1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
/* ecc-eddsa.c - Elliptic Curve EdDSA signatures
* Copyright (C) 2013, 2014 g10 Code GmbH
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
#include "context.h"
#include "ec-context.h"
#include "ecc-common.h"
static void
reverse_buffer (unsigned char *buffer, unsigned int length)
{
unsigned int tmp, i;
for (i=0; i < length/2; i++)
{
tmp = buffer[i];
buffer[i] = buffer[length-1-i];
buffer[length-1-i] = tmp;
}
}
/* Helper to scan a hex string. */
static gcry_mpi_t
scanval (const char *string)
{
gpg_err_code_t rc;
gcry_mpi_t val;
rc = _gcry_mpi_scan (&val, GCRYMPI_FMT_HEX, string, 0, NULL);
if (rc)
log_fatal ("scanning ECC parameter failed: %s\n", gpg_strerror (rc));
return val;
}
/* Encode MPI using the EdDSA scheme. MINLEN specifies the required
length of the buffer in bytes. On success 0 is returned an a
malloced buffer with the encoded point is stored at R_BUFFER; the
length of this buffer is stored at R_BUFLEN. */
static gpg_err_code_t
eddsa_encodempi (gcry_mpi_t mpi, unsigned int minlen,
unsigned char **r_buffer, unsigned int *r_buflen)
{
unsigned char *rawmpi;
unsigned int rawmpilen;
rawmpi = _gcry_mpi_get_buffer (mpi, minlen, &rawmpilen, NULL);
if (!rawmpi)
return gpg_err_code_from_syserror ();
*r_buffer = rawmpi;
*r_buflen = rawmpilen;
return 0;
}
/* Encode (X,Y) using the EdDSA scheme. MINLEN is the required length
in bytes for the result. If WITH_PREFIX is set the returned buffer
is prefixed with a 0x40 byte. On success 0 is returned and a
malloced buffer with the encoded point is stored at R_BUFFER; the
length of this buffer is stored at R_BUFLEN. */
static gpg_err_code_t
eddsa_encode_x_y (gcry_mpi_t x, gcry_mpi_t y, unsigned int minlen,
int with_prefix,
unsigned char **r_buffer, unsigned int *r_buflen)
{
unsigned char *rawmpi;
unsigned int rawmpilen;
int off = with_prefix? 1:0;
rawmpi = _gcry_mpi_get_buffer_extra (y, minlen, off?-1:0, &rawmpilen, NULL);
if (!rawmpi)
return gpg_err_code_from_syserror ();
if (mpi_test_bit (x, 0) && rawmpilen)
rawmpi[off + rawmpilen - 1] |= 0x80; /* Set sign bit. */
if (off)
rawmpi[0] = 0x40;
*r_buffer = rawmpi;
*r_buflen = rawmpilen + off;
return 0;
}
/* Encode POINT using the EdDSA scheme. X and Y are either scratch
variables supplied by the caller or NULL. CTX is the usual
context. If WITH_PREFIX is set the returned buffer is prefixed
with a 0x40 byte. On success 0 is returned and a malloced buffer
with the encoded point is stored at R_BUFFER; the length of this
buffer is stored at R_BUFLEN. */
gpg_err_code_t
_gcry_ecc_eddsa_encodepoint (mpi_point_t point, mpi_ec_t ec,
gcry_mpi_t x_in, gcry_mpi_t y_in,
int with_prefix,
unsigned char **r_buffer, unsigned int *r_buflen)
{
gpg_err_code_t rc;
gcry_mpi_t x, y;
x = x_in? x_in : mpi_new (0);
y = y_in? y_in : mpi_new (0);
if (_gcry_mpi_ec_get_affine (x, y, point, ec))
{
log_error ("eddsa_encodepoint: Failed to get affine coordinates\n");
rc = GPG_ERR_INTERNAL;
}
else
rc = eddsa_encode_x_y (x, y, ec->nbits/8, with_prefix, r_buffer, r_buflen);
if (!x_in)
mpi_free (x);
if (!y_in)
mpi_free (y);
return rc;
}
/* Make sure that the opaque MPI VALUE is in compact EdDSA format.
