1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
|
{=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
KKKKK KKKKK OOOOOOOOO LLLLL
KKKKK KKKKK OOOOOOOOOOOOO LLLLL
KKKKK KKKKK OOOOO OOOOO LLLLL
KKKKK KKKKK OOOOO OOOOO LLLLL
KKKKKKKKKK OOOOO OOOOO LLLLL
KKKKK KKKKK OOOOO OOOOO LLLLL
KKKKK KKKKK OOOOO OOOOO LLLLL
KKKKK KKKKK OOOOOOOOOOOOO LLLLLLLLLLLLL
KKKKK KKKKK OOOOOOOOO LLLLLLLLLLLLL
Key Objects Library (C) 2000 by Kladov Vladimir.
mailto: vk@kolmck.net
Home: http://kolmck.net
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-}
{
This code is grabbed from standard math.pas unit,
provided by Borland Delphi. This unit is for working with
engineering (mathematical) functions. The main difference
is that err unit specially designed to handle exceptions
for KOL is used instead of SysUtils. This allows to make
size of the executable smaller for about 5K. though this
value is insignificant for project made with VCL, it can
be more than 15% of executable file size made with KOL.
}
{*******************************************************}
{ }
{ Borland Delphi Runtime Library }
{ Math Unit }
{ }
{ Copyright (C) 1996,99 Inprise Corporation }
{ }
{*******************************************************}
unit kolmath;
{ This unit contains high-performance arithmetic, trigonometric, logorithmic,
statistical and financial calculation routines which supplement the math
routines that are part of the Delphi language or System unit. }
{$N+,S-}
{$I KOLDEF.INC}
interface
uses {$IFNDEF MATH_NOERR} err, {$ENDIF} kol;
const { Ranges of the IEEE floating point types, including denormals }
MinSingle = 1.5e-45;
MaxSingle = 3.4e+38;
MinDouble = 5.0e-324;
MaxDouble = 1.7e+308;
MinExtended = 3.4e-4932;
MaxExtended = 1.1e+4932;
MinComp = -9.223372036854775807e+18;
MaxComp = 9.223372036854775807e+18;
{-----------------------------------------------------------------------
References:
1) P.J. Plauger, "The Standard C Library", Prentice-Hall, 1992, Ch. 7.
2) W.J. Cody, Jr., and W. Waite, "Software Manual For the Elementary
Functions", Prentice-Hall, 1980.
3) Namir Shammas, "C/C++ Mathematical Algorithms for Scientists and Engineers",
McGraw-Hill, 1995, Ch 8.
4) H.T. Lau, "A Numerical Library in C for Scientists and Engineers",
CRC Press, 1994, Ch. 6.
5) "Pentium(tm) Processor User's Manual, Volume 3: Architecture
and Programming Manual", Intel, 1994
+6)������ �������, "�������������� ����� ��� �������������", ������������ ���.,
2004
All angle parameters and results of trig functions are in radians.
Most of the following trig and log routines map directly to Intel 80387 FPU
floating point machine instructions. Input domains, output ranges, and
error handling are determined largely by the FPU hardware.
Routines coded in assembler favor the Pentium FPU pipeline architecture.
-----------------------------------------------------------------------}
function EAbs( D: Double ): Double;
function EMax( const Values: array of Double ): Double;
function EMin( const Values: array of Double ): Double;
function ESign( X: Extended ): Integer;
function iMax( const Values: array of Integer ): Integer;
function iMin( const Values: array of Integer ): Integer;
function iSign( i: Integer ): Integer;
{ Trigonometric functions }
function ArcCos(X: Extended): Extended; { IN: |X| <= 1 OUT: [0..PI] radians }
function ArcSin(X: Extended): Extended; { IN: |X| <= 1 OUT: [-PI/2..PI/2] radians }
{ ArcTan2 calculates ArcTan(Y/X), and returns an angle in the correct quadrant.
IN: |Y| < 2^64, |X| < 2^64, X <> 0 OUT: [-PI..PI] radians }
function ArcTan2(Y, X: Extended): Extended;
{ SinCos is 2x faster than calling Sin and Cos separately for the same angle }
procedure SinCos(Theta: Extended; var Sin, Cos: Extended) register;
function Tan(X: Extended): Extended;
function Cotan(X: Extended): Extended; { 1 / tan(X), X <> 0 }
function Hypot(X, Y: Extended): Extended; { Sqrt(X**2 + Y**2) }
{ Angle unit conversion routines }
function DegToRad(Degrees: Extended): Extended; { Radians := Degrees * PI / 180}
function RadToDeg(Radians: Extended): Extended; { Degrees := Radians * 180 / PI }
function GradToRad(Grads: Extended): Extended; { Radians := Grads * PI / 200 }
function RadToGrad(Radians: Extended): Extended; { Grads := Radians * 200 / PI }
function CycleToRad(Cycles: Extended): Extended; { Radians := Cycles * 2PI }
function RadToCycle(Radians: Extended): Extended;{ Cycles := Radians / 2PI }
{ Hyperbolic functions and inverses }
function Cosh(X: Extended): Extended;
function Sinh(X: Extended): Extended;
function Tanh(X: Extended): Extended;
function ArcCosh(X: Extended): Extended; { IN: X >= 1 }
function ArcSinh(X: Extended): Extended;
function ArcTanh(X: Extended): Extended; { IN: |X| <= 1 }
{ Logorithmic functions }
function LnXP1(X: Extended): Extended; { Ln(X + 1), accurate for X near zero }
function Log10(X: Extended): Extended; { Log base 10 of X}
function Log2(X: Extended): Extended; { Log base 2 of X }
function LogN(Base, X: Extended): Extended; { Log base N of X }
{ Exponential functions }
{ IntPower: Raise base to an integral power. Fast. }
//function IntPower(Base: Extended; Exponent: Integer): Extended register;
// -- already defined in kol.pas
{ Power: Raise base to any power.
For fractional exponents, or |exponents| > MaxInt, base must be > 0. }
function Power(Base, Exponent: Extended): Extended;
{$IFNDEF _D6orHigher}
function Trunc( X: Extended ): Int64;
{$ENDIF}
{ Miscellaneous Routines }
{ Frexp: Separates the mantissa and exponent of X. }
procedure Frexp(X: Extended; var Mantissa: Extended; var Exponent: Integer) register;
{ Ldexp: returns X*2**P }
function Ldexp(X: Extended; P: Integer): Extended register;
{ Ceil: Smallest integer >= X, |X| < MaxInt }
function Ceil(X: Extended):Integer;
{ Floor: Largest integer <= X, |X| < MaxInt }
function Floor(X: Extended): Integer;
{ Poly: Evaluates a uniform polynomial of one variable at value X.
The coefficients are ordered in increasing powers of X:
Coefficients[0] + Coefficients[1]*X + ... + Coefficients[N]*(X**N) }
function Poly(X: Extended; const Coefficients: array of Double): Extended;
{-----------------------------------------------------------------------
Statistical functions.
