
  sbb rcx, rcx
  {Point rdx to the last dword}
  lea rdx, [rax + rbx]
  {rbx = -1 if no block could be allocated, otherwise size rounded down
   to previous multiple of 8. If rbx = 0 then the block size is 1..8 bytes and
   the SSE2 based clearing loop should not be used (since it clears 16 bytes per
   iteration).}
  or rbx, rcx
  jz @ClearLastQWord
  {Large blocks are already zero filled}
  cmp rbx, MaximumMediumBlockSize - BlockHeaderSize
  jae @Done
  {Make the counter negative based}
  neg rbx
  {Load zero into xmm0}
  pxor xmm0, xmm0
  {Clear groups of 16 bytes. Block sizes are always 8 less than a multiple of
   16.}
@FillLoop:
  movdqa [rdx + rbx], xmm0
  add rbx, 16
  js @FillLoop
  {Clear the last 8 bytes}
@ClearLastQWord:
  xor rcx, rcx
  mov [rdx], rcx
@Done:
end;
{$endif}
{$endif}

{-----------------Post Uninstall GetMem/FreeMem/ReallocMem-------------------}

{$ifdef DetectMMOperationsAfterUninstall}

function InvalidGetMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
{$ifndef NoMessageBoxes}
var
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
begin
{$ifdef UseOutputDebugString}
  OutputDebugStringA(InvalidGetMemMsg);
{$endif}
{$ifndef NoMessageBoxes}
  AppendStringToModuleName(InvalidOperationTitle, LErrorMessageTitle);
  ShowMessageBox(InvalidGetMemMsg, LErrorMessageTitle);
{$endif}
  Result := nil;
end;

function InvalidFreeMem(APointer: Pointer): Integer;
{$ifndef NoMessageBoxes}
var
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
begin
{$ifdef UseOutputDebugString}
  OutputDebugStringA(InvalidFreeMemMsg);
{$endif}
{$ifndef NoMessageBoxes}
  AppendStringToModuleName(InvalidOperationTitle, LErrorMessageTitle);
  ShowMessageBox(InvalidFreeMemMsg, LErrorMessageTitle);
{$endif}
  Result := -1;
end;

function InvalidReallocMem(APointer: Pointer; ANewSize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
{$ifndef NoMessageBoxes}
var
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
begin
{$ifdef UseOutputDebugString}
  OutputDebugStringA(InvalidReallocMemMsg);
{$endif}
{$ifndef NoMessageBoxes}
  AppendStringToModuleName(InvalidOperationTitle, LErrorMessageTitle);
  ShowMessageBox(InvalidReallocMemMsg, LErrorMessageTitle);
{$endif}
  Result := nil;
end;

function InvalidAllocMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Cardinal{$endif}): Pointer;
{$ifndef NoMessageBoxes}
var
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
begin
{$ifdef UseOutputDebugString}
  OutputDebugStringA(InvalidAllocMemMsg);
{$endif}
{$ifndef NoMessageBoxes}
  AppendStringToModuleName(InvalidOperationTitle, LErrorMessageTitle);
  ShowMessageBox(InvalidAllocMemMsg, LErrorMessageTitle);
{$endif}
  Result := nil;
end;

function InvalidRegisterAndUnRegisterMemoryLeak(APointer: Pointer): Boolean;
begin
  Result := False;
end;

{$endif}

{-----------------Full Debug Mode Memory Manager Interface--------------------}

{$ifdef FullDebugMode}

{Compare [AAddress], CompareVal:
 If Equal: [AAddress] := NewVal and result = CompareVal
 If Unequal: Result := [AAddress]}
function LockCmpxchg32(CompareVal, NewVal: Integer; AAddress: PInteger): Integer;
asm
{$ifdef 32Bit}
  {On entry:
    eax = CompareVal,
    edx = NewVal,
    ecx = AAddress}
  lock cmpxchg [ecx], edx
{$else}
.noframe
  {On entry:
    ecx = CompareVal,
    edx = NewVal,
    r8 = AAddress}
  mov eax, ecx
  lock cmpxchg [r8], edx
{$endif}
end;

{Called by DebugGetMem, DebugFreeMem and DebugReallocMem in order to block a
 free block scan operation while the memory pool is being modified.}
procedure StartChangingFullDebugModeBlock;
var
  LOldCount: Integer;
begin
  while True do
  begin
    {Get the old thread count}
    LOldCount := ThreadsInFullDebugModeRoutine;
    if (LOldCount >= 0)
      and (LockCmpxchg32(LOldCount, LOldCount + 1, @ThreadsInFullDebugModeRoutine) = LOldCount) then
    begin
      Break;
    end;
  {$ifdef NeverSleepOnThreadContention}
    {$ifdef UseSwitchToThread}
    SwitchToThread;
    {$endif}
  {$else}
    Sleep(InitialSleepTime);
    {Try again}
    LOldCount := ThreadsInFullDebugModeRoutine;
    if (LOldCount >= 0)
      and (LockCmpxchg32(LOldCount, LOldCount + 1, @ThreadsInFullDebugModeRoutine) = LOldCount) then
    begin
      Break;
    end;
    Sleep(AdditionalSleepTime);
  {$endif}
  end;
end;

procedure DoneChangingFullDebugModeBlock;
asm
{$ifdef 32Bit}
  lock dec ThreadsInFullDebugModeRoutine
{$else}
.noframe
  lea rax, ThreadsInFullDebugModeRoutine
  lock dec dword ptr [rax]
{$endif}
end;

{Increments the allocation number}
procedure IncrementAllocationNumber;
asm
{$ifdef 32Bit}
  lock inc CurrentAllocationNumber
{$else}
.noframe
  lea rax, CurrentAllocationNumber
  lock inc dword ptr [rax]
{$endif}
end;

{Called by a routine wanting to lock the entire memory pool in FullDebugMode, e.g. before scanning the memory
 pool for corruptions.}
procedure BlockFullDebugModeMMRoutines;
begin
  while True do
  begin
    {Get the old thread count}
    if LockCmpxchg32(0, -1, @ThreadsInFullDebugModeRoutine) = 0 then
      Break;
{$ifdef NeverSleepOnThreadContention}
  {$ifdef UseSwitchToThread}
    SwitchToThread;
  {$endif}
{$else}
    Sleep(InitialSleepTime);
    {Try again}
    if LockCmpxchg32(0, -1, @ThreadsInFullDebugModeRoutine) = 0 then
      Break;
    Sleep(AdditionalSleepTime);
{$endif}
  end;
end;

procedure UnblockFullDebugModeMMRoutines;
begin
  {Currently blocked? If so, unblock the FullDebugMode routines.}
  if ThreadsInFullDebugModeRoutine = -1 then
    ThreadsInFullDebugModeRoutine := 0;
end;

procedure DeleteEventLog;
begin
  {Delete the file}
  DeleteFileA(MMLogFileName);
end;

{Finds the start and length of the file name given a full path.}
procedure ExtractFileName(APFullPath: PAnsiChar; var APFileNameStart: PAnsiChar; var AFileNameLength: Integer);
var
  LChar: AnsiChar;
begin
  {Initialize}
  APFileNameStart := APFullPath;
  AFileNameLength := 0;
  {Find the file }
  while True do
  begin
    {Get the next character}
    LChar := APFullPath^;
    {End of the path string?}
    if LChar = #0 then
      Break;
    {Advance the buffer position}
    Inc(APFullPath);
    {Found a backslash? -> May be the start of the file name}
    if LChar = '\' then
      APFileNameStart := APFullPath;
  end;
  {Calculate the length of the file name}
  AFileNameLength := IntPtr(APFullPath) - IntPtr(APFileNameStart);
end;

procedure AppendEventLog(ABuffer: Pointer; ACount: Cardinal);
const
  {Declared here, because it is not declared in the SHFolder.pas unit of some older Delphi versions.}
  SHGFP_TYPE_CURRENT = 0;
var
  LFileHandle, LBytesWritten: Cardinal;
  LEventHeader: array[0..1023] of AnsiChar;
  LAlternateLogFileName: array[0..2047] of AnsiChar;
  LPathLen, LNameLength: Integer;
  LMsgPtr, LPFileName: PAnsiChar;
  LSystemTime: TSystemTime;
begin
  {Try to open the log file in read/write mode.}
  LFileHandle := CreateFileA(MMLogFileName, GENERIC_READ or GENERIC_WRITE,
    0, nil, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
  {Did log file creation fail? If so, the destination folder is perhaps read-only:
   Try to redirect logging to a file in the user's "My Documents" folder.}
  if (LFileHandle = INVALID_HANDLE_VALUE)
{$ifdef Delphi4or5}
    and SHGetSpecialFolderPathA(0, @LAlternateLogFileName, CSIDL_PERSONAL, True) then
{$else}
    and (SHGetFolderPathA(0, CSIDL_PERSONAL or CSIDL_FLAG_CREATE, 0,
      SHGFP_TYPE_CURRENT, @LAlternateLogFileName) = S_OK) then
{$endif}
  begin
    {Extract the filename part from MMLogFileName and append it to the path of
     the "My Documents" folder.}
    LPathLen := StrLen(LAlternateLogFileName);
    {Ensure that there is a trailing backslash in the path}
    if (LPathLen = 0) or (LAlternateLogFileName[LPathLen - 1] <> '\') then
    begin
      LAlternateLogFileName[LPathLen] := '\';
      Inc(LPathLen);
    end;
    {Add the filename to the path}
    ExtractFileName(@MMLogFileName, LPFileName, LNameLength);
    System.Move(LPFileName^, LAlternateLogFileName[LPathLen], LNameLength + 1);
    {Try to open the alternate log file}
    LFileHandle := CreateFileA(LAlternateLogFileName, GENERIC_READ or GENERIC_WRITE,
      0, nil, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
  end;
  {Was the log file opened/created successfully?}
  if LFileHandle <> INVALID_HANDLE_VALUE then
  begin
    {Seek to the end of the file}
    SetFilePointer(LFileHandle, 0, nil, FILE_END);
    {Set the separator}
    LMsgPtr := AppendStringToBuffer(CRLF, @LEventHeader[0], Length(CRLF));
    LMsgPtr := AppendStringToBuffer(EventSeparator, LMsgPtr, Length(EventSeparator));
    {Set the date & time}
    GetLocalTime(LSystemTime);
    LMsgPtr := NativeUIntToStrBuf(LSystemTime.wYear, LMsgPtr);
    LMsgPtr^ := '/';
    Inc(LMsgPtr);
    LMsgPtr := NativeUIntToStrBuf(LSystemTime.wMonth, LMsgPtr);
    LMsgPtr^ := '/';
    Inc(LMsgPtr);
    LMsgPtr := NativeUIntToStrBuf(LSystemTime.wDay, LMsgPtr);
    LMsgPtr^ := ' ';
    Inc(LMsgPtr);
    LMsgPtr := NativeUIntToStrBuf(LSystemTime.wHour, LMsgPtr);
    LMsgPtr^ := ':';
    Inc(LMsgPtr);
    if LSystemTime.wMinute < 10 then
    begin
      LMsgPtr^ := '0';
      Inc(LMsgPtr);
    end;
    LMsgPtr := NativeUIntToStrBuf(LSystemTime.wMinute, LMsgPtr);
    LMsgPtr^ := ':';
    Inc(LMsgPtr);
    if LSystemTime.wSecond < 10 then
    begin
      LMsgPtr^ := '0';
      Inc(LMsgPtr);
    end;
    LMsgPtr := NativeUIntToStrBuf(LSystemTime.WSecond, LMsgPtr);
    {Write the header}
    LMsgPtr := AppendStringToBuffer(EventSeparator, LMsgPtr, Length(EventSeparator));
    LMsgPtr := AppendStringToBuffer(CRLF, LMsgPtr, Length(CRLF));
    WriteFile(LFileHandle, LEventHeader[0], NativeUInt(LMsgPtr) - NativeUInt(@LEventHeader[0]), LBytesWritten, nil);
    {Write the data}
    WriteFile(LFileHandle, ABuffer^, ACount, LBytesWritten, nil);
    {Close the file}
    CloseHandle(LFileHandle);
  end;
end;

{Sets the default log filename}
procedure SetDefaultMMLogFileName;
const
  LogFileExtAnsi: PAnsiChar = LogFileExtension;
var
  LEnvVarLength, LModuleNameLength: Cardinal;
  LPathOverride: array[0..2047] of AnsiChar;
  LPFileName: PAnsiChar;
  LFileNameLength: Integer;
begin
  {Get the name of the application}
  LModuleNameLength := AppendModuleFileName(@MMLogFileName[0]);
  {Replace the last few characters of the module name, and optionally override
   the path.}
  if LModuleNameLength > 0 then
  begin
    {Change the filename}
    System.Move(LogFileExtAnsi^, MMLogFileName[LModuleNameLength - 4],
      StrLen(LogFileExtAnsi) + 1);
    {Try to read the FastMMLogFilePath environment variable}
    LEnvVarLength := GetEnvironmentVariableA(PAnsiChar('FastMMLogFilePath'),
      @LPathOverride, 1023);
    {Does the environment variable exist? If so, override the log file path.}
    if LEnvVarLength > 0 then
    begin
      {Ensure that there's a trailing backslash.}
      if LPathOverride[LEnvVarLength - 1] <> '\' then
      begin
        LPathOverride[LEnvVarLength] := '\';
        Inc(LEnvVarLength);
      end;
      {Add the filename to the path override}
      ExtractFileName(@MMLogFileName[0], LPFileName, LFileNameLength);
      System.Move(LPFileName^, LPathOverride[LEnvVarLength], LFileNameLength + 1);
      {Copy the override path back to the filename buffer}
      System.Move(LPathOverride, MMLogFileName, SizeOf(MMLogFileName) - 1);
    end;
  end;
end;

{Specify the full path and name for the filename to be used for logging memory
 errors, etc. If ALogFileName is nil or points to an empty string it will
 revert to the default log file name.}
procedure SetMMLogFileName(ALogFileName: PAnsiChar = nil);
var
  LLogFileNameLen: Integer;
begin
  {Is ALogFileName valid?}
  if (ALogFileName <> nil) and (ALogFileName^ <> #0) then
  begin
    LLogFileNameLen := StrLen(ALogFileName);
    if LLogFileNameLen < Length(MMLogFileName) then
    begin
      {Set the log file name}
      System.Move(ALogFileName^, MMLogFileName, LLogFileNameLen + 1);
      Exit;
    end;
  end;
  {Invalid log file name}
  SetDefaultMMLogFileName;
end;

{Returns the current "allocation group". Whenever a GetMem request is serviced
 in FullDebugMode, the current "allocation group" is stored in the block header.
 This may help with debugging. Note that if a block is subsequently reallocated
 that it keeps its original "allocation group" and "allocation number" (all
 allocations are also numbered sequentially).}
function GetCurrentAllocationGroup: Cardinal;
begin
  Result := AllocationGroupStack[AllocationGroupStackTop];
end;

{Allocation groups work in a stack like fashion. Group numbers are pushed onto
 and popped off the stack. Note that the stack size is limited, so every push
 should have a matching pop.}
procedure PushAllocationGroup(ANewCurrentAllocationGroup: Cardinal);
begin
  if AllocationGroupStackTop < AllocationGroupStackSize - 1 then
  begin
    Inc(AllocationGroupStackTop);
    AllocationGroupStack[AllocationGroupStackTop] := ANewCurrentAllocationGroup;
  end
  else
  begin
    {Raise a runtime error if the stack overflows}
  {$ifdef BCB6OrDelphi7AndUp}
    System.Error(reInvalidPtr);
  {$else}
    System.RunError(reInvalidPtr);
  {$endif}
  end;
end;

procedure PopAllocationGroup;
begin
  if AllocationGroupStackTop > 0 then
  begin
    Dec(AllocationGroupStackTop);
  end
  else
  begin
    {Raise a runtime error if the stack underflows}
  {$ifdef BCB6OrDelphi7AndUp}
    System.Error(reInvalidPtr);
  {$else}
    System.RunError(reInvalidPtr);
  {$endif}
  end;
end;

{Sums all the dwords starting at the given address. ACount must be > 0 and a
 multiple of SizeOf(Pointer).}
function SumNativeUInts(AStartValue: NativeUInt; APointer: PNativeUInt;
  ACount: NativeUInt): NativeUInt;
asm
{$ifdef 32Bit}
  {On entry: eax = AStartValue, edx = APointer; ecx = ACount}
  add edx, ecx
  neg ecx
@AddLoop:
  add eax, [edx + ecx]
  add ecx, 4
  js @AddLoop
{$else}
  {On entry: rcx = AStartValue, rdx = APointer; r8 = ACount}
  add rdx, r8
  neg r8
  mov rax, rcx
@AddLoop:
  add rax, [rdx + r8]
  add r8, 8
  js @AddLoop
{$endif}
end;

{Checks the memory starting at the given address for the fill pattern.
 Returns True if all bytes are all valid. ACount must be >0 and a multiple of
 SizeOf(Pointer).}
function CheckFillPattern(APointer: Pointer; ACount: NativeUInt;
  AFillPattern: NativeUInt): Boolean;
asm
{$ifdef 32Bit}
  {On entry: eax = APointer; edx = ACount; ecx = AFillPattern}
  add eax, edx
  neg edx
@CheckLoop:
  cmp [eax + edx], ecx
  jne @Done
  add edx, 4
  js @CheckLoop
@Done:
  sete al
{$else}
  {On entry: rcx = APointer; rdx = ACount; r8 = AFillPattern}
  add rcx, rdx
  neg rdx
@CheckLoop:
  cmp [rcx + rdx], r8
  jne @Done
  add rdx, 8
  js @CheckLoop
@Done:
  sete al
{$endif}
end;

{Calculates the checksum for the debug header. Adds all dwords in the debug
 header to the start address of the block.}
function CalculateHeaderCheckSum(APointer: PFullDebugBlockHeader): NativeUInt;
begin
  Result := SumNativeUInts(
    NativeUInt(APointer),
    PNativeUInt(PByte(APointer) + 2 * SizeOf(Pointer)),
    SizeOf(TFullDebugBlockHeader) - 2 * SizeOf(Pointer) - SizeOf(NativeUInt));
end;

procedure UpdateHeaderAndFooterCheckSums(APointer: PFullDebugBlockHeader);
var
  LHeaderCheckSum: NativeUInt;
begin
  LHeaderCheckSum := CalculateHeaderCheckSum(APointer);
  APointer.HeaderCheckSum := LHeaderCheckSum;
  PNativeUInt(PByte(APointer) + SizeOf(TFullDebugBlockHeader) + APointer.UserSize)^ := not LHeaderCheckSum;
end;

function LogCurrentThreadAndStackTrace(ASkipFrames: Cardinal; ABuffer: PAnsiChar): PAnsiChar;
var
  LCurrentStackTrace: TStackTrace;
begin
  {Get the current call stack}
  GetStackTrace(@LCurrentStackTrace[0], StackTraceDepth, ASkipFrames);
  {Log the thread ID}
  Result := AppendStringToBuffer(CurrentThreadIDMsg, ABuffer, Length(CurrentThreadIDMsg));
  Result := NativeUIntToHexBuf(GetThreadID, Result);
  {List the stack trace}
  Result := AppendStringToBuffer(CurrentStackTraceMsg, Result, Length(CurrentStackTraceMsg));
  Result := LogStackTrace(@LCurrentStackTrace, StackTraceDepth, Result);
end;

{$ifndef DisableLoggingOfMemoryDumps}
function LogMemoryDump(APointer: PFullDebugBlockHeader; ABuffer: PAnsiChar): PAnsiChar;
var
  LByteNum, LVal: Cardinal;
  LDataPtr: PByte;
begin
  Result := AppendStringToBuffer(MemoryDumpMsg, ABuffer, Length(MemoryDumpMsg));
  Result := NativeUIntToHexBuf(NativeUInt(APointer) + SizeOf(TFullDebugBlockHeader), Result);
  Result^ := ':';
  Inc(Result);
  {Add the bytes}
  LDataPtr := PByte(PByte(APointer) + SizeOf(TFullDebugBlockHeader));
  for LByteNum := 0 to 255 do
  begin
    if LByteNum and 31 = 0 then
    begin
      Result^ := #13;
      Inc(Result);
      Result^ := #10;
      Inc(Result);
    end
    else
    begin
      Result^ := ' ';
      Inc(Result);
    end;
    {Set the hex data}
    LVal := Byte(LDataPtr^);
    Result^ := HexTable[LVal shr 4];
    Inc(Result);
    Result^ := HexTable[LVal and $f];
    Inc(Result);
    {Next byte}
    Inc(LDataPtr);
  end;
  {Dump ASCII}
  LDataPtr := PByte(PByte(APointer) + SizeOf(TFullDebugBlockHeader));
  for LByteNum := 0 to 255 do
  begin
    if LByteNum and 31 = 0 then
    begin
      Result^ := #13;
      Inc(Result);
      Result^ := #10;
      Inc(Result);
    end
    else
    begin
      Result^ := ' ';
      Inc(Result);
      Result^ := ' ';
      Inc(Result);
    end;
    {Set the hex data}
    LVal := Byte(LDataPtr^);
    if LVal < 32 then
      Result^ := '.'
    else
      Result^ := AnsiChar(LVal);
    Inc(Result);
    {Next byte}
    Inc(LDataPtr);
  end;
end;
{$endif}

{Rotates AValue ABitCount bits to the right}
function RotateRight(AValue, ABitCount: NativeUInt): NativeUInt;
asm
{$ifdef 32Bit}
  mov ecx, edx
  ror eax, cl
{$else}
  mov rax, rcx
  mov rcx, rdx
  ror rax, cl
{$endif}
end;