This function updates MPI if needed. */
gpg_err_code_t
_gcry_ecc_eddsa_ensure_compact (gcry_mpi_t value, unsigned int nbits)
{
gpg_err_code_t rc;
const unsigned char *buf;
unsigned int rawmpilen;
gcry_mpi_t x, y;
unsigned char *enc;
unsigned int enclen;
if (!mpi_is_opaque (value))
return GPG_ERR_INV_OBJ;
buf = mpi_get_opaque (value, &rawmpilen);
if (!buf)
return GPG_ERR_INV_OBJ;
rawmpilen = (rawmpilen + 7)/8;
if (rawmpilen > 1 && (rawmpilen%2))
{
if (buf[0] == 0x04)
{
/* Buffer is in SEC1 uncompressed format. Extract y and
compress. */
rc = _gcry_mpi_scan (&x, GCRYMPI_FMT_STD,
buf+1, (rawmpilen-1)/2, NULL);
if (rc)
return rc;
rc = _gcry_mpi_scan (&y, GCRYMPI_FMT_STD,
buf+1+(rawmpilen-1)/2, (rawmpilen-1)/2, NULL);
if (rc)
{
mpi_free (x);
return rc;
}
rc = eddsa_encode_x_y (x, y, nbits/8, 0, &enc, &enclen);
mpi_free (x);
mpi_free (y);
if (rc)
return rc;
mpi_set_opaque (value, enc, 8*enclen);
}
else if (buf[0] == 0x40)
{
/* Buffer is compressed but with our SEC1 alike compression
indicator. Remove that byte. FIXME: We should write and
use a function to manipulate an opaque MPI in place. */
if (!_gcry_mpi_set_opaque_copy (value, buf + 1, (rawmpilen - 1)*8))
return gpg_err_code_from_syserror ();
}
}
return 0;
}
/* Recover X from Y and SIGN (which actually is a parity bit). */
gpg_err_code_t
_gcry_ecc_eddsa_recover_x (gcry_mpi_t x, gcry_mpi_t y, int sign, mpi_ec_t ec)
{
gpg_err_code_t rc = 0;
gcry_mpi_t u, v, v3, t;
static gcry_mpi_t p58, seven;
if (ec->dialect != ECC_DIALECT_ED25519)
return GPG_ERR_NOT_IMPLEMENTED;
if (!p58)
p58 = scanval ("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD");
if (!seven)
seven = mpi_set_ui (NULL, 7);
u = mpi_new (0);
v = mpi_new (0);
v3 = mpi_new (0);
t = mpi_new (0);
/* Compute u and v */
/* u = y^2 */
mpi_mulm (u, y, y, ec->p);
/* v = b*y^2 */
mpi_mulm (v, ec->b, u, ec->p);
/* u = y^2-1 */
mpi_sub_ui (u, u, 1);
/* v = b*y^2+1 */
mpi_add_ui (v, v, 1);
/* Compute sqrt(u/v) */
/* v3 = v^3 */
mpi_powm (v3, v, mpi_const (MPI_C_THREE), ec->p);
/* t = v3 * v3 * u * v = u * v^7 */
mpi_powm (t, v, seven, ec->p);
mpi_mulm (t, t, u, ec->p);
/* t = t^((p-5)/8) = (u * v^7)^((p-5)/8) */
mpi_powm (t, t, p58, ec->p);
/* x = t * u * v^3 = (u * v^3) * (u * v^7)^((p-5)/8) */
mpi_mulm (t, t, u, ec->p);
mpi_mulm (x, t, v3, ec->p);
/* Adjust if needed. */
/* t = v * x^2 */
mpi_mulm (t, x, x, ec->p);
mpi_mulm (t, t, v, ec->p);
/* -t == u ? x = x * sqrt(-1) */
mpi_neg (t, t);
if (!mpi_cmp (t, u))
{
static gcry_mpi_t m1; /* Fixme: this is not thread-safe. */
if (!m1)
m1 = scanval ("2B8324804FC1DF0B2B4D00993DFBD7A7"
"2F431806AD2FE478C4EE1B274A0EA0B0");
mpi_mulm (x, x, m1, ec->p);
/* t = v * x^2 */
mpi_mulm (t, x, x, ec->p);
mpi_mulm (t, t, v, ec->p);
/* -t == u ? x = x * sqrt(-1) */
mpi_neg (t, t);
if (!mpi_cmp (t, u))
rc = GPG_ERR_INV_OBJ;
}
/* Choose the desired square root according to parity */
if (mpi_test_bit (x, 0) != !!sign)
mpi_sub (x, ec->p, x);
mpi_free (t);
mpi_free (v3);
mpi_free (v);
mpi_free (u);
return rc;
}
/* Decode the EdDSA style encoded PK and set it into RESULT. CTX is
the usual curve context. If R_ENCPK is not NULL, the encoded PK is
stored at that address; this is a new copy to be released by the