Common commercial spreadsheet macro names for these statistical and
financial functions are given in the comments preceding each function.
-----------------------------------------------------------------------}
{ Mean: Arithmetic average of values. (AVG): SUM / N }
function Mean(const Data: array of Double): Extended;
{ Sum: Sum of values. (SUM) }
function Sum(const Data: array of Double): Extended register;
function SumInt(const Data: array of Integer): Integer register;
function SumOfSquares(const Data: array of Double): Extended;
procedure SumsAndSquares(const Data: array of Double;
var Sum, SumOfSquares: Extended) register;
{ MinValue: Returns the smallest signed value in the data array (MIN) }
function MinValue(const Data: array of Double): Double;
function MinIntValue(const Data: array of Integer): Integer;
function Min(A,B: Integer): Integer;
{$IFDEF _D4orHigher}
overload;
function Min(A,B: I64): I64; overload;
function Min(A,B: Int64): Int64; overload;
function Min(A,B: Single): Single; overload;
function Min(A,B: Double): Double; overload;
function Min(A,B: Extended): Extended; overload;
{$ENDIF}
{ MaxValue: Returns the largest signed value in the data array (MAX) }
function MaxValue(const Data: array of Double): Double;
function MaxIntValue(const Data: array of Integer): Integer;
function Max(A,B: Integer): Integer;
{$IFDEF _D4orHigher}
overload;
function Max(A,B: I64): I64; overload;
function Max(A,B: Single): Single; overload;
function Max(A,B: Double): Double; overload;
function Max(A,B: Extended): Extended; overload;
{$ENDIF}
{ Standard Deviation (STD): Sqrt(Variance). aka Sample Standard Deviation }
function StdDev(const Data: array of Double): Extended;
{ MeanAndStdDev calculates Mean and StdDev in one call. }
procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended);
{ Population Standard Deviation (STDP): Sqrt(PopnVariance).
Used in some business and financial calculations. }
function PopnStdDev(const Data: array of Double): Extended;
{ Variance (VARS): TotalVariance / (N-1). aka Sample Variance }
function Variance(const Data: array of Double): Extended;
{ Population Variance (VAR or VARP): TotalVariance/ N }
function PopnVariance(const Data: array of Double): Extended;
{ Total Variance: SUM(i=1,N)[(X(i) - Mean)**2] }
function TotalVariance(const Data: array of Double): Extended;
{ Norm: The Euclidean L2-norm. Sqrt(SumOfSquares) }
function Norm(const Data: array of Double): Extended;
{ MomentSkewKurtosis: Calculates the core factors of statistical analysis:
the first four moments plus the coefficients of skewness and kurtosis.
M1 is the Mean. M2 is the Variance.
Skew reflects symmetry of distribution: M3 / (M2**(3/2))
Kurtosis reflects flatness of distribution: M4 / Sqr(M2) }
procedure MomentSkewKurtosis(const Data: array of Double;
var M1, M2, M3, M4, Skew, Kurtosis: Extended);
{ RandG produces random numbers with Gaussian distribution about the mean.
Useful for simulating data with sampling errors. }
function RandG(Mean, StdDev: Extended): Extended;
{-----------------------------------------------------------------------
Financial functions. Standard set from Quattro Pro.
Parameter conventions:
From the point of view of A, amounts received by A are positive and
amounts disbursed by A are negative (e.g. a borrower's loan repayments
are regarded by the borrower as negative).
Interest rates are per payment period. 11% annual percentage rate on a
loan with 12 payments per year would be (11 / 100) / 12 = 0.00916667
-----------------------------------------------------------------------}
type
TPaymentTime = (ptEndOfPeriod, ptStartOfPeriod);
{ Double Declining Balance (DDB) }
function DoubleDecliningBalance(Cost, Salvage: Extended;
Life, Period: Integer): Extended;
{ Future Value (FVAL) }
function FutureValue(Rate: Extended; NPeriods: Integer; Payment, PresentValue:
Extended; PaymentTime: TPaymentTime): Extended;
{ Interest Payment (IPAYMT) }
function InterestPayment(Rate: Extended; Period, NPeriods: Integer; PresentValue,
FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
{ Interest Rate (IRATE) }
function InterestRate(NPeriods: Integer;
Payment, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
{ Internal Rate of Return. (IRR) Needs array of cash flows. }
function InternalRateOfReturn(Guess: Extended;
const CashFlows: array of Double): Extended;
{ Number of Periods (NPER) }
function NumberOfPeriods(Rate, Payment, PresentValue, FutureValue: Extended;
PaymentTime: TPaymentTime): Extended;
{ Net Present Value. (NPV) Needs array of cash flows. }
function NetPresentValue(Rate: Extended; const CashFlows: array of Double;
PaymentTime: TPaymentTime): Extended;
{ Payment (PAYMT) }
function Payment(Rate: Extended; NPeriods: Integer;
PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
{ Period Payment (PPAYMT) }
function PeriodPayment(Rate: Extended; Period, NPeriods: Integer;
PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
{ Present Value (PVAL) }
function PresentValue(Rate: Extended; NPeriods: Integer;
Payment, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
{ Straight Line depreciation (SLN) }
function SLNDepreciation(Cost, Salvage: Extended; Life: Integer): Extended;
{ Sum-of-Years-Digits depreciation (SYD) }
function SYDDepreciation(Cost, Salvage: Extended; Life, Period: Integer): Extended;
{type
EInvalidArgument = class(EMathError) end;}
{------------------------------------------------------------------------------}
{ Integer and logical functions }
function IsPowerOf2( i: Integer ): Boolean;
{* TRUE, ���� ����� �������� �������� ����� 2 }
function Low1( i: Integer ): Integer;
{* �������� ������� ��� 1 �� ����� i. }
function Low0( i: Integer ): Integer;
{* �������� ������� ������ ��� 0 �� ����� i, ��������, 1100011 -> 100 }
function count_1_bits_in_byte( x: Byte ): Byte;
{* ������������ ����� ��������� ����� � ����� }
function count_1_bits_in_dword( x: Integer ): Integer;
{* ������������ ����� ��������� ����� � 32-������ }
implementation
{$IFNDEF _D2orD3}
uses SysConst;
{$ENDIF}
function EAbs( D: Double ): Double;
begin
Result := D;
if Result < 0.0 then
Result := -Result;
end;
function EMax( const Values: array of Double ): Double;
var I: Integer;
begin
Result := Values[ 0 ];
for I := 1 to High( Values ) do
if Result < Values[ I ] then Result := Values[ I ];
end;
function EMin( const Values: array of Double ): Double;
var I: Integer;
begin
Result := Values[ 0 ];
for I := 1 to High( Values ) do