{Determines whether a byte in the user portion of the freed block has been modified. Does not work beyond
 the end of the user portion (i.e. footer and beyond).}
function FreeBlockByteWasModified(APointer: PFullDebugBlockHeader; AUserOffset: NativeUInt): Boolean;
var
  LFillPattern: NativeUInt;
begin
  {Get the expected fill pattern}
  if AUserOffset < SizeOf(Pointer) then
  begin
    LFillPattern := NativeUInt(@FreedObjectVMT.VMTMethods[0]);
  end
  else
  begin
{$ifndef CatchUseOfFreedInterfaces}
    LFillPattern := DebugFillPattern;
{$else}
    LFillPattern := NativeUInt(@VMTBadInterface);
{$endif}
  end;
  {Compare the byte value}
  Result := Byte(PByte(PByte(APointer) + SizeOf(TFullDebugBlockHeader) + AUserOffset)^) <>
    Byte(RotateRight(LFillPattern, (AUserOffset and (SizeOf(Pointer) - 1)) * 8));
end;

function LogBlockChanges(APointer: PFullDebugBlockHeader; ABuffer: PAnsiChar): PAnsiChar;
var
  LOffset, LChangeStart, LCount: NativeUInt;
  LLogCount: Integer;
begin
  {No errors logged so far}
  LLogCount := 0;
  {Log a maximum of 32 changes}
  LOffset := 0;
  while (LOffset < APointer.UserSize) and (LLogCount < 32) do
  begin
    {Has the byte been modified?}
    if FreeBlockByteWasModified(APointer, LOffset) then
    begin
      {Found the start of a changed block, now find the length}
      LChangeStart := LOffset;
      LCount := 0;
      while True do
      begin
        Inc(LCount);
        Inc(LOffset);
        if (LOffset >= APointer.UserSize)
          or (not FreeBlockByteWasModified(APointer, LOffset)) then
        begin
          Break;
        end;
      end;
      {Got the offset and length, now log it.}
      if LLogCount = 0 then
      begin
        ABuffer := AppendStringToBuffer(FreeModifiedDetailMsg, ABuffer, Length(FreeModifiedDetailMsg));
      end
      else
      begin
        ABuffer^ := ',';
        Inc(ABuffer);
        ABuffer^ := ' ';
        Inc(ABuffer);
      end;
      ABuffer := NativeUIntToStrBuf(LChangeStart, ABuffer);
      ABuffer^ := '(';
      Inc(ABuffer);
      ABuffer := NativeUIntToStrBuf(LCount, ABuffer);
      ABuffer^ := ')';
      Inc(ABuffer);
      {Increment the log count}
      Inc(LLogCount);
    end;
    {Next byte}
    Inc(LOffset);
  end;
  {Return the current buffer position}
  Result := ABuffer;
end;

procedure LogBlockError(APointer: PFullDebugBlockHeader; AOperation: TBlockOperation; LHeaderValid, LFooterValid: Boolean);
var
  LMsgPtr: PAnsiChar;
  LErrorMessage: array[0..32767] of AnsiChar;
{$ifndef NoMessageBoxes}
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
  LClass: TClass;
  {$ifdef CheckCppObjectTypeEnabled}
  LCppObjectTypeName: PAnsiChar;
  {$endif}
begin
  {Display the error header and the operation type.}
  LMsgPtr := AppendStringToBuffer(ErrorMsgHeader, @LErrorMessage[0], Length(ErrorMsgHeader));
  case AOperation of
    boGetMem: LMsgPtr := AppendStringToBuffer(GetMemMsg, LMsgPtr, Length(GetMemMsg));
    boFreeMem: LMsgPtr := AppendStringToBuffer(FreeMemMsg, LMsgPtr, Length(FreeMemMsg));
    boReallocMem: LMsgPtr := AppendStringToBuffer(ReallocMemMsg, LMsgPtr, Length(ReallocMemMsg));
    boBlockCheck: LMsgPtr := AppendStringToBuffer(BlockCheckMsg, LMsgPtr, Length(BlockCheckMsg));
  end;
  LMsgPtr := AppendStringToBuffer(OperationMsg, LMsgPtr, Length(OperationMsg));
  {Is the header still intact?}
  if LHeaderValid then
  begin
    {Is the footer still valid?}
    if LFooterValid then
    begin
      {A freed block has been modified, a double free has occurred, or an
       attempt was made to free a memory block allocated by a different
       instance of FastMM.}
      if AOperation <= boGetMem then
      begin
        LMsgPtr := AppendStringToBuffer(FreeModifiedErrorMsg, LMsgPtr, Length(FreeModifiedErrorMsg));
        {Log the exact changes that caused the error.}
        LMsgPtr := LogBlockChanges(APointer, LMsgPtr);
      end
      else
      begin
        {It is either a double free, or an attempt was made to free a block
         that was allocated via a different memory manager.}
        if APointer.AllocatedByRoutine = nil then
          LMsgPtr := AppendStringToBuffer(DoubleFreeErrorMsg, LMsgPtr, Length(DoubleFreeErrorMsg))
        else
          LMsgPtr := AppendStringToBuffer(WrongMMFreeErrorMsg, LMsgPtr, Length(WrongMMFreeErrorMsg));
      end;
    end
    else
    begin
      LMsgPtr := AppendStringToBuffer(BlockFooterCorruptedMsg, LMsgPtr, Length(BlockFooterCorruptedMsg))
    end;
    {Set the block size message}
    if AOperation <= boGetMem then
      LMsgPtr := AppendStringToBuffer(PreviousBlockSizeMsg, LMsgPtr, Length(PreviousBlockSizeMsg))
    else
      LMsgPtr := AppendStringToBuffer(CurrentBlockSizeMsg, LMsgPtr, Length(CurrentBlockSizeMsg));
    LMsgPtr := NativeUIntToStrBuf(APointer.UserSize, LMsgPtr);
    {The header is still intact - display info about the this/previous allocation}
    if APointer.AllocationStackTrace[0] <> 0 then
    begin
      if AOperation <= boGetMem then
        LMsgPtr := AppendStringToBuffer(ThreadIDPrevAllocMsg, LMsgPtr, Length(ThreadIDPrevAllocMsg))
      else
        LMsgPtr := AppendStringToBuffer(ThreadIDAtAllocMsg, LMsgPtr, Length(ThreadIDAtAllocMsg));
      LMsgPtr := NativeUIntToHexBuf(APointer.AllocatedByThread, LMsgPtr);
      LMsgPtr := AppendStringToBuffer(StackTraceMsg, LMsgPtr, Length(StackTraceMsg));
      LMsgPtr := LogStackTrace(@APointer.AllocationStackTrace, StackTraceDepth, LMsgPtr);
    end;
    {Get the class this block was used for previously}
    LClass := DetectClassInstance(@APointer.PreviouslyUsedByClass);
    if (LClass <> nil) and (IntPtr(LClass) <> IntPtr(@FreedObjectVMT.VMTMethods[0])) then
    begin
      LMsgPtr := AppendStringToBuffer(PreviousObjectClassMsg, LMsgPtr, Length(PreviousObjectClassMsg));
      LMsgPtr := AppendClassNameToBuffer(LClass, LMsgPtr);
    end;
    {$ifdef CheckCppObjectTypeEnabled}
    if (LClass = nil) and Assigned(GetCppVirtObjTypeNameByVTablePtrFunc) then
    begin
      LCppObjectTypeName := GetCppVirtObjTypeNameByVTablePtrFunc(Pointer(APointer.PreviouslyUsedByClass), 0);
      if Assigned(LCppObjectTypeName) then
      begin
        LMsgPtr := AppendStringToBuffer(PreviousObjectClassMsg, LMsgPtr, Length(PreviousObjectClassMsg));
        LMsgPtr := AppendStringToBuffer(LCppObjectTypeName, LMsgPtr, StrLen(LCppObjectTypeName));
      end;
    end;
    {$endif}
    {Get the current class for this block}
    if (AOperation > boGetMem) and (APointer.AllocatedByRoutine <> nil) then
    begin
      LMsgPtr := AppendStringToBuffer(CurrentObjectClassMsg, LMsgPtr, Length(CurrentObjectClassMsg));
      LClass := DetectClassInstance(Pointer(PByte(APointer) + SizeOf(TFullDebugBlockHeader)));
      if IntPtr(LClass) = IntPtr(@FreedObjectVMT.VMTMethods[0]) then
        LClass := nil;
      {$ifndef CheckCppObjectTypeEnabled}
      LMsgPtr := AppendClassNameToBuffer(LClass, LMsgPtr);
      {$else}
      if (LClass = nil) and Assigned(GetCppVirtObjTypeNameFunc) then
      begin
        LCppObjectTypeName := GetCppVirtObjTypeNameFunc(Pointer(PByte(APointer) + SizeOf(TFullDebugBlockHeader)),
          APointer.UserSize);
        if LCppObjectTypeName <> nil then
          LMsgPtr := AppendStringToBuffer(LCppObjectTypeName, LMsgPtr, StrLen(LCppObjectTypeName))
        else
          LMsgPtr := AppendClassNameToBuffer(LClass, LMsgPtr);
      end
      else
      begin
        LMsgPtr := AppendClassNameToBuffer(LClass, LMsgPtr);
      end;
      {$endif}
      {Log the allocation group}
      if APointer.AllocationGroup > 0 then
      begin
        LMsgPtr := AppendStringToBuffer(CurrentAllocationGroupMsg, LMsgPtr, Length(CurrentAllocationGroupMsg));
        LMsgPtr := NativeUIntToStrBuf(APointer.AllocationGroup, LMsgPtr);
      end;
      {Log the allocation number}
      LMsgPtr := AppendStringToBuffer(CurrentAllocationNumberMsg, LMsgPtr, Length(CurrentAllocationNumberMsg));
      LMsgPtr := NativeUIntToStrBuf(APointer.AllocationNumber, LMsgPtr);
    end
    else
    begin
      {Log the allocation group}
      if APointer.AllocationGroup > 0 then
      begin
        LMsgPtr := AppendStringToBuffer(PreviousAllocationGroupMsg, LMsgPtr, Length(PreviousAllocationGroupMsg));
        LMsgPtr := NativeUIntToStrBuf(APointer.AllocationGroup, LMsgPtr);
      end;
      {Log the allocation number}
      LMsgPtr := AppendStringToBuffer(PreviousAllocationNumberMsg, LMsgPtr, Length(PreviousAllocationNumberMsg));
      LMsgPtr := NativeUIntToStrBuf(APointer.AllocationNumber, LMsgPtr);
    end;
    {Get the call stack for the previous free}
    if APointer.FreeStackTrace[0] <> 0 then
    begin
      LMsgPtr := AppendStringToBuffer(ThreadIDAtFreeMsg, LMsgPtr, Length(ThreadIDAtFreeMsg));
      LMsgPtr := NativeUIntToHexBuf(APointer.FreedByThread, LMsgPtr);
      LMsgPtr := AppendStringToBuffer(StackTraceMsg, LMsgPtr, Length(StackTraceMsg));
      LMsgPtr := LogStackTrace(@APointer.FreeStackTrace, StackTraceDepth, LMsgPtr);
    end;
  end
  else
  begin
    {Header has been corrupted}
    LMsgPtr := AppendStringToBuffer(BlockHeaderCorruptedMsg, LMsgPtr, Length(BlockHeaderCorruptedMsg));
  end;
  {Add the current stack trace}
  LMsgPtr := LogCurrentThreadAndStackTrace(3 + Ord(AOperation <> boGetMem) + Ord(AOperation = boReallocMem), LMsgPtr);
{$ifndef DisableLoggingOfMemoryDumps}
  {Add the memory dump}
  LMsgPtr := LogMemoryDump(APointer, LMsgPtr);
{$endif}
  {Trailing CRLF}
  LMsgPtr^ := #13;
  Inc(LMsgPtr);
  LMsgPtr^ := #10;
  Inc(LMsgPtr);
  {Trailing #0}
  LMsgPtr^ := #0;
{$ifdef LogErrorsToFile}
  {Log the error}
  AppendEventLog(@LErrorMessage[0], NativeUInt(LMsgPtr) - NativeUInt(@LErrorMessage[0]));
{$endif}
{$ifdef UseOutputDebugString}
  OutputDebugStringA(LErrorMessage);
{$endif}
  {Show the message}
{$ifndef NoMessageBoxes}
  AppendStringToModuleName(BlockErrorMsgTitle, LErrorMessageTitle);
  ShowMessageBox(LErrorMessage, LErrorMessageTitle);
{$endif}
end;

{Logs the stack traces for a memory leak to file}
procedure LogMemoryLeakOrAllocatedBlock(APointer: PFullDebugBlockHeader; IsALeak: Boolean);
var
  LHeaderValid: Boolean;
  LMsgPtr: PAnsiChar;
  LErrorMessage: array[0..32767] of AnsiChar;
  LClass: TClass;
  {$ifdef CheckCppObjectTypeEnabled}
  LCppObjectTypeName: PAnsiChar;
  {$endif}
begin
  {Display the error header and the operation type.}
  if IsALeak then
    LMsgPtr := AppendStringToBuffer(LeakLogHeader, @LErrorMessage[0], Length(LeakLogHeader))
  else
    LMsgPtr := AppendStringToBuffer(BlockScanLogHeader, @LErrorMessage[0], Length(BlockScanLogHeader));
  LMsgPtr := NativeUIntToStrBuf(GetAvailableSpaceInBlock(APointer) - FullDebugBlockOverhead, LMsgPtr);
  {Is the debug info surrounding the block valid?}
  LHeaderValid := CalculateHeaderCheckSum(APointer) = APointer.HeaderCheckSum;
  {Is the header still intact?}
  if LHeaderValid then
  begin
    {The header is still intact - display info about this/previous allocation}
    if APointer.AllocationStackTrace[0] <> 0 then
    begin
      LMsgPtr := AppendStringToBuffer(ThreadIDAtAllocMsg, LMsgPtr, Length(ThreadIDAtAllocMsg));
      LMsgPtr := NativeUIntToHexBuf(APointer.AllocatedByThread, LMsgPtr);
      LMsgPtr := AppendStringToBuffer(StackTraceMsg, LMsgPtr, Length(StackTraceMsg));
      LMsgPtr := LogStackTrace(@APointer.AllocationStackTrace, StackTraceDepth, LMsgPtr);
    end;
    LMsgPtr := AppendStringToBuffer(CurrentObjectClassMsg, LMsgPtr, Length(CurrentObjectClassMsg));
    {Get the current class for this block}
    LClass := DetectClassInstance(Pointer(PByte(APointer) + SizeOf(TFullDebugBlockHeader)));
    if IntPtr(LClass) = IntPtr(@FreedObjectVMT.VMTMethods[0]) then
      LClass := nil;
    {$ifndef CheckCppObjectTypeEnabled}
    if LClass <> nil then
    begin
      LMsgPtr := AppendClassNameToBuffer(LClass, LMsgPtr);
    end
    else
    begin
      case DetectStringData(Pointer(PByte(APointer) + SizeOf(TFullDebugBlockHeader)), APointer.UserSize) of
        stUnknown: LMsgPtr := AppendClassNameToBuffer(nil, LMsgPtr);
        stAnsiString: LMsgPtr := AppendStringToBuffer(AnsiStringBlockMessage, LMsgPtr, Length(AnsiStringBlockMessage));
        stUnicodeString: LMsgPtr := AppendStringToBuffer(UnicodeStringBlockMessage, LMsgPtr, Length(UnicodeStringBlockMessage));
      end;
    end;
    {$else}
    if (LClass = nil) and Assigned(GetCppVirtObjTypeNameFunc) then
    begin
      LCppObjectTypeName := GetCppVirtObjTypeNameFunc(Pointer(PByte(APointer) + SizeOf(TFullDebugBlockHeader)),
        APointer.UserSize);
      if LCppObjectTypeName <> nil then
        LMsgPtr := AppendStringToBuffer(LCppObjectTypeName, LMsgPtr, StrLen(LCppObjectTypeName))
      else
      begin
        case DetectStringData(Pointer(PByte(APointer) + SizeOf(TFullDebugBlockHeader)), APointer.UserSize) of
          stUnknown: LMsgPtr := AppendClassNameToBuffer(nil, LMsgPtr);
          stAnsiString: LMsgPtr := AppendStringToBuffer(AnsiStringBlockMessage, LMsgPtr, Length(AnsiStringBlockMessage));
          stUnicodeString: LMsgPtr := AppendStringToBuffer(UnicodeStringBlockMessage, LMsgPtr, Length(UnicodeStringBlockMessage));
        end;
      end;
    end
    else
      LMsgPtr := AppendClassNameToBuffer(LClass, LMsgPtr);
    {$endif}
    {Log the allocation group}
    if APointer.AllocationGroup > 0 then
    begin
      LMsgPtr := AppendStringToBuffer(CurrentAllocationGroupMsg, LMsgPtr, Length(CurrentAllocationGroupMsg));
      LMsgPtr := NativeUIntToStrBuf(APointer.AllocationGroup, LMsgPtr);
    end;
    {Log the allocation number}
    LMsgPtr := AppendStringToBuffer(CurrentAllocationNumberMsg, LMsgPtr, Length(CurrentAllocationNumberMsg));
    LMsgPtr := NativeUIntToStrBuf(APointer.AllocationNumber, LMsgPtr);
  end
  else
  begin
    {Header has been corrupted}
    LMsgPtr^ := '.';
    Inc(LMsgPtr);
    LMsgPtr^ := ' ';
    Inc(LMsgPtr);
    LMsgPtr := AppendStringToBuffer(BlockHeaderCorruptedMsg, LMsgPtr, Length(BlockHeaderCorruptedMsg));
  end;
{$ifndef DisableLoggingOfMemoryDumps}
  {Add the memory dump}
  LMsgPtr := LogMemoryDump(APointer, LMsgPtr);
{$endif}
  {Trailing CRLF}
  LMsgPtr^ := #13;
  Inc(LMsgPtr);
  LMsgPtr^ := #10;
  Inc(LMsgPtr);
  {Trailing #0}
  LMsgPtr^ := #0;
  {Log the error}
  AppendEventLog(@LErrorMessage[0], NativeUInt(LMsgPtr) - NativeUInt(@LErrorMessage[0]));
end;