caller. In contrast to the supplied PK, this is not an MPI and
thus guaranteed to be properly padded. R_ENCPKLEN receives the
length of that encoded key. */
gpg_err_code_t
_gcry_ecc_eddsa_decodepoint (gcry_mpi_t pk, mpi_ec_t ctx, mpi_point_t result,
unsigned char **r_encpk, unsigned int *r_encpklen)
{
gpg_err_code_t rc;
unsigned char *rawmpi;
unsigned int rawmpilen;
int sign;
if (mpi_is_opaque (pk))
{
const unsigned char *buf;
buf = mpi_get_opaque (pk, &rawmpilen);
if (!buf)
return GPG_ERR_INV_OBJ;
rawmpilen = (rawmpilen + 7)/8;
/* Handle compression prefixes. The size of the buffer will be
odd in this case. */
if (rawmpilen > 1 && (rawmpilen%2))
{
/* First check whether the public key has been given in
standard uncompressed format (SEC1). No need to recover
x in this case. */
if (buf[0] == 0x04)
{
gcry_mpi_t x, y;
rc = _gcry_mpi_scan (&x, GCRYMPI_FMT_STD,
buf+1, (rawmpilen-1)/2, NULL);
if (rc)
return rc;
rc = _gcry_mpi_scan (&y, GCRYMPI_FMT_STD,
buf+1+(rawmpilen-1)/2, (rawmpilen-1)/2,NULL);
if (rc)
{
mpi_free (x);
return rc;
}
if (r_encpk)
{
rc = eddsa_encode_x_y (x, y, ctx->nbits/8, 0,
r_encpk, r_encpklen);
if (rc)
{
mpi_free (x);
mpi_free (y);
return rc;
}
}
mpi_snatch (result->x, x);
mpi_snatch (result->y, y);
mpi_set_ui (result->z, 1);
return 0;
}
/* Check whether the public key has been prefixed with a 0x40
byte to explicitly indicate compressed format using a SEC1
alike prefix byte. This is a Libgcrypt extension. */
if (buf[0] == 0x40)
{
rawmpilen--;
buf++;
}
}
/* EdDSA compressed point. */
rawmpi = xtrymalloc (rawmpilen? rawmpilen:1);
if (!rawmpi)
return gpg_err_code_from_syserror ();
memcpy (rawmpi, buf, rawmpilen);
reverse_buffer (rawmpi, rawmpilen);
}
else
{
/* Note: Without using an opaque MPI it is not reliable possible
to find out whether the public key has been given in
uncompressed format. Thus we expect native EdDSA format. */
rawmpi = _gcry_mpi_get_buffer (pk, ctx->nbits/8, &rawmpilen, NULL);
if (!rawmpi)
return gpg_err_code_from_syserror ();
}
if (rawmpilen)
{
sign = !!(rawmpi[0] & 0x80);
rawmpi[0] &= 0x7f;
}
else
sign = 0;
_gcry_mpi_set_buffer (result->y, rawmpi, rawmpilen, 0);
if (r_encpk)
{
/* Revert to little endian. */
if (sign && rawmpilen)
rawmpi[0] |= 0x80;
reverse_buffer (rawmpi, rawmpilen);
*r_encpk = rawmpi;
if (r_encpklen)
*r_encpklen = rawmpilen;
}
else
xfree (rawmpi);
rc = _gcry_ecc_eddsa_recover_x (result->x, result->y, sign, ctx);
mpi_set_ui (result->z, 1);
return rc;
}
/* Compute the A value as used by EdDSA. The caller needs to provide
the context EC and the actual secret D as an MPI. The function
returns a newly allocated 64 byte buffer at r_digest; the first 32
bytes represent the A value. NULL is returned on error and NULL
stored at R_DIGEST. */
gpg_err_code_t
_gcry_ecc_eddsa_compute_h_d (unsigned char **r_digest,
gcry_mpi_t d, mpi_ec_t ec)
{
gpg_err_code_t rc;
unsigned char *rawmpi = NULL;
unsigned int rawmpilen;
unsigned char *digest;
gcry_buffer_t hvec[2];
int hashalgo, b;
*r_digest = NULL;
hashalgo = GCRY_MD_SHA512;
if (hashalgo != GCRY_MD_SHA512)
return GPG_ERR_DIGEST_ALGO;
b = (ec->nbits+7)/8;
if (b != 256/8)
return GPG_ERR_INTERNAL; /* We only support 256 bit. */