if Result > Values[ I ] then Result := Values[ I ];
end;
function ESign( X: Extended ): Integer;
begin
if X < 0 then Result := -1
else if X > 0 then Result := 1
else Result := 1;
end;
function iMax( const Values: array of Integer ): Integer;
var I: Integer;
begin
Result := Values[ 0 ];
for I := 1 to High( Values ) do
if Result < Values[ I ] then Result := Values[ I ];
end;
function iMin( const Values: array of Integer ): Integer;
var I: Integer;
begin
Result := Values[ 0 ];
for I := 1 to High( Values ) do
if Result > Values[ I ] then Result := Values[ I ];
end;
{$IFDEF PAS_VERSION}
function iSign( i: Integer ): Integer;
begin
if i < 0 then Result := -1
else if i > 0 then Result := 1
else Result := 0;
end;
{$ELSE}
function iSign( i: Integer ): Integer;
asm
XOR EDX, EDX
TEST EAX, EAX
JZ @@exit
MOV DL, 1
JG @@exit
OR EDX, -1
@@exit:
XCHG EAX, EDX
end;
{$ENDIF}
function Annuity2(R: Extended; N: Integer; PaymentTime: TPaymentTime;
var CompoundRN: Extended): Extended; Forward;
function Compound(R: Extended; N: Integer): Extended; Forward;
function RelSmall(X, Y: Extended): Boolean; Forward;
type
TPoly = record
Neg, Pos, DNeg, DPos: Extended
end;
const
MaxIterations = 15;
{$IFNDEF MATH_NOERR}
procedure ArgError(const Msg: string);
begin
raise Exception.Create(e_Math_InvalidArgument, Msg);
end;
{$ENDIF}
function DegToRad(Degrees: Extended): Extended; { Radians := Degrees * PI / 180 }
begin
Result := Degrees * (PI / 180);
end;
function RadToDeg(Radians: Extended): Extended; { Degrees := Radians * 180 / PI }
begin
Result := Radians * (180 / PI);
end;
function GradToRad(Grads: Extended): Extended; { Radians := Grads * PI / 200 }
begin
Result := Grads * (PI / 200);
end;
function RadToGrad(Radians: Extended): Extended; { Grads := Radians * 200 / PI}
begin
Result := Radians * (200 / PI);
end;
function CycleToRad(Cycles: Extended): Extended; { Radians := Cycles * 2PI }
begin
Result := Cycles * (2 * PI);
end;
function RadToCycle(Radians: Extended): Extended;{ Cycles := Radians / 2PI }
begin
Result := Radians / (2 * PI);
end;
function LnXP1(X: Extended): Extended;
{ Return ln(1 + X). Accurate for X near 0. }
asm
FLDLN2
MOV AX,WORD PTR X+8 { exponent }
FLD X
CMP AX,$3FFD { .4225 }
JB @@1
FLD1
FADD
FYL2X
JMP @@2
@@1:
FYL2XP1
@@2:
FWAIT
end;
{ Invariant: Y >= 0 & Result*X**Y = X**I. Init Y = I and Result = 1. }
{function IntPower(X: Extended; I: Integer): Extended;
var
Y: Integer;
begin
Y := Abs(I);
Result := 1.0;
while Y > 0 do begin
while not Odd(Y) do
begin
Y := Y shr 1;
X := X * X
end;
Dec(Y);
Result := Result * X
end;
if I < 0 then Result := 1.0 / Result
end;
}
(* -- already defined in kol.pas
function IntPower(Base: Extended; Exponent: Integer): Extended;
asm
mov ecx, eax
cdq
fld1 { Result := 1 }
xor eax, edx
sub eax, edx { eax := Abs(Exponent) }
jz @@3
fld Base
jmp @@2
@@1: fmul ST, ST { X := Base * Base }
@@2: shr eax,1
jnc @@1
fmul ST(1),ST { Result := Result * X }
jnz @@1
fstp st { pop X from FPU stack }
cmp ecx, 0
jge @@3
fld1
fdivrp { Result := 1 / Result }
@@3:
fwait
end;
*)
function Compound(R: Extended; N: Integer): Extended;
{ Return (1 + R)**N. }
begin
Result := IntPower(1.0 + R, N)
end;
function Annuity2(R: Extended; N: Integer; PaymentTime: TPaymentTime;
var CompoundRN: Extended): Extended;
{ Set CompoundRN to Compound(R, N),
return (1+Rate*PaymentTime)*(Compound(R,N)-1)/R;
}
begin
if R = 0.0 then
begin
CompoundRN := 1.0;
Result := N;
end
else
begin
{ 6.1E-5 approx= 2**-14 }
if EAbs(R) < 6.1E-5 then
begin
CompoundRN := Exp(N * LnXP1(R));
Result := N*(1+(N-1)*R/2);
end
else
begin
CompoundRN := Compound(R, N);
Result := (CompoundRN-1) / R
end;
if PaymentTime = ptStartOfPeriod then
Result := Result * (1 + R);
end;
end; {Annuity2}
procedure PolyX(const A: array of Double; X: Extended; var Poly: TPoly);
{ Compute A[0] + A[1]*X + ... + A[N]*X**N and X * its derivative.
Accumulate positive and negative terms separately. }
var
I: Integer;
Neg, Pos, DNeg, DPos: Extended;
begin
Neg := 0.0;
Pos := 0.0;
DNeg := 0.0;
DPos := 0.0;
for I := High(A) downto Low(A) do
begin
DNeg := X * DNeg + Neg;
Neg := Neg * X;
DPos := X * DPos + Pos;
Pos := Pos * X;
if A[I] >= 0.0 then
Pos := Pos + A[I]
else
Neg := Neg + A[I]
end;
Poly.Neg := Neg;
Poly.Pos := Pos;
Poly.DNeg := DNeg * X;
Poly.DPos := DPos * X;
end; {PolyX}
function RelSmall(X, Y: Extended): Boolean;
{ Returns True if X is small relative to Y }
const
C1: Double = 1E-15;
C2: Double = 1E-12;
begin
Result := EAbs(X) < (C1 + C2 * EAbs(Y))
end;
{ Math functions. }
function ArcCos(X: Extended): Extended;
begin
if X > 0.999999999999999 then
Result := 0 {����� -NAN !}
else
if X < -0.999999999999999 then
Result := PI
else
Result := ArcTan2(Sqrt(1 - X*X), X);
end;
function ArcSin(X: Extended): Extended;
begin
Result := ArcTan2(X, Sqrt(1 - X*X))
end;
function ArcTan2(Y, X: Extended): Extended;
asm
FLD Y
FLD X
FPATAN
FWAIT
end;
function Tan(X: Extended): Extended;
{ Tan := Sin(X) / Cos(X) }
asm
FLD X
FPTAN
FSTP ST(0) { FPTAN pushes 1.0 after result }
FWAIT
end;
function CoTan(X: Extended): Extended;
{ CoTan := Cos(X) / Sin(X) = 1 / Tan(X) }
asm
FLD X
FPTAN
FDIVRP
FWAIT
end;
function Hypot(X, Y: Extended): Extended;
{ formula: Sqrt(X*X + Y*Y)
implemented as: |Y|*Sqrt(1+Sqr(X/Y)), |X| < |Y| for greater precision
var
Temp: Extended;
begin
X := Abs(X);
Y := Abs(Y);
if X > Y then
begin
Temp := X;
X := Y;
Y := Temp;
end;
if X = 0 then
Result := Y
else // Y > X, X <> 0, so Y > 0
Result := Y * Sqrt(1 + Sqr(X/Y));
end;
}
asm
FLD Y
FABS
FLD X
FABS
FCOM
FNSTSW AX
TEST AH,$45
JNZ @@1 // if ST > ST(1) then swap
FXCH ST(1) // put larger number in ST(1)
@@1: FLDZ
FCOMP
FNSTSW AX
TEST AH,$40 // if ST = 0, return ST(1)
JZ @@2
FSTP ST // eat ST(0)
JMP @@3
@@2: FDIV ST,ST(1) // ST := ST / ST(1)
FMUL ST,ST // ST := ST * ST
FLD1
FADD // ST := ST + 1
FSQRT // ST := Sqrt(ST)
FMUL // ST(1) := ST * ST(1); Pop ST
@@3: FWAIT
end;
procedure SinCos(Theta: Extended; var Sin, Cos: Extended);
asm
FLD Theta
FSINCOS
FSTP tbyte ptr [edx] // Cos
FSTP tbyte ptr [eax] // Sin
FWAIT
end;
{ Extract exponent and mantissa from X }
procedure Frexp(X: Extended; var Mantissa: Extended; var Exponent: Integer);
{ Mantissa ptr in EAX, Exponent ptr in EDX }
asm
FLD X
PUSH EAX
MOV dword ptr [edx], 0 { if X = 0, return 0 }
FTST
FSTSW AX
FWAIT
SAHF
JZ @@Done
FXTRACT // ST(1) = exponent, (pushed) ST = fraction
FXCH
// The FXTRACT instruction normalizes the fraction 1 bit higher than
// wanted for the definition of frexp() so we need to tweak the result
// by scaling the fraction down and incrementing the exponent.