{Checks that a free block is unmodified}
function CheckFreeBlockUnmodified(APBlock: PFullDebugBlockHeader; ABlockSize: NativeUInt;
  AOperation: TBlockOperation): Boolean;
var
  LHeaderCheckSum: NativeUInt;
  LHeaderValid, LFooterValid, LBlockUnmodified: Boolean;
begin
  LHeaderCheckSum := CalculateHeaderCheckSum(APBlock);
  LHeaderValid := LHeaderCheckSum = APBlock.HeaderCheckSum;
  {Is the footer itself still in place}
  LFooterValid := LHeaderValid
    and (PNativeUInt(PByte(APBlock) + SizeOf(TFullDebugBlockHeader) + APBlock.UserSize)^ = (not LHeaderCheckSum));
  {Is the footer and debug VMT in place? The debug VMT is only valid if the user size is greater than the size of a pointer.}
  if LFooterValid
    and (APBlock.UserSize < SizeOf(Pointer)) or (PNativeUInt(PByte(APBlock) + SizeOf(TFullDebugBlockHeader))^ = NativeUInt(@FreedObjectVMT.VMTMethods[0])) then
  begin
    {Store the debug fill pattern in place of the footer in order to simplify
     checking for block modifications.}
    PNativeUInt(PByte(APBlock) + SizeOf(TFullDebugBlockHeader) + APBlock.UserSize)^ :=
    {$ifndef CatchUseOfFreedInterfaces}
      DebugFillPattern;
    {$else}
      RotateRight(NativeUInt(@VMTBadInterface), (APBlock.UserSize and (SizeOf(Pointer) - 1)) * 8);
    {$endif}
    {Check that all the filler bytes are valid inside the block, except for
     the "dummy" class header}
    LBlockUnmodified := CheckFillPattern(PNativeUInt(PByte(APBlock) + (SizeOf(TFullDebugBlockHeader) + SizeOf(Pointer))),
      ABlockSize - (FullDebugBlockOverhead + SizeOf(Pointer)),
      {$ifndef CatchUseOfFreedInterfaces}DebugFillPattern{$else}NativeUInt(@VMTBadInterface){$endif});
    {Reset the old footer}
    PNativeUInt(PByte(APBlock) + SizeOf(TFullDebugBlockHeader) + APBlock.UserSize)^ := not LHeaderCheckSum;
  end
  else
    LBlockUnmodified := False;
  if (not LHeaderValid) or (not LFooterValid) or (not LBlockUnmodified) then
  begin
    LogBlockError(APBlock, AOperation, LHeaderValid, LFooterValid);
    Result := False;
  end
  else
    Result := True;
end;

function DebugGetMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
begin
  {Scan the entire memory pool first?}
  if FullDebugModeScanMemoryPoolBeforeEveryOperation then
    ScanMemoryPoolForCorruptions;
  {Enter the memory manager: block scans may not be performed now}
  StartChangingFullDebugModeBlock;
  try
    {We need extra space for (a) The debug header, (b) the block debug trailer
     and (c) the trailing block size pointer for free blocks}
    Result := FastGetMem(ASize + FullDebugBlockOverhead);
    if Result <> nil then
    begin
      {Large blocks are always newly allocated (and never reused), so checking
       for a modify-after-free is not necessary.}
      if (ASize > (MaximumMediumBlockSize - BlockHeaderSize - FullDebugBlockOverhead))
        or CheckFreeBlockUnmodified(Result, GetAvailableSpaceInBlock(Result) + BlockHeaderSize, boGetMem) then
      begin
        {Set the allocation call stack}
        GetStackTrace(@PFullDebugBlockHeader(Result).AllocationStackTrace, StackTraceDepth, 1);
        {Set the thread ID of the thread that allocated the block}
        PFullDebugBlockHeader(Result).AllocatedByThread := GetThreadID;
        {Block is now in use: It was allocated by this routine}
        PFullDebugBlockHeader(Result).AllocatedByRoutine := @DebugGetMem;
        {Set the group number}
        PFullDebugBlockHeader(Result).AllocationGroup := AllocationGroupStack[AllocationGroupStackTop];
        {Set the allocation number}
        IncrementAllocationNumber;
        PFullDebugBlockHeader(Result).AllocationNumber := CurrentAllocationNumber;
        {Clear the previous block trailer}
        PNativeUInt(PByte(Result) + SizeOf(TFullDebugBlockHeader) + PFullDebugBlockHeader(Result).UserSize)^ :=
        {$ifndef CatchUseOfFreedInterfaces}
          DebugFillPattern;
        {$else}
          RotateRight(NativeUInt(@VMTBadInterface), (PFullDebugBlockHeader(Result).UserSize and (SizeOf(Pointer) - 1)) * 8);
        {$endif}
        {Set the user size for the block}
        PFullDebugBlockHeader(Result).UserSize := ASize;
        {Set the checksums}
        UpdateHeaderAndFooterCheckSums(Result);
        {$ifdef FullDebugModeCallBacks}
        if Assigned(OnDebugGetMemFinish) then
          OnDebugGetMemFinish(PFullDebugBlockHeader(Result), ASize);
        {$endif}
        {Return the start of the actual block}
        Result := Pointer(PByte(Result) + SizeOf(TFullDebugBlockHeader));
{$ifdef EnableMemoryLeakReporting}
        {Should this block be marked as an expected leak automatically?}
        if FullDebugModeRegisterAllAllocsAsExpectedMemoryLeak then
          RegisterExpectedMemoryLeak(Result);
{$endif}
      end
      else
      begin
        Result := nil;
      end;
    end;
  finally
    {Leaving the memory manager routine: Block scans may be performed again.}
    DoneChangingFullDebugModeBlock;
  end;
end;

function CheckBlockBeforeFreeOrRealloc(APBlock: PFullDebugBlockHeader;
  AOperation: TBlockOperation): Boolean;
var
  LHeaderValid, LFooterValid: Boolean;
  LPFooter: PNativeUInt;
{$ifndef CatchUseOfFreedInterfaces}
  LBlockSize: NativeUInt;
  LPTrailingByte, LPFillPatternEnd: PByte;
{$endif}
begin
  {Is the checksum for the block header valid?}
  LHeaderValid := CalculateHeaderCheckSum(APBlock) = APBlock.HeaderCheckSum;
  {If the header is corrupted then the footer is assumed to be corrupt too.}
  if LHeaderValid then
  begin
    {Check the footer checksum: The footer checksum should equal the header
     checksum with all bits inverted.}
    LPFooter := PNativeUInt(PByte(APBlock) + SizeOf(TFullDebugBlockHeader) + PFullDebugBlockHeader(APBlock).UserSize);
    if APBlock.HeaderCheckSum = (not (LPFooter^)) then
    begin
      LFooterValid := True;
{$ifndef CatchUseOfFreedInterfaces}
      {Large blocks do not have the debug fill pattern, since they are never reused.}
      if PNativeUInt(PByte(APBlock) - BlockHeaderSize)^ and (IsMediumBlockFlag or IsLargeBlockFlag) <> IsLargeBlockFlag then
      begin
        {Check that the application has not modified bytes beyond the block
         footer. The $80 fill pattern should extend up to 2 nativeints before
         the start of the next block (leaving space for the free block size and
         next block header.)}
        LBlockSize := GetAvailableSpaceInBlock(APBlock);
        LPFillPatternEnd := PByte(PByte(APBlock) + LBlockSize - SizeOf(Pointer));
        LPTrailingByte := PByte(PByte(LPFooter) + SizeOf(NativeUInt));
        while UIntPtr(LPTrailingByte) < UIntPtr(LPFillPatternEnd) do
        begin
          if Byte(LPTrailingByte^) <> DebugFillByte then
          begin
            LFooterValid := False;
            Break;
          end;
          Inc(LPTrailingByte);
        end;
      end;
{$endif}
    end
    else
      LFooterValid := False;
  end
  else
    LFooterValid := False;
  {The header and footer must be intact and the block must have been allocated
   by this memory manager instance.}
  if LFooterValid and (APBlock.AllocatedByRoutine = @DebugGetMem) then
  begin
    Result := True;
  end
  else
  begin
    {Log the error}
    LogBlockError(APBlock, AOperation, LHeaderValid, LFooterValid);
    {Return an error}
    Result := False;
  end;
end;

function DebugFreeMem(APointer: Pointer): Integer;
var
  LActualBlock: PFullDebugBlockHeader;
  LBlockHeader: NativeUInt;
begin
  {Scan the entire memory pool first?}
  if FullDebugModeScanMemoryPoolBeforeEveryOperation then
    ScanMemoryPoolForCorruptions;
  {Get a pointer to the start of the actual block}
  LActualBlock := PFullDebugBlockHeader(PByte(APointer)
    - SizeOf(TFullDebugBlockHeader));
  {Is the debug info surrounding the block valid?}
  if CheckBlockBeforeFreeOrRealloc(LActualBlock, boFreeMem) then
  begin
    {Enter the memory manager: block scans may not be performed now}
    StartChangingFullDebugModeBlock;
    try
      {$ifdef FullDebugModeCallBacks}
      if Assigned(OnDebugFreeMemStart) then
        OnDebugFreeMemStart(LActualBlock);
      {$endif}
      {Large blocks are never reused, so there is no point in updating their
       headers and fill pattern.}
      LBlockHeader := PNativeUInt(PByte(LActualBlock) - BlockHeaderSize)^;
      if LBlockHeader and (IsFreeBlockFlag or IsMediumBlockFlag or IsLargeBlockFlag) <> IsLargeBlockFlag then
      begin
        {Get the class the block was used for}
        LActualBlock.PreviouslyUsedByClass := PNativeUInt(APointer)^;
        {Set the free call stack}
        GetStackTrace(@LActualBlock.FreeStackTrace, StackTraceDepth, 1);
        {Set the thread ID of the thread that freed the block}
        LActualBlock.FreedByThread := GetThreadID;
        {Block is now free}
        LActualBlock.AllocatedByRoutine := nil;
        {Clear the user area of the block}
        DebugFillMem(APointer^, LActualBlock.UserSize,
          {$ifndef CatchUseOfFreedInterfaces}DebugFillPattern{$else}NativeUInt(@VMTBadInterface){$endif});
        {Set a pointer to the dummy VMT}
        PNativeUInt(APointer)^ := NativeUInt(@FreedObjectVMT.VMTMethods[0]);
        {Recalculate the checksums}
        UpdateHeaderAndFooterCheckSums(LActualBlock);
      end;
{$ifdef EnableMemoryLeakReporting}
      {Automatically deregister the expected memory leak?}
      if FullDebugModeRegisterAllAllocsAsExpectedMemoryLeak then
        UnregisterExpectedMemoryLeak(APointer);
{$endif}
      {Free the actual block}
      Result := FastFreeMem(LActualBlock);
      {$ifdef FullDebugModeCallBacks}
      if Assigned(OnDebugFreeMemFinish) then
        OnDebugFreeMemFinish(LActualBlock, Result);
      {$endif}
    finally
      {Leaving the memory manager routine: Block scans may be performed again.}
      DoneChangingFullDebugModeBlock;
    end;
  end
  else
  begin
{$ifdef SuppressFreeMemErrorsInsideException}
    if {$ifdef BDS2006AndUp}ExceptObject{$else}RaiseList{$endif} <> nil then
      Result := 0
    else
{$endif}
      Result := -1;
  end;
end;

function DebugReallocMem(APointer: Pointer; ANewSize: {$ifdef XE2AndUp}NativeInt{$else}Integer{$endif}): Pointer;
var
  LMoveSize, LBlockSpace: NativeUInt;
  LActualBlock, LNewActualBlock: PFullDebugBlockHeader;
begin
  {Scan the entire memory pool first?}
  if FullDebugModeScanMemoryPoolBeforeEveryOperation then
    ScanMemoryPoolForCorruptions;
  {Get a pointer to the start of the actual block}
  LActualBlock := PFullDebugBlockHeader(PByte(APointer)
    - SizeOf(TFullDebugBlockHeader));
  {Is the debug info surrounding the block valid?}
  if CheckBlockBeforeFreeOrRealloc(LActualBlock, boReallocMem) then
  begin
    {Get the current block size}
    LBlockSpace := GetAvailableSpaceInBlock(LActualBlock);
    {Can the block fit? We need space for the debug overhead and the block header
     of the next block}
    if LBlockSpace < (NativeUInt(ANewSize) + FullDebugBlockOverhead) then
    begin
      {Get a new block of the requested size.}
      Result := DebugGetMem(ANewSize);
      if Result <> nil then
      begin
        {Block scans may not be performed now}
        StartChangingFullDebugModeBlock;
        try
          {$ifdef FullDebugModeCallBacks}
          if Assigned(OnDebugReallocMemStart) then
            OnDebugReallocMemStart(LActualBlock, ANewSize);
          {$endif}
          {We reuse the old allocation number. Since DebugGetMem always bumps
           CurrentAllocationGroup, there may be gaps in the sequence of
           allocation numbers.}
          LNewActualBlock := PFullDebugBlockHeader(PByte(Result)
            - SizeOf(TFullDebugBlockHeader));
          LNewActualBlock.AllocationGroup := LActualBlock.AllocationGroup;
          LNewActualBlock.AllocationNumber := LActualBlock.AllocationNumber;
          {Recalculate the header and footer checksums}
          UpdateHeaderAndFooterCheckSums(LNewActualBlock);
          {$ifdef FullDebugModeCallBacks}
          if Assigned(OnDebugReallocMemFinish) then
            OnDebugReallocMemFinish(LNewActualBlock, ANewSize);
          {$endif}
        finally
          {Block scans can again be performed safely}
          DoneChangingFullDebugModeBlock;
        end;
        {How many bytes to move?}
        LMoveSize := LActualBlock.UserSize;
        if LMoveSize > NativeUInt(ANewSize) then
          LMoveSize := ANewSize;
        {Move the data across}
        System.Move(APointer^, Result^, LMoveSize);
        {Free the old block}
        DebugFreeMem(APointer);
      end
      else
      begin
        Result := nil;
      end;
    end
    else
    begin
      {Block scans may not be performed now}
      StartChangingFullDebugModeBlock;
      try
        {$ifdef FullDebugModeCallBacks}
        if Assigned(OnDebugReallocMemStart) then
          OnDebugReallocMemStart(LActualBlock, ANewSize);
        {$endif}
        {Clear all data after the new end of the block up to the old end of the
         block, including the trailer.}
        DebugFillMem(Pointer(PByte(APointer) + NativeUInt(ANewSize) + SizeOf(NativeUInt))^,
          NativeInt(LActualBlock.UserSize) - ANewSize,
{$ifndef CatchUseOfFreedInterfaces}
          DebugFillPattern);
{$else}
          RotateRight(NativeUInt(@VMTBadInterface), (ANewSize and (SizeOf(Pointer) - 1)) * 8));
{$endif}
        {Update the user size}
        LActualBlock.UserSize := ANewSize;
        {Set the new checksums}
        UpdateHeaderAndFooterCheckSums(LActualBlock);
        {$ifdef FullDebugModeCallBacks}
        if Assigned(OnDebugReallocMemFinish) then
          OnDebugReallocMemFinish(LActualBlock, ANewSize);
        {$endif}
      finally
        {Block scans can again be performed safely}
        DoneChangingFullDebugModeBlock;
      end;
      {Return the old pointer}
      Result := APointer;
    end;
  end
  else
  begin
    Result := nil;
  end;
end;

{Allocates a block and fills it with zeroes}
function DebugAllocMem(ASize: {$ifdef XE2AndUp}NativeInt{$else}Cardinal{$endif}): Pointer;
begin
  Result := DebugGetMem(ASize);
  {Clear the block}
  if Result <>  nil then
    FillChar(Result^, ASize, 0);
end;

{Raises a runtime error if a memory corruption was encountered. Subroutine for
 InternalScanMemoryPool and InternalScanSmallBlockPool.}
procedure RaiseMemoryCorruptionError;
begin
  {Disable exhaustive checking in order to prevent recursive exceptions.}
  FullDebugModeScanMemoryPoolBeforeEveryOperation := False;
  {Unblock the memory manager in case the creation of the exception below
   causes an attempt to be made to allocate memory.}
  UnblockFullDebugModeMMRoutines;
  {Raise the runtime error}
{$ifdef BCB6OrDelphi7AndUp}
  System.Error(reOutOfMemory);
{$else}
  System.RunError(reOutOfMemory);
{$endif}
end;

{Subroutine for InternalScanMemoryPool: Checks the given small block pool for
 allocated blocks}
procedure InternalScanSmallBlockPool(APSmallBlockPool: PSmallBlockPoolHeader;
  AFirstAllocationGroupToLog, ALastAllocationGroupToLog: Cardinal);
var
  LCurPtr, LEndPtr: Pointer;
begin
  {Get the first and last pointer for the pool}
  GetFirstAndLastSmallBlockInPool(APSmallBlockPool, LCurPtr, LEndPtr);
  {Step through all blocks}
  while UIntPtr(LCurPtr) <= UIntPtr(LEndPtr) do
  begin
    {Is this block in use? If so, is the debug info intact?}
    if ((PNativeUInt(PByte(LCurPtr) - BlockHeaderSize)^ and IsFreeBlockFlag) = 0) then
    begin
      if CheckBlockBeforeFreeOrRealloc(LCurPtr, boBlockCheck) then
      begin
        if (PFullDebugBlockHeader(LCurPtr).AllocationGroup >= AFirstAllocationGroupToLog)
          and (PFullDebugBlockHeader(LCurPtr).AllocationGroup <= ALastAllocationGroupToLog) then
        begin
          LogMemoryLeakOrAllocatedBlock(LCurPtr, False);
        end;
      end
      else
        RaiseMemoryCorruptionError;
    end
    else
    begin
      {Check that the block has not been modified since being freed}
      if not CheckFreeBlockUnmodified(LCurPtr, APSmallBlockPool.BlockType.BlockSize, boBlockCheck) then
        RaiseMemoryCorruptionError;
    end;
    {Next block}
    Inc(PByte(LCurPtr), APSmallBlockPool.BlockType.BlockSize);
  end;
end;

{Subroutine for LogAllocatedBlocksToFile and ScanMemoryPoolForCorruptions:
 Scans the memory pool for corruptions and optionally logs allocated blocks
 in the allocation group range.}
procedure InternalScanMemoryPool(AFirstAllocationGroupToLog, ALastAllocationGroupToLog: Cardinal);
var
  LPLargeBlock: PLargeBlockHeader;
  LPMediumBlock: Pointer;
  LPMediumBlockPoolHeader: PMediumBlockPoolHeader;
  LMediumBlockHeader: NativeUInt;
begin
  {Block all the memory manager routines while performing the scan. No memory
   block may be allocated or freed, and no FullDebugMode block header or
   footer may be modified, while the scan is in progress.}
  BlockFullDebugModeMMRoutines;
  try
    {Step through all the medium block pools}
    LPMediumBlockPoolHeader := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
    while LPMediumBlockPoolHeader <> @MediumBlockPoolsCircularList do
    begin
      LPMediumBlock := GetFirstMediumBlockInPool(LPMediumBlockPoolHeader);
      while LPMediumBlock <> nil do
      begin
        LMediumBlockHeader := PNativeUInt(PByte(LPMediumBlock) - BlockHeaderSize)^;
        {Is the block in use?}
        if LMediumBlockHeader and IsFreeBlockFlag = 0 then
        begin
          {Block is in use: Is it a medium block or small block pool?}
          if (LMediumBlockHeader and IsSmallBlockPoolInUseFlag) <> 0 then
          begin
            {Get all the leaks for the small block pool}
            InternalScanSmallBlockPool(LPMediumBlock, AFirstAllocationGroupToLog, ALastAllocationGroupToLog);
          end
          else
          begin
            if CheckBlockBeforeFreeOrRealloc(LPMediumBlock, boBlockCheck) then
            begin
              if (PFullDebugBlockHeader(LPMediumBlock).AllocationGroup >= AFirstAllocationGroupToLog)
                and (PFullDebugBlockHeader(LPMediumBlock).AllocationGroup <= ALastAllocationGroupToLog) then
              begin
                LogMemoryLeakOrAllocatedBlock(LPMediumBlock, False);
              end;
            end
            else
              RaiseMemoryCorruptionError;
          end;
        end
        else
        begin
          {Check that the block has not been modified since being freed}
          if not CheckFreeBlockUnmodified(LPMediumBlock, LMediumBlockHeader and DropMediumAndLargeFlagsMask, boBlockCheck) then
            RaiseMemoryCorruptionError;
        end;
        {Next medium block}
        LPMediumBlock := NextMediumBlock(LPMediumBlock);
      end;
      {Get the next medium block pool}
      LPMediumBlockPoolHeader := LPMediumBlockPoolHeader.NextMediumBlockPoolHeader;
    end;
    {Scan large blocks}
    LPLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
    while LPLargeBlock <> @LargeBlocksCircularList do
    begin
      if CheckBlockBeforeFreeOrRealloc(Pointer(PByte(LPLargeBlock) + LargeBlockHeaderSize), boBlockCheck) then
      begin
        if (PFullDebugBlockHeader(PByte(LPLargeBlock) + LargeBlockHeaderSize).AllocationGroup >= AFirstAllocationGroupToLog)
          and (PFullDebugBlockHeader(PByte(LPLargeBlock) + LargeBlockHeaderSize).AllocationGroup <= ALastAllocationGroupToLog) then
        begin
          LogMemoryLeakOrAllocatedBlock(Pointer(PByte(LPLargeBlock) + LargeBlockHeaderSize), False);
        end;
      end
      else
        RaiseMemoryCorruptionError;
      {Get the next large block}
      LPLargeBlock := LPLargeBlock.NextLargeBlockHeader;
    end;
  finally
    {Unblock the FullDebugMode memory manager routines.}
    UnblockFullDebugModeMMRoutines;
  end;
end;

{Logs detail about currently allocated memory blocks for the specified range of
 allocation groups. if ALastAllocationGroupToLog is less than
 AFirstAllocationGroupToLog or it is zero, then all allocation groups are
 logged. This routine also checks the memory pool for consistency at the same
 time, raising an "Out of Memory" error if the check fails.}
procedure LogAllocatedBlocksToFile(AFirstAllocationGroupToLog, ALastAllocationGroupToLog: Cardinal);
begin
  {Validate input}
  if (ALastAllocationGroupToLog = 0) or (ALastAllocationGroupToLog < AFirstAllocationGroupToLog) then
  begin
    {Bad input: log all groups}
    AFirstAllocationGroupToLog := 0;
    ALastAllocationGroupToLog := $ffffffff;
  end;
  {Scan the memory pool, logging allocated blocks in the requested range.}
  InternalScanMemoryPool(AFirstAllocationGroupToLog, ALastAllocationGroupToLog);
end;

{Scans the memory pool for any corruptions. If a corruption is encountered an "Out of Memory" exception is
 raised.}
procedure ScanMemoryPoolForCorruptions;
begin
  {Scan the memory pool for corruptions, but don't log any allocated blocks}
  InternalScanMemoryPool($ffffffff, 0);
end;

