1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/* cmac.c - CMAC, Cipher-based MAC.
* Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "g10lib.h"
#include "cipher.h"
#include "cipher-internal.h"
#include "bufhelp.h"
#define set_burn(burn, nburn) do { \
unsigned int __nburn = (nburn); \
(burn) = (burn) > __nburn ? (burn) : __nburn; } while (0)
static void
cmac_write (gcry_cipher_hd_t c, const byte * inbuf, size_t inlen)
{
gcry_cipher_encrypt_t enc_fn = c->spec->encrypt;
const unsigned int blocksize = c->spec->blocksize;
byte outbuf[MAX_BLOCKSIZE];
unsigned int burn = 0;
unsigned int nblocks;
if (!inlen || !inbuf)
return;
/* Last block is needed for cmac_final. */
if (c->unused + inlen <= blocksize)
{
for (; inlen && c->unused < blocksize; inlen--)
c->lastiv[c->unused++] = *inbuf++;
return;
}
if (c->unused)
{
for (; inlen && c->unused < blocksize; inlen--)
c->lastiv[c->unused++] = *inbuf++;
buf_xor (c->u_iv.iv, c->u_iv.iv, c->lastiv, blocksize);
set_burn (burn, enc_fn (&c->context.c, c->u_iv.iv, c->u_iv.iv));
c->unused = 0;
}
if (c->bulk.cbc_enc && inlen > blocksize)
{
nblocks = inlen / blocksize;
nblocks -= (nblocks * blocksize == inlen);
c->bulk.cbc_enc (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks, 1);
inbuf += nblocks * blocksize;
inlen -= nblocks * blocksize;
wipememory (outbuf, sizeof (outbuf));
}
else
while (inlen > blocksize)
{
buf_xor (c->u_iv.iv, c->u_iv.iv, inbuf, blocksize);
set_burn (burn, enc_fn (&c->context.c, c->u_iv.iv, c->u_iv.iv));
inlen -= blocksize;
inbuf += blocksize;
}
/* Make sure that last block is passed to cmac_final. */
if (inlen == 0)
BUG ();
for (; inlen && c->unused < blocksize; inlen--)
c->lastiv[c->unused++] = *inbuf++;
if (burn)
_gcry_burn_stack (burn + 4 * sizeof (void *));
}
static void
cmac_generate_subkeys (gcry_cipher_hd_t c)
{
const unsigned int blocksize = c->spec->blocksize;
byte rb, carry, t, bi;
unsigned int burn;
int i, j;
union
{
size_t _aligned;
byte buf[MAX_BLOCKSIZE];
} u;
if (MAX_BLOCKSIZE < blocksize)
BUG ();
/* encrypt zero block */
memset (u.buf, 0, blocksize);
burn = c->spec->encrypt (&c->context.c, u.buf, u.buf);
/* Currently supported blocksizes are 16 and 8. */
rb = blocksize == 16 ? 0x87 : 0x1B /*blocksize == 8 */ ;
for (j = 0; j < 2; j++)
{
/* Generate subkeys K1 and K2 */
carry = 0;
for (i = blocksize - 1; i >= 0; i--)
{
bi = u.buf[i];
t = carry | (bi << 1);
carry = bi >> 7;
u.buf[i] = t & 0xff;
c->u_mode.cmac.subkeys[j][i] = u.buf[i];
}
u.buf[blocksize - 1] ^= carry ? rb : 0;
c->u_mode.cmac.subkeys[j][blocksize - 1] = u.buf[blocksize - 1];
}
wipememory (&u, sizeof (u));
if (burn)
_gcry_burn_stack (burn + 4 * sizeof (void *));
}
static void
cmac_final (gcry_cipher_hd_t c)
{
const unsigned int blocksize = c->spec->blocksize;
unsigned int count = c->unused;
unsigned int burn;
byte *subkey;
if (count == blocksize)
subkey = c->u_mode.cmac.subkeys[0]; /* K1 */
else
{
subkey = c->u_mode.cmac.subkeys[1]; /* K2 */
c->lastiv[count++] = 0x80;
while (count < blocksize)
c->lastiv[count++] = 0;
}
buf_xor (c->lastiv, c->lastiv, subkey, blocksize);
buf_xor (c->u_iv.iv, c->u_iv.iv, c->lastiv, blocksize);
burn = c->spec->encrypt (&c->context.c, c->u_iv.iv, c->u_iv.iv);
if (burn)
_gcry_burn_stack (burn + 4 * sizeof (void *));
c->unused = 0;
}
static gcry_err_code_t
cmac_tag (gcry_cipher_hd_t c, unsigned char *tag, size_t taglen, int check)
{
if (!tag || taglen == 0 || taglen > c->spec->blocksize)
return GPG_ERR_INV_ARG;
if (!c->u_mode.cmac.tag)
{
cmac_final (c);
c->u_mode.cmac.tag = 1;
}
if (!check)
{
memcpy (tag, c->u_iv.iv, taglen);
return GPG_ERR_NO_ERROR;
}
else
{
return buf_eq_const (tag, c->u_iv.iv, taglen) ?
GPG_ERR_NO_ERROR : GPG_ERR_CHECKSUM;
}
}
gcry_err_code_t
_gcry_cipher_cmac_authenticate (gcry_cipher_hd_t c,
const unsigned char *abuf, size_t abuflen)
{
if (abuflen > 0 && !abuf)
return GPG_ERR_INV_ARG;
if (c->u_mode.cmac.tag)
return GPG_ERR_INV_STATE;
/* To support new blocksize, update cmac_generate_subkeys() then add new
blocksize here. */
if (c->spec->blocksize != 16 && c->spec->blocksize != 8)
return GPG_ERR_INV_CIPHER_MODE;
cmac_write (c, abuf, abuflen);
return GPG_ERR_NO_ERROR;
}
gcry_err_code_t
_gcry_cipher_cmac_get_tag (gcry_cipher_hd_t c,
unsigned char *outtag, size_t taglen)
{
return cmac_tag (c, outtag, taglen, 0);
}
gcry_err_code_t
_gcry_cipher_cmac_check_tag (gcry_cipher_hd_t c,
const unsigned char *intag, size_t taglen)
{
return cmac_tag (c, (unsigned char *) intag, taglen, 1);
}
gcry_err_code_t
_gcry_cipher_cmac_set_subkeys (gcry_cipher_hd_t c)
{
cmac_generate_subkeys (c);
return GPG_ERR_NO_ERROR;
}
|