FISTP dword ptr [edx]
FLD1
FCHS
FXCH
FSCALE // scale fraction
INC dword ptr [edx] // exponent biased to match
FSTP ST(1) // discard -1, leave fraction as TOS
@@Done:
POP EAX
FSTP tbyte ptr [eax]
FWAIT
end;
function Ldexp(X: Extended; P: Integer): Extended;
{ Result := X * (2^P) }
asm
PUSH EAX
FILD dword ptr [ESP]
FLD X
FSCALE
POP EAX
FSTP ST(1)
FWAIT
end;
function Ceil(X: Extended): Integer;
begin
Result := Integer(Trunc(X));
if Frac(X) > 0 then
Inc(Result);
end;
function Floor(X: Extended): Integer;
begin
Result := Integer(Trunc(X));
if Frac(X) < 0 then
Dec(Result);
end;
{ Conversion of bases: Log.b(X) = Log.a(X) / Log.a(b) }
function Log10(X: Extended): Extended;
{ Log.10(X) := Log.2(X) * Log.10(2) }
asm
FLDLG2 { Log base ten of 2 }
FLD X
FYL2X
FWAIT
end;
function Log2(X: Extended): Extended;
asm
FLD1
FLD X
FYL2X
FWAIT
end;
function LogN(Base, X: Extended): Extended;
{ Log.N(X) := Log.2(X) / Log.2(N) }
asm
FLD1
FLD X
FYL2X
FLD1
FLD Base
FYL2X
FDIV
FWAIT
end;
function Poly(X: Extended; const Coefficients: array of Double): Extended;
{ Horner's method }
var
I: Integer;
begin
Result := Coefficients[High(Coefficients)];
for I := High(Coefficients)-1 downto Low(Coefficients) do
Result := Result * X + Coefficients[I];
end;
function Power(Base, Exponent: Extended): Extended;
begin
if Exponent = 0.0 then
Result := 1.0 { n**0 = 1 }
else if (Base = 0.0) and (Exponent > 0.0) then
Result := 0.0 { 0**n = 0, n > 0 }
else if (Frac(Exponent) = 0.0) and (EAbs(Exponent) <= MaxInt) then
Result := IntPower(Base, Integer(Trunc(Exponent)))
else
Result := Exp(Exponent * Ln(Base))
end;
{$IFNDEF _D6orHigher}
(*function Trunc1( X: Extended ): Int64;
begin
Result := System.Trunc( X );
end;
asm
FLD qword ptr [ESP+4]
{ -> FST(0) Extended argument }
{ <- EDX:EAX Result }
SUB ESP,12
FNSTCW [ESP].Word // save
FNSTCW [ESP+2].Word // scratch
FWAIT
OR [ESP+2].Word, $0F00 // trunc toward zero, full precision
FLDCW [ESP+2].Word
FISTP qword ptr [ESP+4]
FWAIT
FLDCW [ESP].Word
POP ECX
POP EAX
POP EDX
end;*)
function Trunc( X: Extended ): Int64;
begin
if Abs( X ) < 1 then Result := 0 else
if X < 0 then Result := -System.Trunc( -X )
else Result := System.Trunc( X );
end;
{$ENDIF}
{ Hyperbolic functions }
function CoshSinh(X: Extended; Factor: Double): Extended;
begin
Result := Exp(X) / 2;
Result := Result + Factor / Result;
end;
function Cosh(X: Extended): Extended;
begin
Result := CoshSinh(X, 0.25)
end;
function Sinh(X: Extended): Extended;
begin
Result := CoshSinh(X, -0.25)
end;
const
MaxTanhDomain = 5678.22249441322; // Ln(MaxExtended)/2
function Tanh(X: Extended): Extended;
begin
if X > MaxTanhDomain then
Result := 1.0
else if X < -MaxTanhDomain then
Result := -1.0
else
begin
Result := Exp(X);
Result := Result * Result;
Result := (Result - 1.0) / (Result + 1.0)
end;
end;
function ArcCosh(X: Extended): Extended;
begin
if X <= 1.0 then
Result := 0.0
else if X > 1.0e10 then
Result := Ln(2) + Ln(X)
else
Result := Ln(X + Sqrt((X - 1.0) * (X + 1.0)));
end;
function ArcSinh(X: Extended): Extended;
var
Neg: Boolean;
begin
if X = 0 then
Result := 0
else
begin
Neg := (X < 0);
X := EAbs(X);
if X > 1.0e10 then
Result := Ln(2) + Ln(X)
else
begin
Result := X*X;
Result := LnXP1(X + Result / (1 + Sqrt(1 + Result)));
end;
if Neg then Result := -Result;
end;
end;
function ArcTanh(X: Extended): Extended;
var
Neg: Boolean;
begin
if X = 0 then
Result := 0
else
begin
Neg := (X < 0);
X := EAbs(X);
if X >= 1 then
Result := MaxExtended
else
Result := 0.5 * LnXP1((2.0 * X) / (1.0 - X));
if Neg then Result := -Result;
end;
end;
{ Statistical functions }
function Mean(const Data: array of Double): Extended;
begin
Result := SUM(Data) / (High(Data) - Low(Data) + 1)
end;
function MinValue(const Data: array of Double): Double;
var
I: Integer;
begin
Result := Data[Low(Data)];
for I := Low(Data) + 1 to High(Data) do
if Result > Data[I] then
Result := Data[I];
end;
function MinIntValue(const Data: array of Integer): Integer;
var
I: Integer;
begin
Result := Data[Low(Data)];
for I := Low(Data) + 1 to High(Data) do
if Result > Data[I] then
Result := Data[I];
end;
{$IFDEF ASM_VERSION}
function Min(A,B: Integer): Integer;
asm
CMP EAX, EDX
JL @@1
XCHG EAX, EDX
@@1:
end;
{$ELSE}
function Min(A,B: Integer): Integer;
begin
if A < B then
Result := A
else
Result := B;
end;
{$ENDIF}
{$IFDEF _D4orHigher}
function Min(A,B: I64): I64;
begin
if Cmp64( A, B ) < 0 then
Result := A
else
Result := B;
end;
function Min(A,B: Int64): Int64;
begin
if A < B then
Result := A
else
Result := B;
end;
function Min(A,B: Single): Single;
begin
if A < B then
Result := A
else
Result := B;
end;
function Min(A,B: Double): Double;
begin
if A < B then
Result := A
else
Result := B;
end;
function Min(A,B: Extended): Extended;
begin
if A < B then
Result := A
else
Result := B;
end;
{$ENDIF}
function MaxValue(const Data: array of Double): Double;
var
I: Integer;
begin
Result := Data[Low(Data)];
for I := Low(Data) + 1 to High(Data) do
if Result < Data[I] then
Result := Data[I];
end;
function MaxIntValue(const Data: array of Integer): Integer;
var
I: Integer;
begin
Result := Data[Low(Data)];