{-----------------------Invalid Virtual Method Calls-------------------------}

{ TFreedObject }

{Used to determine the index of the virtual method call on the freed object.
 Do not change this without updating MaxFakeVMTEntries. Currently 200.}
procedure TFreedObject.GetVirtualMethodIndex;
asm
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);
  Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex); Inc(VMIndex);

  jmp TFreedObject.VirtualMethodError
end;

procedure TFreedObject.VirtualMethodError;
var
  LVMOffset: Integer;
  LMsgPtr: PAnsiChar;
  LErrorMessage: array[0..32767] of AnsiChar;
{$ifndef NoMessageBoxes}
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
  LClass: TClass;
  LActualBlock: PFullDebugBlockHeader;
begin
  {Get the offset of the virtual method}
  LVMOffset := (MaxFakeVMTEntries - VMIndex) * SizeOf(Pointer) + vmtParent + SizeOf(Pointer);
  {Reset the index for the next error}
  VMIndex := 0;
  {Get the address of the actual block}
  LActualBlock := PFullDebugBlockHeader(PByte(Self) - SizeOf(TFullDebugBlockHeader));
  {Display the error header}
  LMsgPtr := AppendStringToBuffer(VirtualMethodErrorHeader, @LErrorMessage[0], Length(VirtualMethodErrorHeader));
  {Is the debug info surrounding the block valid?}
  if CalculateHeaderCheckSum(LActualBlock) = LActualBlock.HeaderCheckSum then
  begin
    {Get the class this block was used for previously}
    LClass := DetectClassInstance(@LActualBlock.PreviouslyUsedByClass);
    if (LClass <> nil) and (IntPtr(LClass) <> IntPtr(@FreedObjectVMT.VMTMethods[0])) then
    begin
      LMsgPtr := AppendStringToBuffer(FreedObjectClassMsg, LMsgPtr, Length(FreedObjectClassMsg));
      LMsgPtr := AppendClassNameToBuffer(LClass, LMsgPtr);
    end;
    {Get the virtual method name}
    LMsgPtr := AppendStringToBuffer(VirtualMethodName, LMsgPtr, Length(VirtualMethodName));
    if LVMOffset < 0 then
    begin
      LMsgPtr := AppendStringToBuffer(StandardVirtualMethodNames[LVMOffset div SizeOf(Pointer)], LMsgPtr, Length(StandardVirtualMethodNames[LVMOffset div SizeOf(Pointer)]));
    end
    else
    begin
      LMsgPtr := AppendStringToBuffer(VirtualMethodOffset, LMsgPtr, Length(VirtualMethodOffset));
      LMsgPtr := NativeUIntToStrBuf(LVMOffset, LMsgPtr);
    end;
    {Virtual method address}
    if (LClass <> nil) and (IntPtr(LClass) <> IntPtr(@FreedObjectVMT.VMTMethods[0])) then
    begin
      LMsgPtr := AppendStringToBuffer(VirtualMethodAddress, LMsgPtr, Length(VirtualMethodAddress));
      LMsgPtr := NativeUIntToHexBuf(PNativeUInt(PByte(LClass) + LVMOffset)^, LMsgPtr);
    end;
    {Log the allocation group}
    if LActualBlock.AllocationGroup > 0 then
    begin
      LMsgPtr := AppendStringToBuffer(PreviousAllocationGroupMsg, LMsgPtr, Length(PreviousAllocationGroupMsg));
      LMsgPtr := NativeUIntToStrBuf(LActualBlock.AllocationGroup, LMsgPtr);
    end;
    {Log the allocation number}
    LMsgPtr := AppendStringToBuffer(PreviousAllocationNumberMsg, LMsgPtr, Length(PreviousAllocationNumberMsg));
    LMsgPtr := NativeUIntToStrBuf(LActualBlock.AllocationNumber, LMsgPtr);
    {The header is still intact - display info about the this/previous allocation}
    if LActualBlock.AllocationStackTrace[0] <> 0 then
    begin
      LMsgPtr := AppendStringToBuffer(ThreadIDAtObjectAllocMsg, LMsgPtr, Length(ThreadIDAtObjectAllocMsg));
      LMsgPtr := NativeUIntToHexBuf(LActualBlock.AllocatedByThread, LMsgPtr);
      LMsgPtr := AppendStringToBuffer(StackTraceMsg, LMsgPtr, Length(StackTraceMsg));
      LMsgPtr := LogStackTrace(@LActualBlock.AllocationStackTrace, StackTraceDepth, LMsgPtr);
    end;
    {Get the call stack for the previous free}
    if LActualBlock.FreeStackTrace[0] <> 0 then
    begin
      LMsgPtr := AppendStringToBuffer(ThreadIDAtObjectFreeMsg, LMsgPtr, Length(ThreadIDAtObjectFreeMsg));
      LMsgPtr := NativeUIntToHexBuf(LActualBlock.FreedByThread, LMsgPtr);
      LMsgPtr := AppendStringToBuffer(StackTraceMsg, LMsgPtr, Length(StackTraceMsg));
      LMsgPtr := LogStackTrace(@LActualBlock.FreeStackTrace, StackTraceDepth, LMsgPtr);
    end;
  end
  else
  begin
    {Header has been corrupted}
    LMsgPtr := AppendStringToBuffer(BlockHeaderCorruptedNoHistoryMsg, LMsgPtr, Length(BlockHeaderCorruptedNoHistoryMsg));
  end;
  {Add the current stack trace}
  LMsgPtr := LogCurrentThreadAndStackTrace(2, LMsgPtr);
{$ifndef DisableLoggingOfMemoryDumps}
  {Add the pointer address}
  LMsgPtr := LogMemoryDump(LActualBlock, LMsgPtr);
{$endif}
  {Trailing CRLF}
  LMsgPtr^ := #13;
  Inc(LMsgPtr);
  LMsgPtr^ := #10;
  Inc(LMsgPtr);
  {Trailing #0}
  LMsgPtr^ := #0;
{$ifdef LogErrorsToFile}
  {Log the error}
  AppendEventLog(@LErrorMessage[0], NativeUInt(LMsgPtr) - NativeUInt(@LErrorMessage[0]));
{$endif}
{$ifdef UseOutputDebugString}
  OutputDebugStringA(LErrorMessage);
{$endif}
{$ifndef NoMessageBoxes}
  {Show the message}
  AppendStringToModuleName(BlockErrorMsgTitle, LErrorMessageTitle);
  ShowMessageBox(LErrorMessage, LErrorMessageTitle);
{$endif}
  {Raise an access violation}
  RaiseException(EXCEPTION_ACCESS_VIOLATION, 0, 0, nil);
end;

{$ifdef CatchUseOfFreedInterfaces}
procedure TFreedObject.InterfaceError;
var
  LMsgPtr: PAnsiChar;
{$ifndef NoMessageBoxes}
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
  LErrorMessage: array[0..4000] of AnsiChar;
begin
  {Display the error header}
  LMsgPtr := AppendStringToBuffer(InterfaceErrorHeader, @LErrorMessage[0], Length(InterfaceErrorHeader));
  {Add the current stack trace}
  LMsgPtr := LogCurrentThreadAndStackTrace(2, LMsgPtr);
  {Trailing CRLF}
  LMsgPtr^ := #13;
  Inc(LMsgPtr);
  LMsgPtr^ := #10;
  Inc(LMsgPtr);
  {Trailing #0}
  LMsgPtr^ := #0;
{$ifdef LogErrorsToFile}
  {Log the error}
  AppendEventLog(@LErrorMessage[0], NativeUInt(LMsgPtr) - NativeUInt(@LErrorMessage[0]));
{$endif}
{$ifdef UseOutputDebugString}
  OutputDebugStringA(LErrorMessage);
{$endif}
{$ifndef NoMessageBoxes}
  {Show the message}
  AppendStringToModuleName(BlockErrorMsgTitle, LErrorMessageTitle);
  ShowMessageBox(LErrorMessage, LErrorMessageTitle);
{$endif}
  {Raise an access violation}
  RaiseException(EXCEPTION_ACCESS_VIOLATION, 0, 0, nil);
end;
{$endif}

{$endif}

{----------------------------Memory Leak Checking-----------------------------}

{$ifdef EnableMemoryLeakReporting}

{Adds a leak to the specified list}
function UpdateExpectedLeakList(APLeakList: PPExpectedMemoryLeak;
  APNewEntry: PExpectedMemoryLeak; AExactSizeMatch: Boolean = True): Boolean;
var
  LPInsertAfter, LPNewEntry: PExpectedMemoryLeak;
begin
  {Default to error}
  Result := False;
  {Find the insertion spot}
  LPInsertAfter := APLeakList^;
  while LPInsertAfter <> nil do
  begin
    {Too big?}
    if LPInsertAfter.LeakSize > APNewEntry.LeakSize then
    begin
      LPInsertAfter := LPInsertAfter.PreviousLeak;
      Break;
    end;
    {Find a matching entry. If an exact size match is not required and the leak
     is larger than the current entry, use it if the expected size of the next
     entry is too large.}
    if (IntPtr(LPInsertAfter.LeakAddress) = IntPtr(APNewEntry.LeakAddress))
      and ((IntPtr(LPInsertAfter.LeakedClass) = IntPtr(APNewEntry.LeakedClass))
      {$ifdef CheckCppObjectTypeEnabled}
       or (LPInsertAfter.LeakedCppTypeIdPtr = APNewEntry.LeakedCppTypeIdPtr)
      {$endif}
      )
      and ((LPInsertAfter.LeakSize = APNewEntry.LeakSize)
        or ((not AExactSizeMatch)
          and (LPInsertAfter.LeakSize < APNewEntry.LeakSize)
          and ((LPInsertAfter.NextLeak = nil)
            or (LPInsertAfter.NextLeak.LeakSize > APNewEntry.LeakSize))
          )) then
    begin
      if (LPInsertAfter.LeakCount + APNewEntry.LeakCount) >= 0 then
      begin
        Inc(LPInsertAfter.LeakCount, APNewEntry.LeakCount);
        {Is the count now 0?}
        if LPInsertAfter.LeakCount = 0 then
        begin
          {Delete the entry}
          if LPInsertAfter.NextLeak <> nil then
            LPInsertAfter.NextLeak.PreviousLeak := LPInsertAfter.PreviousLeak;
          if LPInsertAfter.PreviousLeak <> nil then
            LPInsertAfter.PreviousLeak.NextLeak := LPInsertAfter.NextLeak
          else
            APLeakList^ := LPInsertAfter.NextLeak;
          {Insert it as the first free slot}
          LPInsertAfter.NextLeak := ExpectedMemoryLeaks.FirstFreeSlot;
          ExpectedMemoryLeaks.FirstFreeSlot := LPInsertAfter;
        end;
        Result := True;
      end;
      Exit;
    end;
    {Next entry}
    if LPInsertAfter.NextLeak <> nil then
      LPInsertAfter := LPInsertAfter.NextLeak
    else
      Break;
  end;
  if APNewEntry.LeakCount > 0 then
  begin
    {Get a position for the entry}
    LPNewEntry := ExpectedMemoryLeaks.FirstFreeSlot;
    if LPNewEntry <> nil then
    begin
      ExpectedMemoryLeaks.FirstFreeSlot := LPNewEntry.NextLeak;
    end
    else
    begin
      if ExpectedMemoryLeaks.EntriesUsed < Length(ExpectedMemoryLeaks.ExpectedLeaks) then
      begin
        LPNewEntry := @ExpectedMemoryLeaks.ExpectedLeaks[ExpectedMemoryLeaks.EntriesUsed];
        Inc(ExpectedMemoryLeaks.EntriesUsed);
      end
      else
      begin
        {No more space}
        Exit;
      end;
    end;
    {Set the entry}
    LPNewEntry^ := APNewEntry^;
    {Insert it into the list}
    LPNewEntry.PreviousLeak := LPInsertAfter;
    if LPInsertAfter <> nil then
    begin
      LPNewEntry.NextLeak := LPInsertAfter.NextLeak;
      if LPNewEntry.NextLeak <> nil then
        LPNewEntry.NextLeak.PreviousLeak := LPNewEntry;
      LPInsertAfter.NextLeak := LPNewEntry;
    end
    else
    begin
      LPNewEntry.NextLeak := APLeakList^;
      if LPNewEntry.NextLeak <> nil then
        LPNewEntry.NextLeak.PreviousLeak := LPNewEntry;
      APLeakList^ := LPNewEntry;
    end;
    Result := True;
  end;
end;

{Locks the expected leaks. Returns false if the list could not be allocated.}
function LockExpectedMemoryLeaksList: Boolean;
begin
  {Lock the expected leaks list}
{$ifndef AssumeMultiThreaded}
  if IsMultiThread then
{$endif}
  begin
    while LockCmpxchg(0, 1, @ExpectedMemoryLeaksListLocked) <> 0 do
    begin
{$ifdef NeverSleepOnThreadContention}
  {$ifdef UseSwitchToThread}
      SwitchToThread;
  {$endif}
{$else}
      Sleep(InitialSleepTime);
      if LockCmpxchg(0, 1, @ExpectedMemoryLeaksListLocked) = 0 then
        Break;
      Sleep(AdditionalSleepTime);
{$endif}
    end;
  end;
  {Allocate the list if it does not exist}
  if ExpectedMemoryLeaks = nil then
    ExpectedMemoryLeaks := VirtualAlloc(nil, ExpectedMemoryLeaksListSize, MEM_COMMIT, PAGE_READWRITE);
  {Done}
  Result := ExpectedMemoryLeaks <> nil;
end;

{Registers expected memory leaks. Returns true on success. The list of leaked
 blocks is limited, so failure is possible if the list is full.}
function RegisterExpectedMemoryLeak(ALeakedPointer: Pointer): Boolean; overload;
var
  LNewEntry: TExpectedMemoryLeak;
begin
  {Fill out the structure}
{$ifndef FullDebugMode}
  LNewEntry.LeakAddress := ALeakedPointer;
{$else}
  LNewEntry.LeakAddress := Pointer(PByte(ALeakedPointer) - SizeOf(TFullDebugBlockHeader));
{$endif}
  LNewEntry.LeakedClass := nil;
  {$ifdef CheckCppObjectTypeEnabled}
  LNewEntry.LeakedCppTypeIdPtr := nil;
  {$endif}
  LNewEntry.LeakSize := 0;
  LNewEntry.LeakCount := 1;
  {Add it to the correct list}
  Result := LockExpectedMemoryLeaksList
    and UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryByAddress, @LNewEntry);
  ExpectedMemoryLeaksListLocked := False;
end;

function RegisterExpectedMemoryLeak(ALeakedObjectClass: TClass; ACount: Integer = 1): Boolean; overload;
var
  LNewEntry: TExpectedMemoryLeak;
begin
  {Fill out the structure}
  LNewEntry.LeakAddress := nil;
  LNewEntry.LeakedClass := ALeakedObjectClass;
  {$ifdef CheckCppObjectTypeEnabled}
  LNewEntry.LeakedCppTypeIdPtr := nil;
  {$endif}
  LNewEntry.LeakSize := ALeakedObjectClass.InstanceSize;
  LNewEntry.LeakCount := ACount;
  {Add it to the correct list}
  Result := LockExpectedMemoryLeaksList
    and UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryByClass, @LNewEntry);
  ExpectedMemoryLeaksListLocked := False;
end;

{$ifdef CheckCppObjectTypeEnabled}
function RegisterExpectedMemoryLeak(ALeakedCppVirtObjTypeIdPtr: Pointer; ACount: Integer): Boolean; overload;
var
  LNewEntry: TExpectedMemoryLeak;
begin
  {Fill out the structure}
  if Assigned(GetCppVirtObjSizeByTypeIdPtrFunc) then
  begin
    //Return 0 if not a proper type
    LNewEntry.LeakSize := GetCppVirtObjSizeByTypeIdPtrFunc(ALeakedCppVirtObjTypeIdPtr);
    if LNewEntry.LeakSize > 0 then
    begin
      LNewEntry.LeakAddress := nil;
      LNewEntry.LeakedClass := nil;
      LNewEntry.LeakedCppTypeIdPtr := ALeakedCppVirtObjTypeIdPtr;
      LNewEntry.LeakCount := ACount;
      {Add it to the correct list}
      Result := LockExpectedMemoryLeaksList
        and UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryByClass, @LNewEntry);
      ExpectedMemoryLeaksListLocked := False;
    end
    else
    begin
      Result := False;
    end;
  end
  else
  begin
    Result := False;
  end;
end;
{$endif}

function RegisterExpectedMemoryLeak(ALeakedBlockSize: NativeInt; ACount: Integer = 1): Boolean; overload;
var
  LNewEntry: TExpectedMemoryLeak;
begin
  {Fill out the structure}
  LNewEntry.LeakAddress := nil;
  LNewEntry.LeakedClass := nil;
  {$ifdef CheckCppObjectTypeEnabled}
  LNewEntry.LeakedCppTypeIdPtr := nil;
  {$endif}
  LNewEntry.LeakSize := ALeakedBlockSize;
  LNewEntry.LeakCount := ACount;
  {Add it to the correct list}
  Result := LockExpectedMemoryLeaksList
    and UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryBySizeOnly, @LNewEntry);
  ExpectedMemoryLeaksListLocked := False;
end;

function UnregisterExpectedMemoryLeak(ALeakedPointer: Pointer): Boolean; overload;
var
  LNewEntry: TExpectedMemoryLeak;
begin
  {Fill out the structure}
{$ifndef FullDebugMode}
  LNewEntry.LeakAddress := ALeakedPointer;
{$else}
  LNewEntry.LeakAddress := Pointer(PByte(ALeakedPointer) - SizeOf(TFullDebugBlockHeader));
{$endif}
  LNewEntry.LeakedClass := nil;
  {$ifdef CheckCppObjectTypeEnabled}
  LNewEntry.LeakedCppTypeIdPtr := nil;
  {$endif}
  LNewEntry.LeakSize := 0;
  LNewEntry.LeakCount := -1;
  {Remove it from the list}
  Result := LockExpectedMemoryLeaksList
    and UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryByAddress, @LNewEntry);
  ExpectedMemoryLeaksListLocked := False;
end;

function UnregisterExpectedMemoryLeak(ALeakedObjectClass: TClass; ACount: Integer = 1): Boolean; overload;
begin
  Result := RegisterExpectedMemoryLeak(ALeakedObjectClass, - ACount);
end;

{$ifdef CheckCppObjectTypeEnabled}
function UnregisterExpectedMemoryLeak(ALeakedCppVirtObjTypeIdPtr: Pointer; ACount: Integer): Boolean; overload;
begin
  Result := RegisterExpectedMemoryLeak(ALeakedCppVirtObjTypeIdPtr, - ACount);
end;
{$endif}

function UnregisterExpectedMemoryLeak(ALeakedBlockSize: NativeInt; ACount: Integer = 1): Boolean; overload;
begin
  Result := RegisterExpectedMemoryLeak(ALeakedBlockSize, - ACount);
end;

{Returns a list of all expected memory leaks}
function GetRegisteredMemoryLeaks: TRegisteredMemoryLeaks;

  procedure AddEntries(AEntry: PExpectedMemoryLeak);
  var
    LInd: Integer;
  begin
    while AEntry <> nil do
    begin
      LInd := Length(Result);
      SetLength(Result, LInd + 1);
      {Add the entry}
{$ifndef FullDebugMode}
      Result[LInd].LeakAddress := AEntry.LeakAddress;
{$else}
      Result[LInd].LeakAddress := Pointer(PByte(AEntry.LeakAddress) + SizeOf(TFullDebugBlockHeader));
{$endif}
      Result[LInd].LeakedClass := AEntry.LeakedClass;
{$ifdef CheckCppObjectTypeEnabled}
      Result[LInd].LeakedCppTypeIdPtr := AEntry.LeakedCppTypeIdPtr;
{$endif}
      Result[LInd].LeakSize := AEntry.LeakSize;
      Result[LInd].LeakCount := AEntry.LeakCount;
      {Next entry}
      AEntry := AEntry.NextLeak;
    end;
  end;

begin
  SetLength(Result, 0);
  if (ExpectedMemoryLeaks <> nil) and LockExpectedMemoryLeaksList then
  begin
    {Add all entries}
    AddEntries(ExpectedMemoryLeaks.FirstEntryByAddress);
    AddEntries(ExpectedMemoryLeaks.FirstEntryByClass);
    AddEntries(ExpectedMemoryLeaks.FirstEntryBySizeOnly);
    {Unlock the list}
    ExpectedMemoryLeaksListLocked := False;
  end;
end;

{$else}
  {$ifdef BDS2006AndUp}
function NoOpRegisterExpectedMemoryLeak(ALeakedPointer: Pointer): Boolean;
begin
  {Do nothing. Used when memory leak reporting is disabled under Delphi 2006 and later.}
  Result := False;
end;

function NoOpUnregisterExpectedMemoryLeak(ALeakedPointer: Pointer): Boolean;
begin
  {Do nothing. Used when memory leak reporting is disabled under Delphi 2006 and later.}
  Result := False;
end;
  {$endif}
{$endif}

{Detects the probable string data type for a memory block.}
function DetectStringData(APMemoryBlock: Pointer;
  AAvailableSpaceInBlock: NativeInt): TStringDataType;
const
  {If the string reference count field contains a value greater than this,
   then it is assumed that the block is not a string.}
  MaxRefCount = 255;
  {The lowest ASCII character code considered valid string data. If there are
   any characters below this code point then the data is assumed not to be a
   string. #9 = Tab.}
  MinCharCode = #9;
var
  LStringLength, LElemSize, LCharInd: Integer;
  LPAnsiStr: PAnsiChar;
  LPUniStr: PWideChar;
begin
  {Check that the reference count is within a reasonable range}
  if PStrRec(APMemoryBlock).refCnt > MaxRefCount then
  begin
    Result := stUnknown;
    Exit;
  end;
{$ifdef BCB6OrDelphi6AndUp}
  {$if RTLVersion >= 20}
  LElemSize := PStrRec(APMemoryBlock).elemSize;
  {Element size must be either 1 (Ansi) or 2 (Unicode)}
  if (LElemSize <> 1) and (LElemSize <> 2) then
  begin
    Result := stUnknown;
    Exit;
  end;
  {$ifend}
  {$if RTLVersion < 20}
  LElemSize := 1;
  {$ifend}
{$else}
  LElemSize := 1;
{$endif}
  {Get the string length}
  LStringLength := PStrRec(APMemoryBlock).length;
  {Does the string fit?}
  if (LStringLength <= 0)
    or (LStringLength >= (AAvailableSpaceInBlock - SizeOf(StrRec)) div LElemSize) then
  begin
    Result := stUnknown;
    Exit;
  end;
  {Check for no characters outside the expected range. If there are,
   then it is probably not a string.}
  if LElemSize = 1 then
  begin
    {Check that all characters are in the range considered valid.}
    LPAnsiStr := PAnsiChar(PByte(APMemoryBlock) + SizeOf(StrRec));
    for LCharInd := 1 to LStringLength do
    begin
      if LPAnsiStr^ < MinCharCode then
      begin
        Result := stUnknown;
        Exit;
      end;
      Inc(LPAnsiStr);
    end;
    {Must have a trailing #0}
    if LPAnsiStr^ = #0 then
      Result := stAnsiString
    else
      Result := stUnknown;
  end
  else
  begin
    {Check that all characters are in the range considered valid.}
    LPUniStr := PWideChar(PByte(APMemoryBlock) + SizeOf(StrRec));
    for LCharInd := 1 to LStringLength do
    begin
      if LPUniStr^ < MinCharCode then
      begin
        Result := stUnknown;
        Exit;
      end;
      Inc(LPUniStr);
    end;
    {Must have a trailing #0}
    if LPUniStr^ = #0 then
      Result := stUnicodeString
    else
      Result := stUnknown;
  end;
end;