/* Note that we clear DIGEST so we can use it as input to left pad
the key with zeroes for hashing. */
digest = xtrycalloc_secure (2, b);
if (!digest)
return gpg_err_code_from_syserror ();
memset (hvec, 0, sizeof hvec);
rawmpi = _gcry_mpi_get_buffer (d, 0, &rawmpilen, NULL);
if (!rawmpi)
{
xfree (digest);
return gpg_err_code_from_syserror ();
}
hvec[0].data = digest;
hvec[0].off = 0;
hvec[0].len = b > rawmpilen? b - rawmpilen : 0;
hvec[1].data = rawmpi;
hvec[1].off = 0;
hvec[1].len = rawmpilen;
rc = _gcry_md_hash_buffers (hashalgo, 0, digest, hvec, 2);
xfree (rawmpi);
if (rc)
{
xfree (digest);
return rc;
}
/* Compute the A value. */
reverse_buffer (digest, 32); /* Only the first half of the hash. */
digest[0] = (digest[0] & 0x7f) | 0x40;
digest[31] &= 0xf8;
*r_digest = digest;
return 0;
}
/* Ed25519 version of the key generation. */
gpg_err_code_t
_gcry_ecc_eddsa_genkey (ECC_secret_key *sk, elliptic_curve_t *E, mpi_ec_t ctx,
gcry_random_level_t random_level)
{
gpg_err_code_t rc;
int b = 256/8; /* The only size we currently support. */
gcry_mpi_t a, x, y;
mpi_point_struct Q;
char *dbuf;
size_t dlen;
gcry_buffer_t hvec[1];
unsigned char *hash_d = NULL;
point_init (&Q);
memset (hvec, 0, sizeof hvec);
a = mpi_snew (0);
x = mpi_new (0);
y = mpi_new (0);
/* Generate a secret. */
hash_d = xtrymalloc_secure (2*b);
if (!hash_d)
{
rc = gpg_error_from_syserror ();
goto leave;
}
dlen = b;
dbuf = _gcry_random_bytes_secure (dlen, random_level);
/* Compute the A value. */
hvec[0].data = dbuf;
hvec[0].len = dlen;
rc = _gcry_md_hash_buffers (GCRY_MD_SHA512, 0, hash_d, hvec, 1);
if (rc)
goto leave;
sk->d = _gcry_mpi_set_opaque (NULL, dbuf, dlen*8);
dbuf = NULL;
reverse_buffer (hash_d, 32); /* Only the first half of the hash. */
hash_d[0] = (hash_d[0] & 0x7f) | 0x40;
hash_d[31] &= 0xf8;
_gcry_mpi_set_buffer (a, hash_d, 32, 0);
xfree (hash_d); hash_d = NULL;
/* log_printmpi ("ecgen a", a); */
/* Compute Q. */
_gcry_mpi_ec_mul_point (&Q, a, &E->G, ctx);
if (DBG_CIPHER)
log_printpnt ("ecgen pk", &Q, ctx);
/* Copy the stuff to the key structures. */
sk->E.model = E->model;
sk->E.dialect = E->dialect;
sk->E.p = mpi_copy (E->p);
sk->E.a = mpi_copy (E->a);
sk->E.b = mpi_copy (E->b);
point_init (&sk->E.G);
point_set (&sk->E.G, &E->G);
sk->E.n = mpi_copy (E->n);
point_init (&sk->Q);
point_set (&sk->Q, &Q);
leave:
point_free (&Q);
_gcry_mpi_release (a);
_gcry_mpi_release (x);
_gcry_mpi_release (y);
xfree (hash_d);
return rc;
}
/* Compute an EdDSA signature. See:
* [ed25519] 23pp. (PDF) Daniel J. Bernstein, Niels Duif, Tanja
* Lange, Peter Schwabe, Bo-Yin Yang. High-speed high-security
* signatures. Journal of Cryptographic Engineering 2 (2012), 77-89.
* Document ID: a1a62a2f76d23f65d622484ddd09caf8.
* URL: http://cr.yp.to/papers.html#ed25519. Date: 2011.09.26.
*
* Despite that this function requires the specification of a hash
* algorithm, we only support what has been specified by the paper.
* This may change in the future. Note that we don't check the used
* curve; the user is responsible to use Ed25519.
*
* Return the signature struct (r,s) from the message hash. The caller
* must have allocated R_R and S.