for I := Low(Data) + 1 to High(Data) do
if Result < Data[I] then
Result := Data[I];
end;
{$IFDEF ASM_VERSION}
function Max(A,B: Integer): Integer;
asm
CMP EAX, EDX
JG @@1
XCHG EAX, EDX
@@1:
end;
{$ELSE}
function Max(A,B: Integer): Integer;
begin
if A > B then
Result := A
else
Result := B;
end;
{$ENDIF}
{$IFDEF _D4orHigher}
function Max(A,B: I64): I64;
begin
if Cmp64( A, B ) > 0 then
Result := A
else
Result := B;
end;
function Max(A,B: Single): Single;
begin
if A > B then
Result := A
else
Result := B;
end;
function Max(A,B: Double): Double;
begin
if A > B then
Result := A
else
Result := B;
end;
function Max(A,B: Extended): Extended;
begin
if A > B then
Result := A
else
Result := B;
end;
{$ENDIF}
procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended);
var
S: Extended;
N,I: Integer;
begin
N := High(Data)- Low(Data) + 1;
if N = 1 then
begin
Mean := Data[0];
StdDev := Data[0];
Exit;
end;
Mean := Sum(Data) / N;
S := 0; // sum differences from the mean, for greater accuracy
for I := Low(Data) to High(Data) do
S := S + Sqr(Mean - Data[I]);
StdDev := Sqrt(S / (N - 1));
end;
procedure MomentSkewKurtosis(const Data: array of Double;
var M1, M2, M3, M4, Skew, Kurtosis: Extended);
var
Sum, SumSquares, SumCubes, SumQuads, OverN, Accum, M1Sqr, S2N, S3N: Extended;
I: Integer;
begin
OverN := 1 / (High(Data) - Low(Data) + 1);
Sum := 0;
SumSquares := 0;
SumCubes := 0;
SumQuads := 0;
for I := Low(Data) to High(Data) do
begin
Sum := Sum + Data[I];
Accum := Sqr(Data[I]);
SumSquares := SumSquares + Accum;
Accum := Accum*Data[I];
SumCubes := SumCubes + Accum;
SumQuads := SumQuads + Accum*Data[I];
end;
M1 := Sum * OverN;
M1Sqr := Sqr(M1);
S2N := SumSquares * OverN;
S3N := SumCubes * OverN;
M2 := S2N - M1Sqr;
M3 := S3N - (M1 * 3 * S2N) + 2*M1Sqr*M1;
M4 := (SumQuads * OverN) - (M1 * 4 * S3N) + (M1Sqr*6*S2N - 3*Sqr(M1Sqr));
Skew := M3 * Power(M2, -3/2); // = M3 / Power(M2, 3/2)
Kurtosis := M4 / Sqr(M2);
end;
function Norm(const Data: array of Double): Extended;
begin
Result := Sqrt(SumOfSquares(Data));
end;
function PopnStdDev(const Data: array of Double): Extended;
begin
Result := Sqrt(PopnVariance(Data))
end;
function PopnVariance(const Data: array of Double): Extended;
begin
Result := TotalVariance(Data) / (High(Data) - Low(Data) + 1)
end;
function RandG(Mean, StdDev: Extended): Extended;
{ Marsaglia-Bray algorithm }
var
U1, S2: Extended;
begin
repeat
U1 := 2*Random - 1;
S2 := Sqr(U1) + Sqr(2*Random-1);
until S2 < 1;
Result := Sqrt(-2*Ln(S2)/S2) * U1 * StdDev + Mean;
end;
function StdDev(const Data: array of Double): Extended;
begin
Result := Sqrt(Variance(Data))
end;
procedure RaiseOverflowError; forward;
function SumInt(const Data: array of Integer): Integer;
{var
I: Integer;
begin
Result := 0;
for I := Low(Data) to High(Data) do
Result := Result + Data[I]
end; }
asm // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1
// loop unrolled 4 times, 5 clocks per loop, 1.2 clocks per datum
PUSH EBX
MOV ECX, EAX // ecx = ptr to data
MOV EBX, EDX
XOR EAX, EAX
AND EDX, not 3
AND EBX, 3
SHL EDX, 2
JMP @Vector.Pointer[EBX*4]
@Vector:
DD @@1
DD @@2
DD @@3
DD @@4
@@4:
ADD EAX, [ECX+12+EDX]
JO @@RaiseOverflowError
@@3:
ADD EAX, [ECX+8+EDX]
JO @@RaiseOverflowError
@@2:
ADD EAX, [ECX+4+EDX]
JO @@RaiseOverflowError
@@1:
ADD EAX, [ECX+EDX]
JO @@RaiseOverflowError
SUB EDX,16
JNS @@4
POP EBX
RET
@@RaiseOverflowError:
POP EBX
POP ECX
JMP RaiseOverflowError
end;
procedure RaiseOverflowError;
begin
{$IFNDEF MATH_NOERR}
raise Exception.Create(e_IntOverflow, SIntOverflow);
{$ENDIF}
end;
function SUM(const Data: array of Double): Extended;
{var
I: Integer;
begin
Result := 0.0;
for I := Low(Data) to High(Data) do
Result := Result + Data[I]
end; }
asm // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1
// Uses 4 accumulators to minimize read-after-write delays and loop overhead
// 5 clocks per loop, 4 items per loop = 1.2 clocks per item
FLDZ
MOV ECX, EDX
FLD ST(0)
AND EDX, not 3
FLD ST(0)
AND ECX, 3
FLD ST(0)
SHL EDX, 3 // count * sizeof(Double) = count * 8
JMP @Vector.Pointer[ECX*4]
@Vector:
DD @@1
DD @@2
DD @@3
DD @@4
@@4: FADD qword ptr [EAX+EDX+24] // 1
FXCH ST(3) // 0
@@3: FADD qword ptr [EAX+EDX+16] // 1
FXCH ST(2) // 0
@@2: FADD qword ptr [EAX+EDX+8] // 1
FXCH ST(1) // 0
@@1: FADD qword ptr [EAX+EDX] // 1
FXCH ST(2) // 0
SUB EDX, 32
JNS @@4
FADDP ST(3),ST // ST(3) := ST + ST(3); Pop ST
FADD // ST(1) := ST + ST(1); Pop ST
FADD // ST(1) := ST + ST(1); Pop ST
FWAIT
end;
function SumOfSquares(const Data: array of Double): Extended;
var
I: Integer;
begin
Result := 0.0;
for I := Low(Data) to High(Data) do
Result := Result + Sqr(Data[I]);
end;
procedure SumsAndSquares(const Data: array of Double; var Sum, SumOfSquares: Extended);
{var
I: Integer;
begin
Sum := 0;
SumOfSquares := 0;
for I := Low(Data) to High(Data) do
begin
Sum := Sum + Data[I];
SumOfSquares := SumOfSquares + Data[I]*Data[I];
end;
end; }
asm // IN: EAX = ptr to Data
// EDX = High(Data) = Count - 1
// ECX = ptr to Sum
// Est. 17 clocks per loop, 4 items per loop = 4.5 clocks per data item
FLDZ // init Sum accumulator
PUSH ECX
MOV ECX, EDX
FLD ST(0) // init Sqr1 accum.