{Walks all allocated blocks, calling ACallBack for each. Passes the user block size and AUserData to the callback.
 Important note: All block types will be locked during the callback, so the memory manager cannot be used inside it.}
procedure WalkAllocatedBlocks(ACallBack: TWalkAllocatedBlocksCallback; AUserData: Pointer);
const
  DebugHeaderSize = {$ifdef FullDebugMode}SizeOf(TFullDebugBlockHeader){$else}0{$endif};
  TotalDebugOverhead = {$ifdef FullDebugMode}FullDebugBlockOverhead{$else}0{$endif};
var
  LPMediumBlock: Pointer;
  LPMediumBlockPoolHeader: PMediumBlockPoolHeader;
  LMediumBlockHeader: NativeUInt;
  LPLargeBlock: PLargeBlockHeader;
  LBlockSize: NativeInt;
  LPSmallBlockPool: PSmallBlockPoolHeader;
  LCurPtr, LEndPtr: Pointer;
  LInd: Integer;
begin
  {Lock all small block types}
  LockAllSmallBlockTypes;
  {Lock the medium blocks}
  LockMediumBlocks;
  try
    {Step through all the medium block pools}
    LPMediumBlockPoolHeader := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
    while LPMediumBlockPoolHeader <> @MediumBlockPoolsCircularList do
    begin
      LPMediumBlock := GetFirstMediumBlockInPool(LPMediumBlockPoolHeader);
      while LPMediumBlock <> nil do
      begin
        LMediumBlockHeader := PNativeUInt(PByte(LPMediumBlock) - BlockHeaderSize)^;
        {Is the block in use?}
        if LMediumBlockHeader and IsFreeBlockFlag = 0 then
        begin
          if (LMediumBlockHeader and IsSmallBlockPoolInUseFlag) <> 0 then
          begin
            {Step through all the blocks in the small block pool}
            LPSmallBlockPool := LPMediumBlock;
            {Get the useable size inside a block}
            LBlockSize := LPSmallBlockPool.BlockType.BlockSize - BlockHeaderSize - TotalDebugOverhead;
            {Get the first and last pointer for the pool}
            GetFirstAndLastSmallBlockInPool(LPSmallBlockPool, LCurPtr, LEndPtr);
            {Step through all blocks}
            while UIntPtr(LCurPtr) <= UIntPtr(LEndPtr) do
            begin
              {Is this block in use?}
              if (PNativeUInt(PByte(LCurPtr) - BlockHeaderSize)^ and IsFreeBlockFlag) = 0 then
              begin
                ACallBack(PByte(LCurPtr) + DebugHeaderSize, LBlockSize, AUserData);
              end;
              {Next block}
              Inc(PByte(LCurPtr), LPSmallBlockPool.BlockType.BlockSize);
            end;
          end
          else
          begin
            LBlockSize := (LMediumBlockHeader and DropMediumAndLargeFlagsMask) - BlockHeaderSize - TotalDebugOverhead;
            ACallBack(PByte(LPMediumBlock) + DebugHeaderSize, LBlockSize, AUserData);
          end;
        end;
        {Next medium block}
        LPMediumBlock := NextMediumBlock(LPMediumBlock);
      end;
      {Get the next medium block pool}
      LPMediumBlockPoolHeader := LPMediumBlockPoolHeader.NextMediumBlockPoolHeader;
    end;
  finally
    {Unlock medium blocks}
    MediumBlocksLocked := False;
    {Unlock all the small block types}
    for LInd := 0 to NumSmallBlockTypes - 1 do
      SmallBlockTypes[LInd].BlockTypeLocked := False;
  end;
  {Step through all the large blocks}
  LockLargeBlocks;
  try
    {Get all leaked large blocks}
    LPLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
    while LPLargeBlock <> @LargeBlocksCircularList do
    begin
      LBlockSize := (LPLargeBlock.BlockSizeAndFlags and DropMediumAndLargeFlagsMask) - BlockHeaderSize - LargeBlockHeaderSize - TotalDebugOverhead;
      ACallBack(PByte(LPLargeBlock) + LargeBlockHeaderSize + DebugHeaderSize, LBlockSize, AUserData);
      {Get the next large block}
      LPLargeBlock := LPLargeBlock.NextLargeBlockHeader;
    end;
  finally
    LargeBlocksLocked := False;
  end;
end;

{-----------LogMemoryManagerStateToFile implementation------------}
const
  MaxMemoryLogNodes = 100000;
  QuickSortMinimumItemsInPartition = 4;

type
  {While scanning the memory pool the list of classes is built up in a binary search tree.}
  PMemoryLogNode = ^TMemoryLogNode;
  TMemoryLogNode = record
    {The left and right child nodes}
    LeftAndRightNodePointers: array[Boolean] of PMemoryLogNode;
    {The class this node belongs to}
    ClassPtr: Pointer;
    {The number of instances of the class}
    InstanceCount: NativeInt;
    {The total memory usage for this class}
    TotalMemoryUsage: NativeInt;
  end;
  TMemoryLogNodes = array[0..MaxMemoryLogNodes - 1] of TMemoryLogNode;
  PMemoryLogNodes = ^TMemoryLogNodes;

  TMemoryLogInfo = record
    {The number of nodes in "Nodes" that are used.}
    NodeCount: Integer;
    {The root node of the binary search tree. The content of this node is not actually used, it just simplifies the
     binary search code.}
    RootNode: TMemoryLogNode;
    Nodes: TMemoryLogNodes;
  end;
  PMemoryLogInfo = ^TMemoryLogInfo;

{LogMemoryManagerStateToFile callback subroutine}
procedure LogMemoryManagerStateCallBack(APBlock: Pointer; ABlockSize: NativeInt; AUserData: Pointer);
var
  LClass, LClassHashBits: NativeUInt;
  LPLogInfo: PMemoryLogInfo;
  LPParentNode, LPClassNode: PMemoryLogNode;
  LChildNodeDirection: Boolean;
begin
  LPLogInfo := AUserData;
  {Detecting an object is very expensive (due to the VirtualQuery call), so we do some basic checks and try to find
   the "class" in the tree first.}
  LClass := PNativeUInt(APBlock)^;
  {Do some basic pointer checks: The "class" must be dword aligned and beyond 64K}
  if (LClass > 65535)
    and (LClass and 3 = 0) then
  begin
    LPParentNode := @LPLogInfo.RootNode;
    LClassHashBits := LClass;
    repeat
      LChildNodeDirection := Boolean(LClassHashBits and 1);
      {Split off the next bit of the class pointer and traverse in the appropriate direction.}
      LPClassNode := LPParentNode.LeftAndRightNodePointers[LChildNodeDirection];
      {Is this child node the node the class we're looking for?}
      if (LPClassNode = nil) or (NativeUInt(LPClassNode.ClassPtr) = LClass) then
        Break;
      {The node was not found: Keep on traversing the tree.}
      LClassHashBits := LClassHashBits shr 1;
      LPParentNode := LPClassNode;
    until False;
  end
  else
    LPClassNode := nil;
  {Was the "class" found?}
  if LPClassNode = nil then
  begin
    {The "class" is not yet in the tree: Determine if it is actually a class.}
    LClass := NativeUInt(DetectClassInstance(APBlock));
    {If it is not a class, try to detect the string type.}
    if LClass = 0 then
      LClass := Ord(DetectStringData(APBlock, ABlockSize));
    {Is this class already in the tree?}
    LPParentNode := @LPLogInfo.RootNode;
    LClassHashBits := LClass;
    repeat
      LChildNodeDirection := Boolean(LClassHashBits and 1);
      {Split off the next bit of the class pointer and traverse in the appropriate direction.}
      LPClassNode := LPParentNode.LeftAndRightNodePointers[LChildNodeDirection];
      {Is this child node the node the class we're looking for?}
      if LPClassNode = nil then
      begin
        {The end of the tree was reached: Add a new child node.}
        LPClassNode := @LPLogInfo.Nodes[LPLogInfo.NodeCount];
        Inc(LPLogInfo.NodeCount);
        LPParentNode.LeftAndRightNodePointers[LChildNodeDirection] := LPClassNode;
        LPClassNode.ClassPtr := Pointer(LClass);
        Break;
      end
      else
      begin
        if NativeUInt(LPClassNode.ClassPtr) = LClass then
          Break;
      end;
      {The node was not found: Keep on traversing the tree.}
      LClassHashBits := LClassHashBits shr 1;
      LPParentNode := LPClassNode;
    until False;
  end;
  {Update the statistics for the class}
  Inc(LPClassNode.InstanceCount);
  Inc(LPClassNode.TotalMemoryUsage, ABlockSize);
end;

{LogMemoryManagerStateToFile subroutine: A median-of-3 quicksort routine for sorting a TMemoryLogNodes array.}
procedure QuickSortLogNodes(APLeftItem: PMemoryLogNodes; ARightIndex: Integer);
var
  M, I, J: Integer;
  LPivot, LTempItem: TMemoryLogNode;
begin
  while True do
  begin
    {Order the left, middle and right items in ascending order}
    M := ARightIndex shr 1;
    {Is the middle item larger than the left item?}
    if APLeftItem[0].TotalMemoryUsage > APLeftItem[M].TotalMemoryUsage then
    begin
      {Swap items 0 and M}
      LTempItem := APLeftItem[0];
      APLeftItem[0] := APLeftItem[M];
      APLeftItem[M] := LTempItem;
    end;
    {Is the middle item larger than the right?}
    if APLeftItem[M].TotalMemoryUsage > APLeftItem[ARightIndex].TotalMemoryUsage then
    begin
      {The right-hand item is not larger - swap it with the middle}
      LTempItem := APLeftItem[ARightIndex];
      APLeftItem[ARightIndex] := APLeftItem[M];
      APLeftItem[M] := LTempItem;
      {Is the left larger than the new middle?}
      if APLeftItem[0].TotalMemoryUsage > APLeftItem[M].TotalMemoryUsage then
      begin
        {Swap items 0 and M}
        LTempItem := APLeftItem[0];
        APLeftItem[0] := APLeftItem[M];
        APLeftItem[M] := LTempItem;
      end;
    end;
    {Move the pivot item out of the way by swapping M with R - 1}
    LPivot := APLeftItem[M];
    APLeftItem[M] := APLeftItem[ARightIndex - 1];
    APLeftItem[ARightIndex - 1] := LPivot;
    {Set up the loop counters}
    I := 0;
    J := ARightIndex - 1;
    while true do
    begin
      {Find the first item from the left that is not smaller than the pivot}
      repeat
        Inc(I);
      until APLeftItem[I].TotalMemoryUsage >= LPivot.TotalMemoryUsage;
      {Find the first item from the right that is not larger than the pivot}
      repeat
        Dec(J);
      until APLeftItem[J].TotalMemoryUsage <= LPivot.TotalMemoryUsage;
      {Stop the loop when the two indexes cross}
      if J < I then
        Break;
      {Swap item I and J}
      LTempItem := APLeftItem[I];
      APLeftItem[I] := APLeftItem[J];
      APLeftItem[J] := LTempItem;
    end;
    {Put the pivot item back in the correct position by swapping I with R - 1}
    APLeftItem[ARightIndex - 1] := APLeftItem[I];
    APLeftItem[I] := LPivot;
    {Sort the left-hand partition}
    if J >= (QuickSortMinimumItemsInPartition - 1) then
      QuickSortLogNodes(APLeftItem, J);
    {Sort the right-hand partition}
    APLeftItem := @APLeftItem[I + 1];
    ARightIndex := ARightIndex - I - 1;
    if ARightIndex < (QuickSortMinimumItemsInPartition - 1) then
      Break;
  end;
end;

{LogMemoryManagerStateToFile subroutine: An InsertionSort routine for sorting a TMemoryLogNodes array.}
procedure InsertionSortLogNodes(APLeftItem: PMemoryLogNodes; ARightIndex: Integer);
var
  I, J: Integer;
  LCurNode: TMemoryLogNode;
begin
  for I := 1 to ARightIndex do
  begin
    LCurNode := APLeftItem[I];
    {Scan backwards to find the best insertion spot}
    J := I;
    while (J > 0) and (APLeftItem[J - 1].TotalMemoryUsage > LCurNode.TotalMemoryUsage) do
    begin
      APLeftItem[J] := APLeftItem[J - 1];
      Dec(J);
    end;
    APLeftItem[J] := LCurNode;
  end;
end;

{Writes a log file containing a summary of the memory mananger state and a summary of allocated blocks grouped by
 class. The file will be saved in UTF-8 encoding (in supported Delphi versions). Returns True on success. }
function LogMemoryManagerStateToFile(const AFileName: string; const AAdditionalDetails: string): Boolean;
const
  MsgBufferSize = 65536;
  MaxLineLength = 512;
  {Write the UTF-8 BOM in Delphi versions that support UTF-8 conversion.}
  LogStateHeaderMsg = {$ifdef BCB6OrDelphi7AndUp}#$EF#$BB#$BF + {$endif}
    'FastMM State Capture:'#13#10'---------------------'#13#10#13#10;
  LogStateAllocatedMsg = 'K Allocated'#13#10;
  LogStateOverheadMsg = 'K Overhead'#13#10;
  LogStateEfficiencyMsg = '% Efficiency'#13#10#13#10'Usage Detail:'#13#10;
  LogStateAdditionalInfoMsg = #13#10'Additional Information:'#13#10'-----------------------'#13#10;
var
  LPLogInfo: PMemoryLogInfo;
  LInd: Integer;
  LPNode: PMemoryLogNode;
  LMsgBuffer: array[0..MsgBufferSize - 1] of AnsiChar;
  LPMsg: PAnsiChar;
  LBufferSpaceUsed, LBytesWritten: Cardinal;
  LFileHandle: NativeUInt;
  LMemoryManagerUsageSummary: TMemoryManagerUsageSummary;
  LUTF8Str: AnsiString;
begin
  {Get the current memory manager usage summary.}
  GetMemoryManagerUsageSummary(LMemoryManagerUsageSummary);
  {Allocate the memory required to capture detailed allocation information.}
  LPLogInfo := VirtualAlloc(nil, SizeOf(TMemoryLogInfo), MEM_COMMIT or MEM_TOP_DOWN, PAGE_READWRITE);
  if LPLogInfo <> nil then
  begin
    try
      {Log all allocated blocks by class.}
      WalkAllocatedBlocks(LogMemoryManagerStateCallBack, LPLogInfo);
      {Sort the classes by total memory usage: Do the initial QuickSort pass over the list to sort the list in groups
       of QuickSortMinimumItemsInPartition size.}
      if LPLogInfo.NodeCount >= QuickSortMinimumItemsInPartition then
        QuickSortLogNodes(@LPLogInfo.Nodes[0], LPLogInfo.NodeCount - 1);
      {Do the final InsertionSort pass.}
      InsertionSortLogNodes(@LPLogInfo.Nodes[0], LPLogInfo.NodeCount - 1);
      {Create the output file}
      {$ifdef POSIX}
      lFileHandle := FileCreate(AFilename);
      {$else}
      LFileHandle := CreateFileA(PAnsiChar(AFilename), GENERIC_READ or GENERIC_WRITE, 0,
        nil, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
      {$endif}
      if LFileHandle <> INVALID_HANDLE_VALUE then
      begin
        try
          {Log the usage summary}
          LPMsg := @LMsgBuffer;
          LPMsg := AppendStringToBuffer(LogStateHeaderMsg, LPMsg, Length(LogStateHeaderMsg));
          LPMsg := NativeUIntToStrBuf(LMemoryManagerUsageSummary.AllocatedBytes shr 10, LPMsg);
          LPMsg := AppendStringToBuffer(LogStateAllocatedMsg, LPMsg, Length(LogStateAllocatedMsg));
          LPMsg := NativeUIntToStrBuf(LMemoryManagerUsageSummary.OverheadBytes shr 10, LPMsg);
          LPMsg := AppendStringToBuffer(LogStateOverheadMsg, LPMsg, Length(LogStateOverheadMsg));
          LPMsg := NativeUIntToStrBuf(Round(LMemoryManagerUsageSummary.EfficiencyPercentage), LPMsg);
          LPMsg := AppendStringToBuffer(LogStateEfficiencyMsg, LPMsg, Length(LogStateEfficiencyMsg));
          {Log the allocation detail}
          for LInd := LPLogInfo.NodeCount - 1 downto 0 do
          begin
            LPNode := @LPLogInfo.Nodes[LInd];
            {Add the allocated size}
            LPMsg^ := ' ';
            Inc(LPMsg);
            LPMsg := NativeUIntToStrBuf(LPNode.TotalMemoryUsage, LPMsg);
            LPMsg := AppendStringToBuffer(BytesMessage, LPMsg, Length(BytesMessage));
            {Add the class type}
            case NativeInt(LPNode.ClassPtr) of
              {Unknown}
              0:
              begin
                LPMsg := AppendStringToBuffer(UnknownClassNameMsg, LPMsg, Length(UnknownClassNameMsg));
              end;
              {AnsiString}
              1:
              begin
                LPMsg := AppendStringToBuffer(AnsiStringBlockMessage, LPMsg, Length(AnsiStringBlockMessage));
              end;
              {UnicodeString}
              2:
              begin
                LPMsg := AppendStringToBuffer(UnicodeStringBlockMessage, LPMsg, Length(UnicodeStringBlockMessage));
              end;
              {Classes}
            else
              begin
                LPMsg := AppendClassNameToBuffer(LPNode.ClassPtr, LPMsg);
              end;
            end;
            {Add the count}
            LPMsg^ := ' ';
            Inc(LPMsg);
            LPMsg^ := 'x';
            Inc(LPMsg);
            LPMsg^ := ' ';
            Inc(LPMsg);
            LPMsg := NativeUIntToStrBuf(LPNode.InstanceCount, LPMsg);
            LPMsg^ := #13;
            Inc(LPMsg);
            LPMsg^ := #10;
            Inc(LPMsg);
            {Flush the buffer?}
            LBufferSpaceUsed := NativeInt(LPMsg) - NativeInt(@LMsgBuffer);
            if LBufferSpaceUsed > (MsgBufferSize - MaxLineLength) then
            begin
              WriteFile(LFileHandle, LMsgBuffer, LBufferSpaceUsed, LBytesWritten, nil);
              LPMsg := @LMsgBuffer;
            end;
          end;
          if AAdditionalDetails <> '' then
            LPMsg := AppendStringToBuffer(LogStateAdditionalInfoMsg, LPMsg, Length(LogStateAdditionalInfoMsg));
          {Flush any remaining bytes}
          LBufferSpaceUsed := NativeInt(LPMsg) - NativeInt(@LMsgBuffer);
          if LBufferSpaceUsed > 0 then
            WriteFile(LFileHandle, LMsgBuffer, LBufferSpaceUsed, LBytesWritten, nil);
          {Write the additional info}
          if AAdditionalDetails <> '' then
          begin
            {$ifdef BCB6OrDelphi7AndUp}
            LUTF8Str := UTF8Encode(AAdditionalDetails);
            {$else}
            LUTF8Str := AAdditionalDetails;
            {$endif}
            WriteFile(LFileHandle, LUTF8Str[1], Length(LUTF8Str), LBytesWritten, nil);
          end;
          {Success}
          Result := True;
        finally
          {Close the file}
          {$ifdef POSIX}
          __close(LFileHandle)
          {$else}
          CloseHandle(LFileHandle);
          {$endif}
        end;
      end
      else
        Result := False;
    finally
      VirtualFree(LPLogInfo, 0, MEM_RELEASE);
    end;
  end
  else
    Result := False;
end;

{-----------CheckBlocksOnShutdown implementation------------}

{Checks blocks for modification after free and also for memory leaks}
procedure CheckBlocksOnShutdown(ACheckForLeakedBlocks: Boolean);
{$ifdef EnableMemoryLeakReporting}
type
  {Leaked class type}
  TLeakedClass = record
    ClassPointer: TClass;
    {$ifdef CheckCppObjectTypeEnabled}
    CppTypeIdPtr: Pointer;
    {$endif}
    NumLeaks: Cardinal;
  end;
  TLeakedClasses = array[0..255] of TLeakedClass;
  PLeakedClasses = ^TLeakedClasses;
  {Leak statistics for a small block type}
  TSmallBlockLeaks = array[0..NumSmallBlockTypes - 1] of TLeakedClasses;
  {A leaked medium or large block}
  TMediumAndLargeBlockLeaks = array[0..4095] of NativeUInt;
{$endif}
var
{$ifdef EnableMemoryLeakReporting}
  {The leaked classes for small blocks}
  LSmallBlockLeaks: TSmallBlockLeaks;
  LLeakType: TMemoryLeakType;
  {$ifdef CheckCppObjectTypeEnabled}
  LLeakedCppTypeIdPtr: Pointer;
  LCppTypeName: PAnsiChar;
  {$endif}
  LMediumAndLargeBlockLeaks: TMediumAndLargeBlockLeaks;
  LNumMediumAndLargeLeaks: Integer;
  LPLargeBlock: PLargeBlockHeader;
  LLeakMessage: array[0..32767] of AnsiChar;
  {$ifndef NoMessageBoxes}
  LMessageTitleBuffer: array[0..1023] of AnsiChar;
  {$endif}
  LMsgPtr: PAnsiChar;
  LExpectedLeaksOnly, LSmallLeakHeaderAdded, LBlockSizeHeaderAdded: Boolean;
  LBlockTypeInd, LClassInd, LBlockInd: Cardinal;
  LMediumBlockSize, LPreviousBlockSize, LLargeBlockSize, LThisBlockSize: NativeUInt;
{$endif}
  LPMediumBlock: Pointer;
  LPMediumBlockPoolHeader: PMediumBlockPoolHeader;
  LMediumBlockHeader: NativeUInt;

