summaryrefslogtreecommitdiff
path: root/plugins/MirOTR/Libgcrypt/cipher/cipher-cfb.c
blob: aa2eeaa96adfb6a8951a731d9369487c394545a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/* cipher-cfb.c  - Generic CFB mode implementation
 * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003
 *               2005, 2007, 2008, 2009, 2011 Free Software Foundation, Inc.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser general Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>

#include "g10lib.h"
#include "cipher.h"
#include "ath.h"
#include "bufhelp.h"
#include "./cipher-internal.h"


gcry_err_code_t
_gcry_cipher_cfb_encrypt (gcry_cipher_hd_t c,
                          unsigned char *outbuf, size_t outbuflen,
                          const unsigned char *inbuf, size_t inbuflen)
{
  unsigned char *ivp;
  gcry_cipher_encrypt_t enc_fn = c->spec->encrypt;
  size_t blocksize = c->spec->blocksize;
  size_t blocksize_x_2 = blocksize + blocksize;
  unsigned int burn, nburn;

  if (outbuflen < inbuflen)
    return GPG_ERR_BUFFER_TOO_SHORT;

  if ( inbuflen <= c->unused )
    {
      /* Short enough to be encoded by the remaining XOR mask. */
      /* XOR the input with the IV and store input into IV. */
      ivp = c->u_iv.iv + blocksize - c->unused;
      buf_xor_2dst(outbuf, ivp, inbuf, inbuflen);
      c->unused -= inbuflen;
      return 0;
    }

  burn = 0;

  if ( c->unused )
    {
      /* XOR the input with the IV and store input into IV */
      inbuflen -= c->unused;
      ivp = c->u_iv.iv + blocksize - c->unused;
      buf_xor_2dst(outbuf, ivp, inbuf, c->unused);
      outbuf += c->unused;
      inbuf += c->unused;
      c->unused = 0;
    }

  /* Now we can process complete blocks.  We use a loop as long as we
     have at least 2 blocks and use conditions for the rest.  This
     also allows to use a bulk encryption function if available.  */
  if (inbuflen >= blocksize_x_2 && c->bulk.cfb_enc)
    {
      size_t nblocks = inbuflen / blocksize;
      c->bulk.cfb_enc (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks);
      outbuf += nblocks * blocksize;
      inbuf  += nblocks * blocksize;
      inbuflen -= nblocks * blocksize;
    }
  else
    {
      while ( inbuflen >= blocksize_x_2 )
        {
          /* Encrypt the IV. */
          nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
          burn = nburn > burn ? nburn : burn;
          /* XOR the input with the IV and store input into IV.  */
          buf_xor_2dst(outbuf, c->u_iv.iv, inbuf, blocksize);
          outbuf += blocksize;
          inbuf += blocksize;
          inbuflen -= blocksize;
        }
    }

  if ( inbuflen >= blocksize )
    {
      /* Save the current IV and then encrypt the IV. */
      buf_cpy( c->lastiv, c->u_iv.iv, blocksize );
      nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
      burn = nburn > burn ? nburn : burn;
      /* XOR the input with the IV and store input into IV */
      buf_xor_2dst(outbuf, c->u_iv.iv, inbuf, blocksize);
      outbuf += blocksize;
      inbuf += blocksize;
      inbuflen -= blocksize;
    }
  if ( inbuflen )
    {
      /* Save the current IV and then encrypt the IV. */
      buf_cpy( c->lastiv, c->u_iv.iv, blocksize );
      nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
      burn = nburn > burn ? nburn : burn;
      c->unused = blocksize;
      /* Apply the XOR. */
      c->unused -= inbuflen;
      buf_xor_2dst(outbuf, c->u_iv.iv, inbuf, inbuflen);
      outbuf += inbuflen;
      inbuf += inbuflen;
      inbuflen = 0;
    }

  if (burn > 0)
    _gcry_burn_stack (burn + 4 * sizeof(void *));

  return 0;
}


gcry_err_code_t
_gcry_cipher_cfb_decrypt (gcry_cipher_hd_t c,
                          unsigned char *outbuf, size_t outbuflen,
                          const unsigned char *inbuf, size_t inbuflen)
{
  unsigned char *ivp;
  gcry_cipher_encrypt_t enc_fn = c->spec->encrypt;
  size_t blocksize = c->spec->blocksize;
  size_t blocksize_x_2 = blocksize + blocksize;
  unsigned int burn, nburn;

  if (outbuflen < inbuflen)
    return GPG_ERR_BUFFER_TOO_SHORT;

  if (inbuflen <= c->unused)
    {
      /* Short enough to be encoded by the remaining XOR mask. */
      /* XOR the input with the IV and store input into IV. */
      ivp = c->u_iv.iv + blocksize - c->unused;
      buf_xor_n_copy(outbuf, ivp, inbuf, inbuflen);
      c->unused -= inbuflen;
      return 0;
    }

  burn = 0;

  if (c->unused)
    {
      /* XOR the input with the IV and store input into IV. */
      inbuflen -= c->unused;
      ivp = c->u_iv.iv + blocksize - c->unused;
      buf_xor_n_copy(outbuf, ivp, inbuf, c->unused);
      outbuf += c->unused;
      inbuf += c->unused;
      c->unused = 0;
    }

  /* Now we can process complete blocks.  We use a loop as long as we
     have at least 2 blocks and use conditions for the rest.  This
     also allows to use a bulk encryption function if available.  */
  if (inbuflen >= blocksize_x_2 && c->bulk.cfb_dec)
    {
      size_t nblocks = inbuflen / blocksize;
      c->bulk.cfb_dec (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks);
      outbuf += nblocks * blocksize;
      inbuf  += nblocks * blocksize;
      inbuflen -= nblocks * blocksize;
    }
  else
    {
      while (inbuflen >= blocksize_x_2 )
        {
          /* Encrypt the IV. */
          nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
          burn = nburn > burn ? nburn : burn;
          /* XOR the input with the IV and store input into IV. */
          buf_xor_n_copy(outbuf, c->u_iv.iv, inbuf, blocksize);
          outbuf += blocksize;
          inbuf += blocksize;
          inbuflen -= blocksize;
        }
    }

  if (inbuflen >= blocksize )
    {
      /* Save the current IV and then encrypt the IV. */
      buf_cpy ( c->lastiv, c->u_iv.iv, blocksize);
      nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
      burn = nburn > burn ? nburn : burn;
      /* XOR the input with the IV and store input into IV */
      buf_xor_n_copy(outbuf, c->u_iv.iv, inbuf, blocksize);
      outbuf += blocksize;
      inbuf += blocksize;
      inbuflen -= blocksize;
    }

  if (inbuflen)
    {
      /* Save the current IV and then encrypt the IV. */
      buf_cpy ( c->lastiv, c->u_iv.iv, blocksize );
      nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
      burn = nburn > burn ? nburn : burn;
      c->unused = blocksize;
      /* Apply the XOR. */
      c->unused -= inbuflen;
      buf_xor_n_copy(outbuf, c->u_iv.iv, inbuf, inbuflen);
      outbuf += inbuflen;
      inbuf += inbuflen;
      inbuflen = 0;
    }

  if (burn > 0)
    _gcry_burn_stack (burn + 4 * sizeof(void *));

  return 0;
}