AND EDX, not 3
FLD ST(0) // init Sqr2 accum.
AND ECX, 3
FLD ST(0) // init/simulate last data item left in ST
SHL EDX, 3 // count * sizeof(Double) = count * 8
JMP @Vector.Pointer[ECX*4]
@Vector:
DD @@1
DD @@2
DD @@3
DD @@4
@@4: FADD // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4
FLD qword ptr [EAX+EDX+24] // Load Data1
FADD ST(3),ST // Sum := Sum + Data1
FMUL ST,ST // Data1 := Sqr(Data1)
@@3: FLD qword ptr [EAX+EDX+16] // Load Data2
FADD ST(4),ST // Sum := Sum + Data2
FMUL ST,ST // Data2 := Sqr(Data2)
FXCH // Move Sqr(Data1) into ST(0)
FADDP ST(3),ST // Sqr1 := Sqr1 + Sqr(Data1); Pop Data1
@@2: FLD qword ptr [EAX+EDX+8] // Load Data3
FADD ST(4),ST // Sum := Sum + Data3
FMUL ST,ST // Data3 := Sqr(Data3)
FXCH // Move Sqr(Data2) into ST(0)
FADDP ST(3),ST // Sqr1 := Sqr1 + Sqr(Data2); Pop Data2
@@1: FLD qword ptr [EAX+EDX] // Load Data4
FADD ST(4),ST // Sum := Sum + Data4
FMUL ST,ST // Sqr(Data4)
FXCH // Move Sqr(Data3) into ST(0)
FADDP ST(3),ST // Sqr1 := Sqr1 + Sqr(Data3); Pop Data3
SUB EDX,32
JNS @@4
FADD // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4
POP ECX
FADD // Sqr1 := Sqr2 + Sqr1; Pop Sqr2
FXCH // Move Sum1 into ST(0)
MOV EAX, SumOfSquares
FSTP tbyte ptr [ECX] // Sum := Sum1; Pop Sum1
FSTP tbyte ptr [EAX] // SumOfSquares := Sum1; Pop Sum1
FWAIT
end;
function TotalVariance(const Data: array of Double): Extended;
var
Sum, SumSquares: Extended;
begin
SumsAndSquares(Data, Sum, SumSquares);
Result := SumSquares - Sqr(Sum)/(High(Data) - Low(Data) + 1);
end;
function Variance(const Data: array of Double): Extended;
begin
Result := TotalVariance(Data) / (High(Data) - Low(Data))
end;
{ Depreciation functions. }
function DoubleDecliningBalance(Cost, Salvage: Extended; Life, Period: Integer): Extended;
{ dv := cost * (1 - 2/life)**(period - 1)
DDB = (2/life) * dv
if DDB > dv - salvage then DDB := dv - salvage
if DDB < 0 then DDB := 0
}
var
DepreciatedVal, Factor: Extended;
begin
Result := 0;
if (Period < 1) or (Life < Period) or (Life < 1) or (Cost <= Salvage) then
Exit;
{depreciate everything in period 1 if life is only one or two periods}
if ( Life <= 2 ) then
begin
if ( Period = 1 ) then
DoubleDecliningBalance:=Cost-Salvage
else
DoubleDecliningBalance:=0; {all depreciation occurred in first period}
exit;
end;
Factor := 2.0 / Life;
DepreciatedVal := Cost * IntPower((1.0 - Factor), Period - 1);
{DepreciatedVal is Cost-(sum of previous depreciation results)}
Result := Factor * DepreciatedVal;
{Nominal computed depreciation for this period. The rest of the
function applies limits to this nominal value. }
{Only depreciate until total depreciation equals cost-salvage.}
if Result > DepreciatedVal - Salvage then
Result := DepreciatedVal - Salvage;
{No more depreciation after salvage value is reached. This is mostly a nit.
If Result is negative at this point, it's very close to zero.}
if Result < 0.0 then
Result := 0.0;
end;
function SLNDepreciation(Cost, Salvage: Extended; Life: Integer): Extended;
{ Spreads depreciation linearly over life. }
begin
{$IFNDEF MATH_NOERR}
if Life < 1 then ArgError('SLNDepreciation');
{$ENDIF}
Result := (Cost - Salvage) / Life
end;
function SYDDepreciation(Cost, Salvage: Extended; Life, Period: Integer): Extended;
{ SYD = (cost - salvage) * (life - period + 1) / (life*(life + 1)/2) }
{ Note: life*(life+1)/2 = 1+2+3+...+life "sum of years"
The depreciation factor varies from life/sum_of_years in first period = 1
downto 1/sum_of_years in last period = life.
Total depreciation over life is cost-salvage.}
var
X1, X2: Extended;
begin
Result := 0;
if (Period < 1) or (Life < Period) or (Cost <= Salvage) then Exit;
X1 := 2 * (Life - Period + 1);
X2 := Life * (Life + 1);
Result := (Cost - Salvage) * X1 / X2
end;
{ Discounted cash flow functions. }
function InternalRateOfReturn(Guess: Extended; const CashFlows: array of Double): Extended;
{
Use Newton's method to solve NPV = 0, where NPV is a polynomial in
x = 1/(1+rate). Split the coefficients into negative and postive sets:
neg + pos = 0, so pos = -neg, so -neg/pos = 1
Then solve:
log(-neg/pos) = 0
Let t = log(1/(1+r) = -LnXP1(r)
then r = exp(-t) - 1
Iterate on t, then use the last equation to compute r.