{$ifdef EnableMemoryLeakReporting}
  {Tries to account for a memory leak. Returns true if the leak is expected and
   removes the leak from the list}
  function GetMemoryLeakType(AAddress: Pointer; ASpaceInsideBlock: NativeUInt): TMemoryLeakType;
  var
    LLeak: TExpectedMemoryLeak;
  begin
    {Default to not found}
    Result := mltUnexpectedLeak;
    if ExpectedMemoryLeaks <> nil then
    begin
      {Check by pointer address}
      LLeak.LeakAddress := AAddress;
      LLeak.LeakedClass := nil;
      {$ifdef CheckCppObjectTypeEnabled}
      LLeak.LeakedCppTypeIdPtr := nil;
      {$endif}
      LLeak.LeakSize := 0;
      LLeak.LeakCount := -1;
      if UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryByAddress, @LLeak, False) then
      begin
        Result := mltExpectedLeakRegisteredByPointer;
        Exit;
      end;
      {Check by class}
      LLeak.LeakAddress := nil;
      {$ifdef FullDebugMode}
      LLeak.LeakedClass := TClass(PNativeUInt(PByte(AAddress)+ SizeOf(TFullDebugBlockHeader))^);
      {$else}
      LLeak.LeakedClass := TClass(PNativeUInt(AAddress)^);
      {$endif}
      {$ifdef CheckCppObjectTypeEnabled}
      if Assigned(GetCppVirtObjTypeIdPtrFunc) then
      begin
        {$ifdef FullDebugMode}
        LLeak.LeakedCppTypeIdPtr := GetCppVirtObjTypeIdPtrFunc(Pointer(PByte(AAddress)
          + SizeOf(TFullDebugBlockHeader)), ASpaceInsideBlock);
        {$else}
        LLeak.LeakedCppTypeIdPtr := GetCppVirtObjTypeIdPtrFunc(AAddress, ASpaceInsideBlock);
        {$endif}
      end;
      LLeakedCppTypeIdPtr := LLeak.LeakedCppTypeIdPtr;
      {$endif}
      LLeak.LeakSize := ASpaceInsideBlock;
      if UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryByClass, @LLeak, False) then
      begin
        Result := mltExpectedLeakRegisteredByClass;
        Exit;
      end;
      {Check by size: the block must be large enough to hold the leak}
      LLeak.LeakedClass := nil;
      if UpdateExpectedLeakList(@ExpectedMemoryLeaks.FirstEntryBySizeOnly, @LLeak, False) then
        Result := mltExpectedLeakRegisteredBySize;
    end;
  end;

  {Checks the small block pool for leaks.}
  procedure CheckSmallBlockPoolForLeaks(APSmallBlockPool: PSmallBlockPoolHeader);
  var
    LLeakedClass: TClass;
    {$ifdef CheckCppObjectTypeEnabled}
    LLeakedCppObjectTypeId: Pointer;
    {$endif}
    LSmallBlockLeakType: TMemoryLeakType;
    LClassIndex: Integer;
    LCurPtr, LEndPtr, LDataPtr: Pointer;
    LBlockTypeIndex: Cardinal;
    LPLeakedClasses: PLeakedClasses;
    LSmallBlockSize: Cardinal;
  begin
    {Get the useable size inside a block}
    LSmallBlockSize := APSmallBlockPool.BlockType.BlockSize - BlockHeaderSize;
  {$ifdef FullDebugMode}
    Dec(LSmallBlockSize, FullDebugBlockOverhead);
  {$endif}
    {Get the block type index}
    LBlockTypeIndex := (UIntPtr(APSmallBlockPool.BlockType) - UIntPtr(@SmallBlockTypes[0])) div SizeOf(TSmallBlockType);
    LPLeakedClasses := @LSmallBlockLeaks[LBlockTypeIndex];
    {Get the first and last pointer for the pool}
    GetFirstAndLastSmallBlockInPool(APSmallBlockPool, LCurPtr, LEndPtr);
    {Step through all blocks}
    while UIntPtr(LCurPtr) <= UIntPtr(LEndPtr) do
    begin
      {Is this block in use? If so, is the debug info intact?}
      if ((PNativeUInt(PByte(LCurPtr) - BlockHeaderSize)^ and IsFreeBlockFlag) = 0) then
      begin
  {$ifdef FullDebugMode}
        if CheckBlockBeforeFreeOrRealloc(LCurPtr, boBlockCheck) then
  {$endif}
        begin
          {$ifdef CheckCppObjectTypeEnabled}
          LLeakedCppTypeIdPtr := nil;
          {$endif}
          {Get the leak type}
          LSmallBlockLeakType := GetMemoryLeakType(LCurPtr, LSmallBlockSize);
    {$ifdef LogMemoryLeakDetailToFile}
      {$ifdef HideExpectedLeaksRegisteredByPointer}
          if LSmallBlockLeakType <> mltExpectedLeakRegisteredByPointer then
      {$endif}
            LogMemoryLeakOrAllocatedBlock(LCurPtr, True);
    {$endif}
          {Only expected leaks?}
          LExpectedLeaksOnly := LExpectedLeaksOnly and (LSmallBlockLeakType <> mltUnexpectedLeak);
    {$ifdef HideExpectedLeaksRegisteredByPointer}
          if LSmallBlockLeakType <> mltExpectedLeakRegisteredByPointer then
    {$endif}
          begin
            {Get a pointer to the user data}
    {$ifndef FullDebugMode}
            LDataPtr := LCurPtr;
    {$else}
            LDataPtr := Pointer(PByte(LCurPtr) + SizeOf(TFullDebugBlockHeader));
    {$endif}
            {Default to an unknown block}
            LClassIndex := 0;
            {Get the class contained by the block}
            LLeakedClass := DetectClassInstance(LDataPtr);
            {Not a Delphi class? -> is it perhaps a string or C++ object type?}
            if LLeakedClass = nil then
            begin
              {$ifdef CheckCppObjectTypeEnabled}
              LLeakedCppObjectTypeId := LLeakedCppTypeIdPtr;
              if (LLeakedCppObjectTypeId = nil) and (ExpectedMemoryLeaks = nil) then
              begin
                if Assigned(GetCppVirtObjTypeIdPtrFunc) then
                begin
                  LLeakedCppObjectTypeId := GetCppVirtObjTypeIdPtrFunc(LDataPtr, LSmallBlockSize);
                end;
              end;
              if Assigned(LLeakedCppObjectTypeId) then
              begin
                LClassIndex := 3;
                while LClassIndex <= High(TLeakedClasses) do
                begin
                  if (Pointer(LPLeakedClasses[LClassIndex].CppTypeIdPtr) = LLeakedCppObjectTypeId)
                    or ((LPLeakedClasses[LClassIndex].CppTypeIdPtr = nil)
                    and (LPLeakedClasses[LClassIndex].ClassPointer = nil)) then
                  begin
                    Break;
                  end;
                  Inc(LClassIndex);
                end;
                if LClassIndex <= High(TLeakedClasses) then
                  Pointer(LPLeakedClasses[LClassIndex].CppTypeIdPtr) := LLeakedCppObjectTypeId
                else
                  LClassIndex := 0;
              end
              else
              begin
              {$endif}
                {Not a known class: Is it perhaps string data?}
                case DetectStringData(LDataPtr, APSmallBlockPool.BlockType.BlockSize - (BlockHeaderSize {$ifdef FullDebugMode} + FullDebugBlockOverhead{$endif})) of
                  stAnsiString: LClassIndex := 1;
                  stUnicodeString: LClassIndex := 2;
                end;
              {$ifdef CheckCppObjectTypeEnabled}
              end;
              {$endif}
            end
            else
            begin
              LClassIndex := 3;
              while LClassIndex <= High(TLeakedClasses) do
              begin
                if (LPLeakedClasses[LClassIndex].ClassPointer = LLeakedClass)
                  or ((LPLeakedClasses[LClassIndex].ClassPointer = nil)
                  {$ifdef CheckCppObjectTypeEnabled}
                  and (LPLeakedClasses[LClassIndex].CppTypeIdPtr = nil)
                  {$endif}
                  ) then
                begin
                  Break;
                end;
                Inc(LClassIndex);
              end;
              if LClassIndex <= High(TLeakedClasses) then
                LPLeakedClasses[LClassIndex].ClassPointer := LLeakedClass
              else
                LClassIndex := 0;
            end;
            {Add to the number of leaks for the class}
            Inc(LPLeakedClasses[LClassIndex].NumLeaks);
          end;
        end;
      end
      else
      begin
  {$ifdef CheckUseOfFreedBlocksOnShutdown}
        {Check that the block has not been modified since being freed}
        CheckFreeBlockUnmodified(LCurPtr, APSmallBlockPool.BlockType.BlockSize, boBlockCheck);
  {$endif}
      end;
      {Next block}
      Inc(PByte(LCurPtr), APSmallBlockPool.BlockType.BlockSize);
    end;
  end;
{$endif}

begin
{$ifdef EnableMemoryLeakReporting}
  {Clear the leak arrays}
  FillChar(LSmallBlockLeaks, SizeOf(LSmallBlockLeaks), 0);
  FillChar(LMediumAndLargeBlockLeaks, SizeOf(LMediumAndLargeBlockLeaks), 0);
  {Step through all the medium block pools}
  LNumMediumAndLargeLeaks := 0;
  {No unexpected leaks so far}
  LExpectedLeaksOnly := True;
{$endif}
  {Step through all the medium block pools}
  LPMediumBlockPoolHeader := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
  while LPMediumBlockPoolHeader <> @MediumBlockPoolsCircularList do
  begin
    LPMediumBlock := GetFirstMediumBlockInPool(LPMediumBlockPoolHeader);
    while LPMediumBlock <> nil do
    begin
      LMediumBlockHeader := PNativeUInt(PByte(LPMediumBlock) - BlockHeaderSize)^;
      {Is the block in use?}
      if LMediumBlockHeader and IsFreeBlockFlag = 0 then
      begin
{$ifdef EnableMemoryLeakReporting}
        if ACheckForLeakedBlocks then
        begin
          if (LMediumBlockHeader and IsSmallBlockPoolInUseFlag) <> 0 then
          begin
            {Get all the leaks for the small block pool}
            CheckSmallBlockPoolForLeaks(LPMediumBlock);
          end
          else
          begin
            if (LNumMediumAndLargeLeaks < Length(LMediumAndLargeBlockLeaks))
  {$ifdef FullDebugMode}
              and CheckBlockBeforeFreeOrRealloc(LPMediumBlock, boBlockCheck)
  {$endif}
            then
            begin
              LMediumBlockSize := (LMediumBlockHeader and DropMediumAndLargeFlagsMask) - BlockHeaderSize;
  {$ifdef FullDebugMode}
              Dec(LMediumBlockSize, FullDebugBlockOverhead);
  {$endif}
              {Get the leak type}
              LLeakType := GetMemoryLeakType(LPMediumBlock, LMediumBlockSize);
              {Is it an expected leak?}
              LExpectedLeaksOnly := LExpectedLeaksOnly and (LLeakType <> mltUnexpectedLeak);
  {$ifdef LogMemoryLeakDetailToFile}
    {$ifdef HideExpectedLeaksRegisteredByPointer}
              if LLeakType <> mltExpectedLeakRegisteredByPointer then
    {$endif}
                LogMemoryLeakOrAllocatedBlock(LPMediumBlock, True);
  {$endif}
  {$ifdef HideExpectedLeaksRegisteredByPointer}
              if LLeakType <> mltExpectedLeakRegisteredByPointer then
  {$endif}
              begin
                {Add the leak to the list}
                LMediumAndLargeBlockLeaks[LNumMediumAndLargeLeaks] := LMediumBlockSize;
                Inc(LNumMediumAndLargeLeaks);
              end;
            end;
          end;
        end;
{$endif}
      end
      else
      begin
{$ifdef CheckUseOfFreedBlocksOnShutdown}
        {Check that the block has not been modified since being freed}
        CheckFreeBlockUnmodified(LPMediumBlock, LMediumBlockHeader and DropMediumAndLargeFlagsMask, boBlockCheck);
{$endif}
      end;
      {Next medium block}
      LPMediumBlock := NextMediumBlock(LPMediumBlock);
    end;
    {Get the next medium block pool}
    LPMediumBlockPoolHeader := LPMediumBlockPoolHeader.NextMediumBlockPoolHeader;
  end;
{$ifdef EnableMemoryLeakReporting}
  if ACheckForLeakedBlocks then
  begin
    {Get all leaked large blocks}
    LPLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
    while LPLargeBlock <> @LargeBlocksCircularList do
    begin
      if (LNumMediumAndLargeLeaks < length(LMediumAndLargeBlockLeaks))
  {$ifdef FullDebugMode}
        and CheckBlockBeforeFreeOrRealloc(Pointer(PByte(LPLargeBlock) + LargeBlockHeaderSize), boBlockCheck)
  {$endif}
      then
      begin
        LLargeBlockSize := (LPLargeBlock.BlockSizeAndFlags and DropMediumAndLargeFlagsMask) - BlockHeaderSize - LargeBlockHeaderSize;
  {$ifdef FullDebugMode}
        Dec(LLargeBlockSize, FullDebugBlockOverhead);
  {$endif}
        {Get the leak type}
        LLeakType := GetMemoryLeakType(Pointer(PByte(LPLargeBlock) + LargeBlockHeaderSize), LLargeBlockSize);
        {Is it an expected leak?}
        LExpectedLeaksOnly := LExpectedLeaksOnly and (LLeakType <> mltUnexpectedLeak);
  {$ifdef LogMemoryLeakDetailToFile}
    {$ifdef HideExpectedLeaksRegisteredByPointer}
        if LLeakType <> mltExpectedLeakRegisteredByPointer then
    {$endif}
          LogMemoryLeakOrAllocatedBlock(Pointer(PByte(LPLargeBlock) + LargeBlockHeaderSize), True);
  {$endif}
  {$ifdef HideExpectedLeaksRegisteredByPointer}
        if LLeakType <> mltExpectedLeakRegisteredByPointer then
  {$endif}
        begin
          {Add the leak}
          LMediumAndLargeBlockLeaks[LNumMediumAndLargeLeaks] := LLargeBlockSize;
          Inc(LNumMediumAndLargeLeaks);
        end;
      end;
      {Get the next large block}
      LPLargeBlock := LPLargeBlock.NextLargeBlockHeader;
    end;
    {Display the leak message if required}
    if not LExpectedLeaksOnly then
    begin
      {Small leak header has not been added}
      LSmallLeakHeaderAdded := False;
      LPreviousBlockSize := 0;
      {Set up the leak message header so long}
      LMsgPtr := AppendStringToBuffer(LeakMessageHeader, @LLeakMessage[0], length(LeakMessageHeader));
      {Step through all the small block types}
      for LBlockTypeInd := 0 to NumSmallBlockTypes - 1 do
      begin
        LThisBlockSize := SmallBlockTypes[LBlockTypeInd].BlockSize - BlockHeaderSize;
  {$ifdef FullDebugMode}
        Dec(LThisBlockSize, FullDebugBlockOverhead);
        if NativeInt(LThisBlockSize) < 0 then
          LThisBlockSize := 0;
  {$endif}
        LBlockSizeHeaderAdded := False;
        {Any leaks?}
        for LClassInd := High(LSmallBlockLeaks[LBlockTypeInd]) downto 0 do
        begin
          {Is there still space in the message buffer? Reserve space for the message
           footer.}
          if LMsgPtr > @LLeakMessage[High(LLeakMessage) - 2048] then
            Break;
          {Check the count}
          if LSmallBlockLeaks[LBlockTypeInd][LClassInd].NumLeaks > 0 then
          begin
            {Need to add the header?}
            if not LSmallLeakHeaderAdded then
            begin
              LMsgPtr := AppendStringToBuffer(SmallLeakDetail, LMsgPtr, Length(SmallLeakDetail));
              LSmallLeakHeaderAdded := True;
            end;
            {Need to add the size header?}
            if not LBlockSizeHeaderAdded then
            begin
              LMsgPtr^ := #13;
              Inc(LMsgPtr);
              LMsgPtr^ := #10;
              Inc(LMsgPtr);
              LMsgPtr := NativeUIntToStrBuf(LPreviousBlockSize + 1, LMsgPtr);
              LMsgPtr^ := ' ';
              Inc(LMsgPtr);
              LMsgPtr^ := '-';
              Inc(LMsgPtr);
              LMsgPtr^ := ' ';
              Inc(LMsgPtr);
              LMsgPtr := NativeUIntToStrBuf(LThisBlockSize, LMsgPtr);
              LMsgPtr := AppendStringToBuffer(BytesMessage, LMsgPtr, Length(BytesMessage));
              LBlockSizeHeaderAdded := True;
            end
            else
            begin
              LMsgPtr^ := ',';
              Inc(LMsgPtr);
              LMsgPtr^ := ' ';
              Inc(LMsgPtr);
            end;
            {Show the count}
            case LClassInd of
              {Unknown}
              0:
              begin
                LMsgPtr := AppendStringToBuffer(UnknownClassNameMsg, LMsgPtr, Length(UnknownClassNameMsg));
              end;
              {AnsiString}
              1:
              begin
                LMsgPtr := AppendStringToBuffer(AnsiStringBlockMessage, LMsgPtr, Length(AnsiStringBlockMessage));
              end;
              {UnicodeString}
              2:
              begin
                LMsgPtr := AppendStringToBuffer(UnicodeStringBlockMessage, LMsgPtr, Length(UnicodeStringBlockMessage));
              end;
              {Classes}
            else
              begin
                {$ifdef CheckCppObjectTypeEnabled}
                if LSmallBlockLeaks[LBlockTypeInd][LClassInd].CppTypeIdPtr <> nil then
                begin
                  if Assigned(GetCppVirtObjTypeNameByTypeIdPtrFunc) then
                  begin
                    LCppTypeName := GetCppVirtObjTypeNameByTypeIdPtrFunc(LSmallBlockLeaks[LBlockTypeInd][LClassInd].CppTypeIdPtr);
                    LMsgPtr := AppendStringToBuffer(LCppTypeName, LMsgPtr, StrLen(LCppTypeName));
                  end
                  else
                    LMsgPtr := AppendClassNameToBuffer(nil, LMsgPtr);
                end
                else
                begin
                {$endif}
                  LMsgPtr := AppendClassNameToBuffer(LSmallBlockLeaks[LBlockTypeInd][LClassInd].ClassPointer, LMsgPtr);
                {$ifdef CheckCppObjectTypeEnabled}
                end;
                {$endif}
              end;
            end;
            {Add the count}
            LMsgPtr^ := ' ';
            Inc(LMsgPtr);
            LMsgPtr^ := 'x';
            Inc(LMsgPtr);
            LMsgPtr^ := ' ';
            Inc(LMsgPtr);
            LMsgPtr := NativeUIntToStrBuf(LSmallBlockLeaks[LBlockTypeInd][LClassInd].NumLeaks, LMsgPtr);
          end;
        end;
        LPreviousBlockSize := LThisBlockSize;
      end;
      {Add the medium/large block leak message}
      if LNumMediumAndLargeLeaks > 0 then
      begin
        {Any non-small leaks?}
        if LSmallLeakHeaderAdded then
        begin
          LMsgPtr^ := #13;
          Inc(LMsgPtr);
          LMsgPtr^ := #10;
          Inc(LMsgPtr);
          LMsgPtr^ := #13;
          Inc(LMsgPtr);
          LMsgPtr^ := #10;
          Inc(LMsgPtr);
        end;
        {Add the medium/large block leak message}
        LMsgPtr := AppendStringToBuffer(LargeLeakDetail, LMsgPtr, Length(LargeLeakDetail));
        {List all the blocks}
        for LBlockInd := 0 to LNumMediumAndLargeLeaks - 1 do
        begin
          if LBlockInd <> 0 then
          begin
            LMsgPtr^ := ',';
            Inc(LMsgPtr);
            LMsgPtr^ :=  ' ';
            Inc(LMsgPtr);
          end;
          LMsgPtr := NativeUIntToStrBuf(LMediumAndLargeBlockLeaks[LBlockInd], LMsgPtr);
          {Is there still space in the message buffer? Reserve space for the
           message footer.}
          if LMsgPtr > @LLeakMessage[High(LLeakMessage) - 2048] then
            Break;
        end;
      end;
  {$ifdef LogErrorsToFile}
     {Set the message footer}
      LMsgPtr := AppendStringToBuffer(LeakMessageFooter, LMsgPtr, Length(LeakMessageFooter));
      {Append the message to the memory errors file}
      AppendEventLog(@LLeakMessage[0], UIntPtr(LMsgPtr) - UIntPtr(@LLeakMessage[1]));
  {$else}
      {Set the message footer}
      AppendStringToBuffer(LeakMessageFooter, LMsgPtr, Length(LeakMessageFooter));
  {$endif}
  {$ifdef UseOutputDebugString}
      OutputDebugStringA(LLeakMessage);
  {$endif}
  {$ifndef NoMessageBoxes}
      {Show the message}
      AppendStringToModuleName(LeakMessageTitle, LMessageTitleBuffer);
      ShowMessageBox(LLeakMessage, LMessageTitleBuffer);
  {$endif}
    end;
  end;
{$endif}
end;

{Returns statistics about the current state of the memory manager}
procedure GetMemoryManagerState(var AMemoryManagerState: TMemoryManagerState);
var
  LPMediumBlockPoolHeader: PMediumBlockPoolHeader;
  LPMediumBlock: Pointer;
  LInd: Integer;
  LBlockTypeIndex, LMediumBlockSize: Cardinal;
  LMediumBlockHeader, LLargeBlockSize: NativeUInt;
  LPLargeBlock: PLargeBlockHeader;
begin
  {Clear the structure}
  FillChar(AMemoryManagerState, SizeOf(AMemoryManagerState), 0);
  {Set the small block size stats}
  for LInd := 0 to NumSmallBlockTypes - 1 do
  begin
    AMemoryManagerState.SmallBlockTypeStates[LInd].InternalBlockSize :=
      SmallBlockTypes[LInd].BlockSize;
    AMemoryManagerState.SmallBlockTypeStates[LInd].UseableBlockSize :=
      SmallBlockTypes[LInd].BlockSize - BlockHeaderSize{$ifdef FullDebugMode} - FullDebugBlockOverhead{$endif};
    if NativeInt(AMemoryManagerState.SmallBlockTypeStates[LInd].UseableBlockSize) < 0 then
      AMemoryManagerState.SmallBlockTypeStates[LInd].UseableBlockSize := 0;
  end;
  {Lock all small block types}
  LockAllSmallBlockTypes;
  {Lock the medium blocks}
  LockMediumBlocks;
  {Step through all the medium block pools}
  LPMediumBlockPoolHeader := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
  while LPMediumBlockPoolHeader <> @MediumBlockPoolsCircularList do
  begin
    {Add to the medium block used space}
    Inc(AMemoryManagerState.ReservedMediumBlockAddressSpace, MediumBlockPoolSize);
    LPMediumBlock := GetFirstMediumBlockInPool(LPMediumBlockPoolHeader);
    while LPMediumBlock <> nil do
    begin
      LMediumBlockHeader := PNativeUInt(PByte(LPMediumBlock) - BlockHeaderSize)^;
      {Is the block in use?}
      if LMediumBlockHeader and IsFreeBlockFlag = 0 then
      begin
        {Get the block size}
        LMediumBlockSize := LMediumBlockHeader and DropMediumAndLargeFlagsMask;
        if (LMediumBlockHeader and IsSmallBlockPoolInUseFlag) <> 0 then
        begin
          {Get the block type index}
          LBlockTypeIndex := (UIntPtr(PSmallBlockPoolHeader(LPMediumBlock).BlockType) - UIntPtr(@SmallBlockTypes[0])) div SizeOf(TSmallBlockType);
          {Subtract from medium block usage}
          Dec(AMemoryManagerState.ReservedMediumBlockAddressSpace, LMediumBlockSize);
          {Add it to the reserved space for the block size}
          Inc(AMemoryManagerState.SmallBlockTypeStates[LBlockTypeIndex].ReservedAddressSpace, LMediumBlockSize);
          {Add the usage for the pool}
          Inc(AMemoryManagerState.SmallBlockTypeStates[LBlockTypeIndex].AllocatedBlockCount,
            PSmallBlockPoolHeader(LPMediumBlock).BlocksInUse);
        end
        else
        begin
{$ifdef FullDebugMode}
          Dec(LMediumBlockSize, FullDebugBlockOverhead);
{$endif}
          Inc(AMemoryManagerState.AllocatedMediumBlockCount);
          Inc(AMemoryManagerState.TotalAllocatedMediumBlockSize, LMediumBlockSize - BlockHeaderSize);
        end;
      end;
      {Next medium block}
      LPMediumBlock := NextMediumBlock(LPMediumBlock);
    end;
    {Get the next medium block pool}
    LPMediumBlockPoolHeader := LPMediumBlockPoolHeader.NextMediumBlockPoolHeader;
  end;
  {Unlock medium blocks}
  MediumBlocksLocked := False;
  {Unlock all the small block types}
  for LInd := 0 to NumSmallBlockTypes - 1 do
    SmallBlockTypes[LInd].BlockTypeLocked := False;
  {Step through all the large blocks}
  LockLargeBlocks;
  LPLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
  while LPLargeBlock <> @LargeBlocksCircularList do
  begin
    LLargeBlockSize := LPLargeBlock.BlockSizeAndFlags and DropMediumAndLargeFlagsMask;
    Inc(AMemoryManagerState.AllocatedLargeBlockCount);
    Inc(AMemoryManagerState.ReservedLargeBlockAddressSpace, LLargeBlockSize);
    Inc(AMemoryManagerState.TotalAllocatedLargeBlockSize, LPLargeBlock.UserAllocatedSize);
    {Get the next large block}
    LPLargeBlock := LPLargeBlock.NextLargeBlockHeader;
  end;
  LargeBlocksLocked := False;
end;

{Returns a summary of the information returned by GetMemoryManagerState}
procedure GetMemoryManagerUsageSummary(
  var AMemoryManagerUsageSummary: TMemoryManagerUsageSummary);
var
  LMMS: TMemoryManagerState;
  LAllocatedBytes, LReservedBytes: NativeUInt;
  LSBTIndex: Integer;
begin
  {Get the memory manager state}
  GetMemoryManagerState(LMMS);
  {Add up the totals}
  LAllocatedBytes := LMMS.TotalAllocatedMediumBlockSize
    + LMMS.TotalAllocatedLargeBlockSize;
  LReservedBytes := LMMS.ReservedMediumBlockAddressSpace
    + LMMS.ReservedLargeBlockAddressSpace;
  for LSBTIndex := 0 to NumSmallBlockTypes - 1 do
  begin
    Inc(LAllocatedBytes, LMMS.SmallBlockTypeStates[LSBTIndex].UseableBlockSize
      * LMMS.SmallBlockTypeStates[LSBTIndex].AllocatedBlockCount);
    Inc(LReservedBytes, LMMS.SmallBlockTypeStates[LSBTIndex].ReservedAddressSpace);
  end;
  {Set the structure values}
  AMemoryManagerUsageSummary.AllocatedBytes := LAllocatedBytes;
  AMemoryManagerUsageSummary.OverheadBytes := LReservedBytes - LAllocatedBytes;
  if LReservedBytes > 0 then
  begin
    AMemoryManagerUsageSummary.EfficiencyPercentage :=
      LAllocatedBytes / LReservedBytes * 100;
  end
  else
    AMemoryManagerUsageSummary.EfficiencyPercentage := 100;
end;

{$ifndef POSIX}
{Gets the state of every 64K block in the 4GB address space. Under 64-bit this
 returns only the state for the low 4GB.}
procedure GetMemoryMap(var AMemoryMap: TMemoryMap);
var
  LPMediumBlockPoolHeader: PMediumBlockPoolHeader;
  LPLargeBlock: PLargeBlockHeader;
  LInd, LChunkIndex, LNextChunk, LLargeBlockSize: NativeUInt;
  LMBI: TMemoryBasicInformation;
begin
  {Clear the map}
  FillChar(AMemoryMap, SizeOf(AMemoryMap), Ord(csUnallocated));
  {Step through all the medium block pools}
  LockMediumBlocks;
  LPMediumBlockPoolHeader := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
  while LPMediumBlockPoolHeader <> @MediumBlockPoolsCircularList do
  begin
    {Add to the medium block used space}
    LChunkIndex := NativeUInt(LPMediumBlockPoolHeader) shr 16;
    for LInd := 0 to (MediumBlockPoolSize - 1) shr 16 do
    begin
      if (LChunkIndex + LInd) > High(AMemoryMap) then
        Break;
      AMemoryMap[LChunkIndex + LInd] := csAllocated;
    end;
    {Get the next medium block pool}
    LPMediumBlockPoolHeader := LPMediumBlockPoolHeader.NextMediumBlockPoolHeader;
  end;
  MediumBlocksLocked := False;
  {Step through all the large blocks}
  LockLargeBlocks;
  LPLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
  while LPLargeBlock <> @LargeBlocksCircularList do
  begin
    LChunkIndex := UIntPtr(LPLargeBlock) shr 16;
    LLargeBlockSize := LPLargeBlock.BlockSizeAndFlags and DropMediumAndLargeFlagsMask;
    for LInd := 0 to (LLargeBlockSize - 1) shr 16 do
    begin
      if (LChunkIndex + LInd) > High(AMemoryMap) then
        Break;
      AMemoryMap[LChunkIndex + LInd] := csAllocated;
    end;
    {Get the next large block}
    LPLargeBlock := LPLargeBlock.NextLargeBlockHeader;
  end;
  LargeBlocksLocked := False;
  {Fill in the rest of the map}
  LInd := 0;
  while LInd <= 65535 do
  begin
    {If the chunk is not allocated by this MM, what is its status?}
    if AMemoryMap[LInd] = csUnallocated then
    begin
      {Query the address space starting at the chunk boundary}
      if VirtualQuery(Pointer(LInd * 65536), LMBI, SizeOf(LMBI)) = 0 then
      begin
        {VirtualQuery may fail for addresses >2GB if a large address space is
         not enabled.}
        FillChar(AMemoryMap[LInd], 65536 - LInd, csSysReserved);
        Break;
      end;
      {Get the chunk number after the region}
      LNextChunk := (LMBI.RegionSize - 1) shr 16 + LInd + 1;
      {Validate}
      if LNextChunk > 65536 then
        LNextChunk := 65536;
      {Set the status of all the chunks in the region}
      if LMBI.State = MEM_COMMIT then
      begin
        FillChar(AMemoryMap[LInd], LNextChunk - LInd, csSysAllocated);
      end
      else
      begin
        if LMBI.State = MEM_RESERVE then
          FillChar(AMemoryMap[LInd], LNextChunk - LInd, csSysReserved);
      end;
      {Point to the start of the next chunk}
      LInd := LNextChunk;
    end
    else
    begin
      {Next chunk}
      Inc(LInd);
    end;
  end;
end;
{$endif}

{Returns summarised information about the state of the memory manager. (For
 backward compatibility.)}
function FastGetHeapStatus: THeapStatus;
var
  LPMediumBlockPoolHeader: PMediumBlockPoolHeader;
  LPMediumBlock: Pointer;
  LBlockTypeIndex, LMediumBlockSize: Cardinal;
  LSmallBlockUsage, LSmallBlockOverhead, LMediumBlockHeader, LLargeBlockSize: NativeUInt;
  LInd: Integer;
  LPLargeBlock: PLargeBlockHeader;
begin
  {Clear the structure}
  FillChar(Result, SizeOf(Result), 0);
  {Lock all small block types}
  LockAllSmallBlockTypes;
  {Lock the medium blocks}
  LockMediumBlocks;
  {Step through all the medium block pools}
  LPMediumBlockPoolHeader := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
  while LPMediumBlockPoolHeader <> @MediumBlockPoolsCircularList do
  begin
    {Add to the total and committed address space}
    Inc(Result.TotalAddrSpace, ((MediumBlockPoolSize + $ffff) and $ffff0000));
    Inc(Result.TotalCommitted, ((MediumBlockPoolSize + $ffff) and $ffff0000));
    {Add the medium block pool overhead}
    Inc(Result.Overhead, (((MediumBlockPoolSize + $ffff) and $ffff0000)
      - MediumBlockPoolSize + MediumBlockPoolHeaderSize));
    {Get the first medium block in the pool}
    LPMediumBlock := GetFirstMediumBlockInPool(LPMediumBlockPoolHeader);
    while LPMediumBlock <> nil do
    begin
      {Get the block header}
      LMediumBlockHeader := PNativeUInt(PByte(LPMediumBlock) - BlockHeaderSize)^;
      {Get the block size}
      LMediumBlockSize := LMediumBlockHeader and DropMediumAndLargeFlagsMask;
      {Is the block in use?}
      if LMediumBlockHeader and IsFreeBlockFlag = 0 then
      begin
        if (LMediumBlockHeader and IsSmallBlockPoolInUseFlag) <> 0 then
        begin
          {Get the block type index}
          LBlockTypeIndex := (UIntPtr(PSmallBlockPoolHeader(LPMediumBlock).BlockType) - UIntPtr(@SmallBlockTypes[0])) div SizeOf(TSmallBlockType);
          {Get the usage in the block}
          LSmallBlockUsage := PSmallBlockPoolHeader(LPMediumBlock).BlocksInUse
            * SmallBlockTypes[LBlockTypeIndex].BlockSize;
          {Get the total overhead for all the small blocks}
          LSmallBlockOverhead := PSmallBlockPoolHeader(LPMediumBlock).BlocksInUse
              * (BlockHeaderSize{$ifdef FullDebugMode} + FullDebugBlockOverhead{$endif});
          {Add to the totals}
          Inc(Result.FreeSmall, LMediumBlockSize - LSmallBlockUsage - BlockHeaderSize);
          Inc(Result.Overhead, LSmallBlockOverhead + BlockHeaderSize);
          Inc(Result.TotalAllocated, LSmallBlockUsage - LSmallBlockOverhead);
        end
        else
        begin
{$ifdef FullDebugMode}
          Dec(LMediumBlockSize, FullDebugBlockOverhead);
          Inc(Result.Overhead, FullDebugBlockOverhead);
{$endif}
          {Add to the result}
          Inc(Result.TotalAllocated, LMediumBlockSize - BlockHeaderSize);
          Inc(Result.Overhead, BlockHeaderSize);
        end;
      end
      else
      begin
        {The medium block is free}
        Inc(Result.FreeBig, LMediumBlockSize);
      end;
      {Next medium block}
      LPMediumBlock := NextMediumBlock(LPMediumBlock);
    end;
    {Get the next medium block pool}
    LPMediumBlockPoolHeader := LPMediumBlockPoolHeader.NextMediumBlockPoolHeader;
  end;
  {Add the sequential feed unused space}
  Inc(Result.Unused, MediumSequentialFeedBytesLeft);
  {Unlock the medium blocks}
  MediumBlocksLocked := False;
  {Unlock all the small block types}
  for LInd := 0 to NumSmallBlockTypes - 1 do
    SmallBlockTypes[LInd].BlockTypeLocked := False;
  {Step through all the large blocks}
  LockLargeBlocks;
  LPLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
  while LPLargeBlock <> @LargeBlocksCircularList do
  begin
    LLargeBlockSize := LPLargeBlock.BlockSizeAndFlags and DropMediumAndLargeFlagsMask;
    Inc(Result.TotalAddrSpace, LLargeBlockSize);
    Inc(Result.TotalCommitted, LLargeBlockSize);
    Inc(Result.TotalAllocated, LPLargeBlock.UserAllocatedSize
      {$ifdef FullDebugMode} - FullDebugBlockOverhead{$endif});
    Inc(Result.Overhead, LLargeBlockSize - LPLargeBlock.UserAllocatedSize
      {$ifdef FullDebugMode} + FullDebugBlockOverhead{$endif});
    {Get the next large block}
    LPLargeBlock := LPLargeBlock.NextLargeBlockHeader;
  end;
  LargeBlocksLocked := False;
  {Set the total number of free bytes}
  Result.TotalFree := Result.FreeSmall + Result.FreeBig + Result.Unused;
end;

{Frees all allocated memory. Does not support segmented large blocks (yet).}
procedure FreeAllMemory;
var
  LPMediumBlockPoolHeader, LPNextMediumBlockPoolHeader: PMediumBlockPoolHeader;
  LPMediumFreeBlock: PMediumFreeBlock;
  LPLargeBlock, LPNextLargeBlock: PLargeBlockHeader;
  LInd: Integer;
begin
  {Free all block pools}
  LPMediumBlockPoolHeader := MediumBlockPoolsCircularList.NextMediumBlockPoolHeader;
  while LPMediumBlockPoolHeader <> @MediumBlockPoolsCircularList do
  begin
    {Get the next medium block pool so long}
    LPNextMediumBlockPoolHeader := LPMediumBlockPoolHeader.NextMediumBlockPoolHeader;
{$ifdef ClearMediumBlockPoolsBeforeReturningToOS}
    FillChar(LPMediumBlockPoolHeader^, MediumBlockPoolSize, 0);
{$else}
    {$ifdef ClearSmallAndMediumBlocksInFreeMem}
    FillChar(LPMediumBlockPoolHeader^, MediumBlockPoolSize, 0);
    {$endif}
{$endif}
    {Free this pool}
    VirtualFree(LPMediumBlockPoolHeader, 0, MEM_RELEASE);
    {Next pool}
    LPMediumBlockPoolHeader := LPNextMediumBlockPoolHeader;
  end;
  {Clear all small block types}
  for LInd := 0 to High(SmallBlockTypes) do
  begin
    SmallBlockTypes[Lind].PreviousPartiallyFreePool := @SmallBlockTypes[Lind];
    SmallBlockTypes[Lind].NextPartiallyFreePool := @SmallBlockTypes[Lind];
    SmallBlockTypes[Lind].NextSequentialFeedBlockAddress := Pointer(1);
    SmallBlockTypes[Lind].MaxSequentialFeedBlockAddress := nil;
  end;
  {Clear all medium block pools}
  MediumBlockPoolsCircularList.PreviousMediumBlockPoolHeader := @MediumBlockPoolsCircularList;
  MediumBlockPoolsCircularList.NextMediumBlockPoolHeader := @MediumBlockPoolsCircularList;
  {All medium bins are empty}
  for LInd := 0 to High(MediumBlockBins) do
  begin
    LPMediumFreeBlock := @MediumBlockBins[LInd];
    LPMediumFreeBlock.PreviousFreeBlock := LPMediumFreeBlock;
    LPMediumFreeBlock.NextFreeBlock := LPMediumFreeBlock;
  end;
  MediumBlockBinGroupBitmap := 0;
  FillChar(MediumBlockBinBitmaps, SizeOf(MediumBlockBinBitmaps), 0);
  MediumSequentialFeedBytesLeft := 0;
  {Free all large blocks}
  LPLargeBlock := LargeBlocksCircularList.NextLargeBlockHeader;
  while LPLargeBlock <> @LargeBlocksCircularList do
  begin
    {Get the next large block}
    LPNextLargeBlock := LPLargeBlock.NextLargeBlockHeader;
{$ifdef ClearLargeBlocksBeforeReturningToOS}
    FillChar(LPLargeBlock^,
      LPLargeBlock.BlockSizeAndFlags and DropMediumAndLargeFlagsMask, 0);
{$endif}
    {Free this large block}
    VirtualFree(LPLargeBlock, 0, MEM_RELEASE);
    {Next large block}
    LPLargeBlock := LPNextLargeBlock;
  end;
  {There are no large blocks allocated}
  LargeBlocksCircularList.PreviousLargeBlockHeader := @LargeBlocksCircularList;
  LargeBlocksCircularList.NextLargeBlockHeader := @LargeBlocksCircularList;
end;

{----------------------------Memory Manager Setup-----------------------------}

{Checks that no other memory manager has been installed after the RTL MM and
 that there are currently no live pointers allocated through the RTL MM.}
function CheckCanInstallMemoryManager: Boolean;
{$ifndef NoMessageBoxes}
var
  LErrorMessageTitle: array[0..1023] of AnsiChar;
{$endif}
begin
  {Default to error}
  Result := False;
{$ifdef FullDebugMode}
  {$ifdef LoadDebugDLLDynamically}
    {$ifdef DoNotInstallIfDLLMissing}
  {Should FastMM be installed only if the FastMM_FullDebugMode.dll file is
   available?}
  if FullDebugModeDLL = 0 then
    Exit;
    {$endif}
  {$endif}
{$endif}
  {Is FastMM already installed?}
  if FastMMIsInstalled then
  begin
{$ifdef UseOutputDebugString}
    OutputDebugStringA(AlreadyInstalledMsg);
{$endif}
{$ifndef NoMessageBoxes}
    AppendStringToModuleName(AlreadyInstalledTitle, LErrorMessageTitle);
    ShowMessageBox(AlreadyInstalledMsg, LErrorMessageTitle);
{$endif}
    Exit;
  end;
  {Has another MM been set, or has the Embarcadero MM been used? If so, this
   file is not the first unit in the uses clause of the project's .dpr file.}
  if IsMemoryManagerSet then
  begin
    {When using runtime packages, another library may already have installed
     FastMM: Silently ignore the installation request.}
{$ifndef UseRuntimePackages}
    {Another memory manager has been set.}
  {$ifdef UseOutputDebugString}
    OutputDebugStringA(OtherMMInstalledMsg);
  {$endif}
  {$ifndef NoMessageBoxes}
    AppendStringToModuleName(OtherMMInstalledTitle, LErrorMessageTitle);
    ShowMessageBox(OtherMMInstalledMsg, LErrorMessageTitle);
  {$endif}
{$endif}
    Exit;
  end;
{$ifndef POSIX}
  if GetHeapStatus.TotalAllocated <> 0 then
  begin
    {Memory has been already been allocated with the RTL MM}
{$ifdef UseOutputDebugString}
    OutputDebugStringA(MemoryAllocatedMsg);
{$endif}
  {$ifndef NoMessageBoxes}
    AppendStringToModuleName(MemoryAllocatedTitle, LErrorMessageTitle);
    ShowMessageBox(MemoryAllocatedMsg, LErrorMessageTitle);
  {$endif}
    Exit;
  end;
{$endif}
  {All OK}
  Result := True;
end;