}
var
T, Y: Extended;
Poly: TPoly;
K, Count: Integer;
function ConditionP(const CashFlows: array of Double): Integer;
{ Guarantees existence and uniqueness of root. The sign of payments
must change exactly once, the net payout must be always > 0 for
first portion, then each payment must be >= 0.
Returns: 0 if condition not satisfied, > 0 if condition satisfied
and this is the index of the first value considered a payback. }
var
X: Double;
I, K: Integer;
begin
K := High(CashFlows);
while (K >= 0) and (CashFlows[K] >= 0.0) do Dec(K);
Inc(K);
if K > 0 then
begin
X := 0.0;
I := 0;
while I < K do begin
X := X + CashFlows[I];
if X >= 0.0 then
begin
K := 0;
Break
end;
Inc(I)
end
end;
ConditionP := K
end;
begin
InternalRateOfReturn := 0;
K := ConditionP(CashFlows);
{$IFNDEF MATH_NOERR}
if K < 0 then ArgError('InternalRateOfReturn');
{$ENDIF}
if K = 0 then
begin
{$IFNDEF MATH_NOERR}
if Guess <= -1.0 then ArgError('InternalRateOfReturn');
{$ENDIF}
T := -LnXP1(Guess)
end else
T := 0.0;
for Count := 1 to MaxIterations do
begin
PolyX(CashFlows, Exp(T), Poly);
{$IFNDEF MATH_NOERR}
if Poly.Pos <= Poly.Neg then ArgError('InternalRateOfReturn');
{$ENDIF}
if (Poly.Neg >= 0.0) or (Poly.Pos <= 0.0) then
begin
InternalRateOfReturn := -1.0;
Exit;
end;
with Poly do
Y := Ln(-Neg / Pos) / (DNeg / Neg - DPos / Pos);
T := T - Y;
if RelSmall(Y, T) then
begin
InternalRateOfReturn := Exp(-T) - 1.0;
Exit;
end
end;
{$IFNDEF MATH_NOERR}
ArgError('InternalRateOfReturn');
{$ENDIF}
end;
function NetPresentValue(Rate: Extended; const CashFlows: array of Double;
PaymentTime: TPaymentTime): Extended;
{ Caution: The sign of NPV is reversed from what would be expected for standard
cash flows!}
var
rr: Extended;
I: Integer;
begin
{$IFNDEF MATH_NOERR}
if Rate <= -1.0 then ArgError('NetPresentValue');
{$ENDIF}
rr := 1/(1+Rate);
result := 0;
for I := High(CashFlows) downto Low(CashFlows) do
result := rr * result + CashFlows[I];
if PaymentTime = ptEndOfPeriod then result := rr * result;
end;
{ Annuity functions. }
{---------------
From the point of view of A, amounts received by A are positive and
amounts disbursed by A are negative (e.g. a borrower's loan repayments
are regarded by the borrower as negative).
Given interest rate r, number of periods n:
compound(r, n) = (1 + r)**n "Compounding growth factor"
annuity(r, n) = (compound(r, n)-1) / r "Annuity growth factor"
Given future value fv, periodic payment pmt, present value pv and type
of payment (start, 1 , or end of period, 0) pmtTime, financial variables satisfy:
fv = -pmt*(1 + r*pmtTime)*annuity(r, n) - pv*compound(r, n)
For fv, pv, pmt:
C := compound(r, n)
A := (1 + r*pmtTime)*annuity(r, n)
Compute both at once in Annuity2.
if C > 1E16 then A = C/r, so:
fv := meaningless
pv := -pmt*(pmtTime+1/r)
pmt := -pv*r/(1 + r*pmtTime)
else
fv := -pmt(1+r*pmtTime)*A - pv*C
pv := (-pmt(1+r*pmtTime)*A - fv)/C
pmt := (-pv*C-fv)/((1+r*pmtTime)*A)
---------------}
function PaymentParts(Period, NPeriods: Integer; Rate, PresentValue,
FutureValue: Extended; PaymentTime: TPaymentTime; var IntPmt: Extended):
Extended;
var
Crn:extended; { =Compound(Rate,NPeriods) }
Crp:extended; { =Compound(Rate,Period-1) }
Arn:extended; { =AnnuityF(Rate,NPeriods) }
begin
{$IFNDEF MATH_NOERR}
if Rate <= -1.0 then ArgError('PaymentParts');
{$ENDIF}
Crp:=Compound(Rate,Period-1);
Arn:=Annuity2(Rate,NPeriods,PaymentTime,Crn);
IntPmt:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn;
PaymentParts:=(-FutureValue-PresentValue)*Crp/Arn;
end;
function FutureValue(Rate: Extended; NPeriods: Integer; Payment, PresentValue:
Extended; PaymentTime: TPaymentTime): Extended;
var
Annuity, CompoundRN: Extended;
begin
{$IFNDEF MATH_NOERR}
if Rate <= -1.0 then ArgError('FutureValue');
{$ENDIF}
Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
{$IFNDEF MATH_NOERR}
if CompoundRN > 1.0E16 then ArgError('FutureValue');
{$ENDIF}
FutureValue := -Payment * Annuity - PresentValue * CompoundRN
end;
function InterestPayment(Rate: Extended; Period, NPeriods: Integer; PresentValue,
FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
var
Crp:extended; { compound(rate,period-1)}
Crn:extended; { compound(rate,nperiods)}
Arn:extended; { annuityf(rate,nperiods)}
begin
{$IFNDEF MATH_NOERR}
if (Rate <= -1.0)
or (Period < 1) or (Period > NPeriods) then ArgError('InterestPayment');
{$ENDIF}
Crp:=Compound(Rate,Period-1);
Arn:=Annuity2(Rate,Nperiods,PaymentTime,Crn);
InterestPayment:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn;
end;
function InterestRate(NPeriods: Integer;
Payment, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
{
Given:
First and last payments are non-zero and of opposite signs.
Number of periods N >= 2.
Convert data into cash flow of first, N-1 payments, last with
first < 0, payment > 0, last > 0.
Compute the IRR of this cash flow:
0 = first + pmt*x + pmt*x**2 + ... + pmt*x**(N-1) + last*x**N
where x = 1/(1 + rate).
Substitute x = exp(t) and apply Newton's method to
f(t) = log(pmt*x + ... + last*x**N) / -first
which has a unique root given the above hypotheses.
}
var
X, Y, Z, First, Pmt, Last, T, ET, EnT, ET1: Extended;
Count: Integer;
Reverse: Boolean;
function LostPrecision(X: Extended): Boolean;
asm
XOR EAX, EAX
MOV BX,WORD PTR X+8
INC EAX
AND EBX, $7FF0
JZ @@1
CMP EBX, $7FF0
JE @@1
XOR EAX,EAX
@@1:
end;
begin
Result := 0;
{$IFNDEF MATH_NOERR}
if NPeriods <= 0 then ArgError('InterestRate');
{$ENDIF}
Pmt := Payment;
if PaymentTime = ptEndOfPeriod then
begin
X := PresentValue;
Y := FutureValue + Payment
end
else
begin
X := PresentValue + Payment;
Y := FutureValue
end;
First := X;
Last := Y;
Reverse := False;
if First * Payment > 0.0 then
begin
Reverse := True;
T := First;
First := Last;
Last := T
end;
if first > 0.0 then
begin
First := -First;
Pmt := -Pmt;
Last := -Last
end;
{$IFNDEF MATH_NOERR}
if (First = 0.0) or (Last < 0.0) then ArgError('InterestRate');
{$ENDIF}
T := 0.0; { Guess at solution }
for Count := 1 to MaxIterations do
begin
EnT := Exp(NPeriods * T);
if {LostPrecision(EnT)} ent=(ent+1) then
begin
Result := -Pmt / First;
if Reverse then
Result := Exp(-LnXP1(Result)) - 1.0;
Exit;
end;
ET := Exp(T);
ET1 := ET - 1.0;
if ET1 = 0.0 then
begin
X := NPeriods;
Y := X * (X - 1.0) / 2.0
end
else
begin
X := ET * (Exp((NPeriods - 1) * T)-1.0) / ET1;
Y := (NPeriods * EnT - ET - X * ET) / ET1
end;
Z := Pmt * X + Last * EnT;
Y := Ln(Z / -First) / ((Pmt * Y + Last * NPeriods *EnT) / Z);
T := T - Y;
if RelSmall(Y, T) then
begin
if not Reverse then T := -T;
InterestRate := Exp(T)-1.0;
Exit;
end
end;
{$IFNDEF MATH_NOERR}
ArgError('InterestRate');
{$ENDIF}
end;
function NumberOfPeriods(Rate, Payment, PresentValue, FutureValue: Extended;
PaymentTime: TPaymentTime): Extended;
{ If Rate = 0 then nper := -(pv + fv) / pmt
else cf := pv + pmt * (1 + rate*pmtTime) / rate
nper := LnXP1(-(pv + fv) / cf) / LnXP1(rate) }
var
PVRPP: Extended; { =PV*Rate+Payment } {"initial cash flow"}
T: Extended;
begin
{$IFNDEF MATH_NOERR}
if Rate <= -1.0 then ArgError('NumberOfPeriods');
{$ENDIF}
{whenever both Payment and PaymentTime are given together, the PaymentTime has the effect
of modifying the effective Payment by the interest accrued on the Payment}
if ( PaymentTime=ptStartOfPeriod ) then
Payment:=Payment*(1+Rate);
{if the payment exactly matches the interest accrued periodically on the
presentvalue, then an infinite number of payments are going to be
required to effect a change from presentvalue to futurevalue. The
following catches that specific error where payment is exactly equal,
but opposite in sign to the interest on the present value. If PVRPP
("initial cash flow") is simply close to zero, the computation will
be numerically unstable, but not as likely to cause an error.}
PVRPP:=PresentValue*Rate+Payment;
{$IFNDEF MATH_NOERR}
if PVRPP=0 then ArgError('NumberOfPeriods');
{$ENDIF}
{ 6.1E-5 approx= 2**-14 }
if ( EAbs(Rate)<6.1E-5 ) then
Result:=-(PresentValue+FutureValue)/PVRPP
else
begin
{starting with the initial cash flow, each compounding period cash flow
should result in the current value approaching the final value. The
following test combines a number of simultaneous conditions to ensure
reasonableness of the cashflow before computing the NPER.}
T:= -(PresentValue+FutureValue)*Rate/PVRPP;
{$IFNDEF MATH_NOERR}
if T<=-1.0 then ArgError('NumberOfPeriods');
{$ENDIF}
Result := LnXP1(T) / LnXP1(Rate)
end;
NumberOfPeriods:=Result;
end;
function Payment(Rate: Extended; NPeriods: Integer; PresentValue, FutureValue:
Extended; PaymentTime: TPaymentTime): Extended;
var
Annuity, CompoundRN: Extended;
begin
{$IFNDEF MATH_NOERR}
if Rate <= -1.0 then ArgError('Payment');
{$ENDIF}
Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
if CompoundRN > 1.0E16 then
Payment := -PresentValue * Rate / (1 + Integer(PaymentTime) * Rate)
else
Payment := (-PresentValue * CompoundRN - FutureValue) / Annuity
end;
function PeriodPayment(Rate: Extended; Period, NPeriods: Integer;
PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
var
Junk: Extended;
begin
{$IFNDEF MATH_NOERR}
if (Rate <= -1.0) or (Period < 1) or (Period > NPeriods) then ArgError('PeriodPayment');
{$ENDIF}
PeriodPayment := PaymentParts(Period, NPeriods, Rate, PresentValue,
FutureValue, PaymentTime, Junk);
end;
function PresentValue(Rate: Extended; NPeriods: Integer; Payment, FutureValue:
Extended; PaymentTime: TPaymentTime): Extended;
var
Annuity, CompoundRN: Extended;
begin
{$IFNDEF MATH_NOERR}
if Rate <= -1.0 then ArgError('PresentValue');
{$ENDIF}
Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
if CompoundRN > 1.0E16 then
PresentValue := -(Payment / Rate * Integer(PaymentTime) * Payment)
else
PresentValue := (-Payment * Annuity - FutureValue) / CompoundRN
end;
{------------------------------------------------------------------------------}
function IsPowerOf2( i: Integer ): Boolean; { Result = (i <> 0) and (i and (i-1) = 0); }
asm
OR EAX,EAX
JZ @@exit // 0 �� �������� �������� ����� 2
LEA EDX, [EAX-1]
OR EAX,EDX
SETZ AL // ����� �������� �������� 2, ���� (i & (i-1)) = 0, �.�. ���� �����
// ��������� ������� 1 � ����� ������ �� �������� ����� 1.
@@exit:
end;
function Low1( i: Integer ): Integer; { Result := i and (-i); }
asm
MOV EDX, EAX
NEG EAX
AND EAX, EDX
end;
function Low0( i: Integer ): Integer; { Result := -i and (i+1); }
asm
LEA EDX, [EAX+1]
NEG EAX
AND EAX, EDX
end;
function count_1_bits_in_byte( x: Byte ): Byte;
asm
MOV CL, AL
@@loop:
SHR CL, 1
JZ @@exit
SUB AL, CL
JMP @@loop
@@exit:
end;
function count_1_bits_in_dword( x: Integer ): Integer;
asm
MOV ECX, EAX
JMP @@go
@@loop:
SUB EAX, ECX
@@go:
SHR ECX, 1
JNZ @@loop
end;
end.
|