{Initializes the lookup tables for the memory manager}
procedure InitializeMemoryManager;
const
  {The size of the Inc(VMTIndex) code in TFreedObject.GetVirtualMethodIndex}
  VMTIndexIncCodeSize = 6;
var
  LInd, LSizeInd, LMinimumPoolSize, LOptimalPoolSize, LGroupNumber,
    LBlocksPerPool, LPreviousBlockSize: Cardinal;
  LPMediumFreeBlock: PMediumFreeBlock;
begin
{$ifdef FullDebugMode}
  {$ifdef LoadDebugDLLDynamically}
  {Attempt to load the FullDebugMode DLL dynamically.}
  FullDebugModeDLL := LoadLibrary(FullDebugModeLibraryName);
  if FullDebugModeDLL <> 0 then
  begin
    GetStackTrace := GetProcAddress(FullDebugModeDLL,
      {$ifdef RawStackTraces}'GetRawStackTrace'{$else}'GetFrameBasedStackTrace'{$endif});
    LogStackTrace := GetProcAddress(FullDebugModeDLL, 'LogStackTrace');
  end;
  {$endif}
{$endif}
{$ifdef EnableMMX}
  {$ifndef ForceMMX}
  UseMMX := MMX_Supported;
  {$endif}
{$endif}
  {Initialize the memory manager}
  {-------------Set up the small block types-------------}
  LPreviousBlockSize := 0;
  for LInd := 0 to High(SmallBlockTypes) do
  begin
    {Set the move procedure}
{$ifdef UseCustomFixedSizeMoveRoutines}
    {The upsize move procedure may move chunks in 16 bytes even with 8-byte
    alignment, since the new size will always be at least 8 bytes bigger than
    the old size.}
    if not Assigned(SmallBlockTypes[LInd].UpsizeMoveProcedure) then
  {$ifdef UseCustomVariableSizeMoveRoutines}
      SmallBlockTypes[LInd].UpsizeMoveProcedure := MoveX16LP;
  {$else}
      SmallBlockTypes[LInd].UpsizeMoveProcedure := @System.Move;
  {$endif}
{$endif}
    {Set the first "available pool" to the block type itself, so that the
     allocation routines know that there are currently no pools with free
     blocks of this size.}
    SmallBlockTypes[LInd].PreviousPartiallyFreePool := @SmallBlockTypes[LInd];
    SmallBlockTypes[LInd].NextPartiallyFreePool := @SmallBlockTypes[LInd];
    {Set the block size to block type index translation table}
    for LSizeInd := (LPreviousBlockSize div SmallBlockGranularity) to ((SmallBlockTypes[LInd].BlockSize - 1) div SmallBlockGranularity) do
      AllocSize2SmallBlockTypeIndX4[LSizeInd] := LInd * 4;
    {Cannot sequential feed yet: Ensure that the next address is greater than
     the maximum address}
    SmallBlockTypes[LInd].MaxSequentialFeedBlockAddress := Pointer(0);
    SmallBlockTypes[LInd].NextSequentialFeedBlockAddress := Pointer(1);
    {Get the mask to use for finding a medium block suitable for a block pool}
    LMinimumPoolSize :=
      ((SmallBlockTypes[LInd].BlockSize * MinimumSmallBlocksPerPool
        + SmallBlockPoolHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset)
      and -MediumBlockGranularity) + MediumBlockSizeOffset;
    if LMinimumPoolSize < MinimumMediumBlockSize then
      LMinimumPoolSize := MinimumMediumBlockSize;
    {Get the closest group number for the minimum pool size}
    LGroupNumber := (LMinimumPoolSize - MinimumMediumBlockSize + MediumBlockBinsPerGroup * MediumBlockGranularity div 2)
      div (MediumBlockBinsPerGroup * MediumBlockGranularity);
    {Too large?}
    if LGroupNumber > 7 then
      LGroupNumber := 7;
    {Set the bitmap}
    SmallBlockTypes[LInd].AllowedGroupsForBlockPoolBitmap := Byte(-(1 shl LGroupNumber));
    {Set the minimum pool size}
    SmallBlockTypes[LInd].MinimumBlockPoolSize := MinimumMediumBlockSize + LGroupNumber * (MediumBlockBinsPerGroup * MediumBlockGranularity);
    {Get the optimal block pool size}
    LOptimalPoolSize := ((SmallBlockTypes[LInd].BlockSize * TargetSmallBlocksPerPool
        + SmallBlockPoolHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset)
      and -MediumBlockGranularity) + MediumBlockSizeOffset;
    {Limit the optimal pool size to within range}
    if LOptimalPoolSize < OptimalSmallBlockPoolSizeLowerLimit then
      LOptimalPoolSize := OptimalSmallBlockPoolSizeLowerLimit;
    if LOptimalPoolSize > OptimalSmallBlockPoolSizeUpperLimit then
      LOptimalPoolSize := OptimalSmallBlockPoolSizeUpperLimit;
    {How many blocks will fit in the adjusted optimal size?}
    LBlocksPerPool := (LOptimalPoolSize - SmallBlockPoolHeaderSize) div SmallBlockTypes[LInd].BlockSize;
    {Recalculate the optimal pool size to minimize wastage due to a partial
     last block.}
    SmallBlockTypes[LInd].OptimalBlockPoolSize :=
      ((LBlocksPerPool * SmallBlockTypes[LInd].BlockSize + SmallBlockPoolHeaderSize + MediumBlockGranularity - 1 - MediumBlockSizeOffset) and -MediumBlockGranularity) + MediumBlockSizeOffset;
{$ifdef CheckHeapForCorruption}
    {Debug checks}
    if (SmallBlockTypes[LInd].OptimalBlockPoolSize < MinimumMediumBlockSize)
      or (SmallBlockTypes[LInd].BlockSize div SmallBlockGranularity * SmallBlockGranularity <> SmallBlockTypes[LInd].BlockSize) then
    begin
  {$ifdef BCB6OrDelphi7AndUp}
      System.Error(reInvalidPtr);
  {$else}
      System.RunError(reInvalidPtr);
  {$endif}
    end;
{$endif}
    {Set the previous small block size}
    LPreviousBlockSize := SmallBlockTypes[LInd].BlockSize;
  end;
  {-------------------Set up the medium blocks-------------------}
{$ifdef CheckHeapForCorruption}
  {Check that there are no gaps between where the small blocks end and the
   medium blocks start}
  if (((MaximumSmallBlockSize - 3) + (MediumBlockGranularity - 1 + BlockHeaderSize - MediumBlockSizeOffset))
    and -MediumBlockGranularity) + MediumBlockSizeOffset < MinimumMediumBlockSize then
  begin
  {$ifdef BCB6OrDelphi7AndUp}
    System.Error(reInvalidPtr);
  {$else}
    System.RunError(reInvalidPtr);
  {$endif}
  end;
{$endif}
  {There are currently no medium block pools}
  MediumBlockPoolsCircularList.PreviousMediumBlockPoolHeader := @MediumBlockPoolsCircularList;
  MediumBlockPoolsCircularList.NextMediumBlockPoolHeader := @MediumBlockPoolsCircularList;
  {All medium bins are empty}
  for LInd := 0 to High(MediumBlockBins) do
  begin
    LPMediumFreeBlock := @MediumBlockBins[LInd];
    LPMediumFreeBlock.PreviousFreeBlock := LPMediumFreeBlock;
    LPMediumFreeBlock.NextFreeBlock := LPMediumFreeBlock;
  end;
  {------------------Set up the large blocks---------------------}
  LargeBlocksCircularList.PreviousLargeBlockHeader := @LargeBlocksCircularList;
  LargeBlocksCircularList.NextLargeBlockHeader := @LargeBlocksCircularList;
  {------------------Set up the debugging structures---------------------}
{$ifdef FullDebugMode}
  {Set up the fake VMT}
  {Copy the basic info from the TFreedObject class}
  System.Move(Pointer(PByte(TFreedObject) + vmtSelfPtr + SizeOf(Pointer))^,
    FreedObjectVMT.VMTData[vmtSelfPtr + SizeOf(Pointer)], vmtParent - vmtSelfPtr);
  PNativeUInt(@FreedObjectVMT.VMTData[vmtSelfPtr])^ := NativeUInt(@FreedObjectVMT.VMTMethods[0]);
  {Set up the virtual method table}
  for LInd := 0 to MaxFakeVMTEntries - 1 do
  begin
    PNativeUInt(@FreedObjectVMT.VMTMethods[Low(FreedObjectVMT.VMTMethods) + Integer(LInd * SizeOf(Pointer))])^ :=
      NativeUInt(@TFreedObject.GetVirtualMethodIndex) + LInd * VMTIndexIncCodeSize;
  {$ifdef CatchUseOfFreedInterfaces}
    VMTBadInterface[LInd] := @TFreedObject.InterfaceError;
  {$endif}
  end;
  {Set up the default log file name}
  SetDefaultMMLogFileName;
{$endif}
end;

{Installs the memory manager (InitializeMemoryManager should be called first)}
procedure InstallMemoryManager;
{$ifdef MMSharingEnabled}
var
  i, LCurrentProcessID: Cardinal;
  LPMapAddress: PPointer;
  LChar: AnsiChar;
{$endif}
begin
  if not FastMMIsInstalled then
  begin
{$ifdef FullDebugMode}
  {$ifdef 32Bit}
    {Try to reserve the 64K block covering address $80808080}
    ReservedBlock := VirtualAlloc(Pointer(DebugReservedAddress), 65536, MEM_RESERVE, PAGE_NOACCESS);
  {$endif}
{$endif}
{$ifdef MMSharingEnabled}
    {Build a string identifying the current process}
    LCurrentProcessID := GetCurrentProcessId;
    for i := 0 to 7 do
    begin
      LChar := HexTable[((LCurrentProcessID shr (i * 4)) and $F)];
      MappingObjectName[(High(MappingObjectName) - 1) - i] := LChar;
  {$ifdef EnableBackwardCompatibleMMSharing}
      UniqueProcessIDString[8 - i] := LChar;
      UniqueProcessIDStringBE[8 - i] := LChar;
  {$endif}
    end;
{$endif}
{$ifdef AttemptToUseSharedMM}
    {Is the replacement memory manager already installed for this process?}
{$ifdef EnableBackwardCompatibleMMSharing}
    MMWindow := FindWindowA('STATIC', PAnsiChar(@UniqueProcessIDString[1]));
    MMWindowBE := FindWindowA('STATIC', PAnsiChar(@UniqueProcessIDStringBE[1]));
{$endif}
    MappingObjectHandle := OpenFileMappingA(FILE_MAP_READ, False, MappingObjectName);
    {Is no MM being shared?}
{$ifdef EnableBackwardCompatibleMMSharing}
    if (MMWindow or MMWindowBE or MappingObjectHandle) = 0 then
{$else}
    if MappingObjectHandle = 0 then
{$endif}
    begin
{$endif}
{$ifdef ShareMM}
      {Share the MM with other DLLs? - if this DLL is unloaded, then
       dependent DLLs will cause a crash.}
  {$ifndef ShareMMIfLibrary}
      if not IsLibrary then
  {$endif}
      begin
  {$ifdef EnableBackwardCompatibleMMSharing}
        {No memory manager installed yet - create the invisible window}
        MMWindow := CreateWindowA('STATIC', PAnsiChar(@UniqueProcessIDString[1]),
          WS_POPUP, 0, 0, 0, 0, 0, 0, hInstance, nil);
        MMWindowBE := CreateWindowA('STATIC', PAnsiChar(@UniqueProcessIDStringBE[1]),
          WS_POPUP, 0, 0, 0, 0, 0, 0, hInstance, nil);
        {The window data is a pointer to this memory manager}
        if MMWindow <> 0 then
          SetWindowLongA(MMWindow, GWL_USERDATA, NativeInt(@NewMemoryManager));
        if MMWindowBE <> 0 then
          SetWindowLongA(MMWindowBE, GWL_USERDATA, NativeInt(@NewMemoryManager));
  {$endif}
        {Create the memory mapped file}
        MappingObjectHandle := CreateFileMappingA(INVALID_HANDLE_VALUE, nil,
          PAGE_READWRITE, 0, SizeOf(Pointer), MappingObjectName);
        {Map a view of the memory}
        LPMapAddress := MapViewOfFile(MappingObjectHandle, FILE_MAP_WRITE, 0, 0, 0);
        {Set a pointer to the new memory manager}
        LPMapAddress^ := @NewMemoryManager;
        {Unmap the file}
        UnmapViewOfFile(LPMapAddress);
      end;
{$endif}
      {We will be using this memory manager}
{$ifndef FullDebugMode}
      NewMemoryManager.GetMem := FastGetMem;
      NewMemoryManager.FreeMem := FastFreeMem;
      NewMemoryManager.ReallocMem := FastReallocMem;
{$else}
      NewMemoryManager.GetMem := DebugGetMem;
      NewMemoryManager.FreeMem := DebugFreeMem;
      NewMemoryManager.ReallocMem := DebugReallocMem;
{$endif}
{$ifdef BDS2006AndUp}
  {$ifndef FullDebugMode}
      NewMemoryManager.AllocMem := FastAllocMem;
  {$else}
      NewMemoryManager.AllocMem := DebugAllocMem;
  {$endif}
  {$ifdef EnableMemoryLeakReporting}
      NewMemoryManager.RegisterExpectedMemoryLeak := RegisterExpectedMemoryLeak;
      NewMemoryManager.UnRegisterExpectedMemoryLeak := UnRegisterExpectedMemoryLeak;
  {$else}
      NewMemoryManager.RegisterExpectedMemoryLeak := NoOpRegisterExpectedMemoryLeak;
      NewMemoryManager.UnRegisterExpectedMemoryLeak := NoOpUnRegisterExpectedMemoryLeak;
  {$endif}
{$endif}
      {Owns the memory manager}
      IsMemoryManagerOwner := True;
{$ifdef AttemptToUseSharedMM}
    end
    else
    begin
      {Get the address of the shared memory manager}
  {$ifndef BDS2006AndUp}
    {$ifdef EnableBackwardCompatibleMMSharing}
      if MappingObjectHandle <> 0 then
      begin
    {$endif}
        {Map a view of the memory}
        LPMapAddress := MapViewOfFile(MappingObjectHandle, FILE_MAP_READ, 0, 0, 0);
        {Set the new memory manager}
        NewMemoryManager := PMemoryManager(LPMapAddress^)^;
        {Unmap the file}
        UnmapViewOfFile(LPMapAddress);
    {$ifdef EnableBackwardCompatibleMMSharing}
      end
      else
      begin
        if MMWindow <> 0 then
        begin
          NewMemoryManager := PMemoryManager(GetWindowLong(MMWindow, GWL_USERDATA))^;
        end
        else
        begin
          NewMemoryManager := PMemoryManager(GetWindowLong(MMWindowBE, GWL_USERDATA))^;
        end;
      end;
    {$endif}
  {$else}
    {$ifdef EnableBackwardCompatibleMMSharing}
      if MappingObjectHandle <> 0 then
      begin
    {$endif}
        {Map a view of the memory}
        LPMapAddress := MapViewOfFile(MappingObjectHandle, FILE_MAP_READ, 0, 0, 0);
        {Set the new memory manager}
        NewMemoryManager := PMemoryManagerEx(LPMapAddress^)^;
        {Unmap the file}
        UnmapViewOfFile(LPMapAddress);
    {$ifdef EnableBackwardCompatibleMMSharing}
      end
      else
      begin
        if MMWindow <> 0 then
        begin
          NewMemoryManager := PMemoryManagerEx(GetWindowLong(MMWindow, GWL_USERDATA))^;
        end
        else
        begin
          NewMemoryManager := PMemoryManagerEx(GetWindowLong(MMWindowBE, GWL_USERDATA))^;
        end;
      end;
    {$endif}
  {$endif}
      {Close the file mapping handle}
      CloseHandle(MappingObjectHandle);
      MappingObjectHandle := 0;
      {The memory manager is not owned by this module}
      IsMemoryManagerOwner := False;
    end;
{$endif}
    {Save the old memory manager}
    GetMemoryManager(OldMemoryManager);
    {Replace the memory manager with either this one or the shared one.}
    SetMemoryManager(NewMemoryManager);
    {FastMM is now installed}
    FastMMIsInstalled := True;
{$ifdef UseOutputDebugString}
    if IsMemoryManagerOwner then
      OutputDebugStringA(FastMMInstallMsg)
    else
      OutputDebugStringA(FastMMInstallSharedMsg);
{$endif}
  end;
end;

procedure UninstallMemoryManager;
begin
  {Is this the owner of the shared MM window?}
  if IsMemoryManagerOwner then
  begin
{$ifdef ShareMM}
  {$ifdef EnableBackwardCompatibleMMSharing}
    {Destroy the window}
    if MMWindow <> 0 then
    begin
      DestroyWindow(MMWindow);
      MMWindow := 0;
    end;
    if MMWindowBE <> 0 then
    begin
      DestroyWindow(MMWindowBE);
      MMWindowBE := 0;
    end;
  {$endif}
    {Destroy the memory mapped file handle}
    if MappingObjectHandle <> 0 then
    begin
      CloseHandle(MappingObjectHandle);
      MappingObjectHandle := 0;
    end;
{$endif}
{$ifdef FullDebugMode}
    {Release the reserved block}
    if ReservedBlock <> nil then
    begin
      VirtualFree(ReservedBlock, 0, MEM_RELEASE);
      ReservedBlock := nil;
    end;
{$endif}
  end;
{$ifndef DetectMMOperationsAfterUninstall}
  {Restore the old memory manager}
  SetMemoryManager(OldMemoryManager);
{$else}
  {Set the invalid memory manager: no more MM operations allowed}
  SetMemoryManager(InvalidMemoryManager);
{$endif}
  {Memory manager has been uninstalled}
  FastMMIsInstalled := False;
{$ifdef UseOutputDebugString}
  if IsMemoryManagerOwner then
    OutputDebugStringA(FastMMUninstallMsg)
  else
    OutputDebugStringA(FastMMUninstallSharedMsg);
{$endif}
end;

procedure FinalizeMemoryManager;
begin
  {Restore the old memory manager if FastMM has been installed}
  if FastMMIsInstalled then
  begin
{$ifndef NeverUninstall}
    {Uninstall FastMM}
    UninstallMemoryManager;
{$endif}
    {Do we own the memory manager, or are we just sharing it?}
    if IsMemoryManagerOwner then
    begin
{$ifdef CheckUseOfFreedBlocksOnShutdown}
      CheckBlocksOnShutdown(
  {$ifdef EnableMemoryLeakReporting}
        True
    {$ifdef RequireIDEPresenceForLeakReporting}
        and DelphiIsRunning
    {$endif}
    {$ifdef RequireDebuggerPresenceForLeakReporting}
        and ((DebugHook <> 0)
        {$ifdef PatchBCBTerminate}
        or (Assigned(pCppDebugHook) and (pCppDebugHook^ <> 0))
        {$endif PatchBCBTerminate}
        )
    {$endif}
    {$ifdef ManualLeakReportingControl}
        and ReportMemoryLeaksOnShutdown
    {$endif}
  {$else}
        False
  {$endif}
      );
{$else}
  {$ifdef EnableMemoryLeakReporting}
      if True
    {$ifdef RequireIDEPresenceForLeakReporting}
        and DelphiIsRunning
    {$endif}
    {$ifdef RequireDebuggerPresenceForLeakReporting}
        and ((DebugHook <> 0)
        {$ifdef PatchBCBTerminate}
        or (Assigned(pCppDebugHook) and (pCppDebugHook^ <> 0))
        {$endif PatchBCBTerminate}
        )
    {$endif}
    {$ifdef ManualLeakReportingControl}
        and ReportMemoryLeaksOnShutdown
    {$endif}
      then
        CheckBlocksOnShutdown(True);
  {$endif}
{$endif}
{$ifdef EnableMemoryLeakReporting}
      {Free the expected memory leaks list}
      if ExpectedMemoryLeaks <> nil then
      begin
        VirtualFree(ExpectedMemoryLeaks, 0, MEM_RELEASE);
        ExpectedMemoryLeaks := nil;
      end;
{$endif}
{$ifndef NeverUninstall}
      {Clean up: Free all memory. If this is a .DLL that owns its own MM, then
       it is necessary to prevent the main application from running out of
       address space.}
      FreeAllMemory;
{$endif}
    end;
  end;
end;

procedure RunInitializationCode;
begin
  {Only run this code once during startup.}
  if InitializationCodeHasRun then
    Exit;
  InitializationCodeHasRun := True;
{$ifndef BCB}
  {$ifdef InstallOnlyIfRunningInIDE}
  if (DebugHook <> 0) and DelphiIsRunning then
  {$endif}
  begin
    {Initialize all the lookup tables, etc. for the memory manager}
    InitializeMemoryManager;
    {Has another MM been set, or has the Embarcadero MM been used? If so, this
     file is not the first unit in the uses clause of the project's .dpr
     file.}
    if CheckCanInstallMemoryManager then
    begin
    {$ifdef ClearLogFileOnStartup}
      DeleteEventLog;
    {$endif}
      InstallMemoryManager;
    end;
  end;
{$endif}
end;

initialization
  RunInitializationCode;

finalization
{$ifndef PatchBCBTerminate}
  FinalizeMemoryManager;
{$endif}

end.