*/
gpg_err_code_t
_gcry_ecc_eddsa_sign (gcry_mpi_t input, ECC_secret_key *skey,
gcry_mpi_t r_r, gcry_mpi_t s, int hashalgo, gcry_mpi_t pk)
{
int rc;
mpi_ec_t ctx = NULL;
int b;
unsigned int tmp;
unsigned char *digest;
gcry_buffer_t hvec[3];
const void *mbuf;
size_t mlen;
unsigned char *rawmpi = NULL;
unsigned int rawmpilen;
unsigned char *encpk = NULL; /* Encoded public key. */
unsigned int encpklen;
mpi_point_struct I; /* Intermediate value. */
mpi_point_struct Q; /* Public key. */
gcry_mpi_t a, x, y, r;
memset (hvec, 0, sizeof hvec);
if (!mpi_is_opaque (input))
return GPG_ERR_INV_DATA;
/* Initialize some helpers. */
point_init (&I);
point_init (&Q);
a = mpi_snew (0);
x = mpi_new (0);
y = mpi_new (0);
r = mpi_new (0);
ctx = _gcry_mpi_ec_p_internal_new (skey->E.model, skey->E.dialect, 0,
skey->E.p, skey->E.a, skey->E.b);
b = (ctx->nbits+7)/8;
if (b != 256/8)
return GPG_ERR_INTERNAL; /* We only support 256 bit. */
rc = _gcry_ecc_eddsa_compute_h_d (&digest, skey->d, ctx);
if (rc)
goto leave;
_gcry_mpi_set_buffer (a, digest, 32, 0);
/* Compute the public key if it has not been supplied as optional
parameter. */
if (pk)
{
rc = _gcry_ecc_eddsa_decodepoint (pk, ctx, &Q, &encpk, &encpklen);
if (rc)
goto leave;
if (DBG_CIPHER)
log_printhex ("* e_pk", encpk, encpklen);
if (!_gcry_mpi_ec_curve_point (&Q, ctx))
{
rc = GPG_ERR_BROKEN_PUBKEY;
goto leave;
}
}
else
{
_gcry_mpi_ec_mul_point (&Q, a, &skey->E.G, ctx);
rc = _gcry_ecc_eddsa_encodepoint (&Q, ctx, x, y, 0, &encpk, &encpklen);
if (rc)
goto leave;
if (DBG_CIPHER)
log_printhex (" e_pk", encpk, encpklen);
}
/* Compute R. */
mbuf = mpi_get_opaque (input, &tmp);
mlen = (tmp +7)/8;
if (DBG_CIPHER)
log_printhex (" m", mbuf, mlen);
hvec[0].data = digest;
hvec[0].off = 32;
hvec[0].len = 32;
hvec[1].data = (char*)mbuf;
hvec[1].len = mlen;
rc = _gcry_md_hash_buffers (hashalgo, 0, digest, hvec, 2);
if (rc)
goto leave;
reverse_buffer (digest, 64);
if (DBG_CIPHER)
log_printhex (" r", digest, 64);
_gcry_mpi_set_buffer (r, digest, 64, 0);
_gcry_mpi_ec_mul_point (&I, r, &skey->E.G, ctx);
if (DBG_CIPHER)
log_printpnt (" r", &I, ctx);
/* Convert R into affine coordinates and apply encoding. */
rc = _gcry_ecc_eddsa_encodepoint (&I, ctx, x, y, 0, &rawmpi, &rawmpilen);
if (rc)
goto leave;
if (DBG_CIPHER)
log_printhex (" e_r", rawmpi, rawmpilen);
/* S = r + a * H(encodepoint(R) + encodepoint(pk) + m) mod n */
hvec[0].data = rawmpi; /* (this is R) */
hvec[0].off = 0;
hvec[0].len = rawmpilen;
hvec[1].data = encpk;
hvec[1].off = 0;
hvec[1].len = encpklen;
hvec[2].data = (char*)mbuf;
hvec[2].off = 0;
hvec[2].len = mlen;
rc = _gcry_md_hash_buffers (hashalgo, 0, digest, hvec, 3);
if (rc)
goto leave;
/* No more need for RAWMPI thus we now transfer it to R_R. */
mpi_set_opaque (r_r, rawmpi, rawmpilen*8);
rawmpi = NULL;
reverse_buffer (digest, 64);
if (DBG_CIPHER)
log_printhex (" H(R+)", digest, 64);
_gcry_mpi_set_buffer (s, digest, 64, 0);
mpi_mulm (s, s, a, skey->E.n);
mpi_addm (s, s, r, skey->E.n);
rc = eddsa_encodempi (s, b, &rawmpi, &rawmpilen);
if (rc)
goto leave;
if (DBG_CIPHER)
log_printhex (" e_s", rawmpi, rawmpilen);
mpi_set_opaque (s, rawmpi, rawmpilen*8);
rawmpi = NULL;
rc = 0;
leave:
_gcry_mpi_release (a);
_gcry_mpi_release (x);
_gcry_mpi_release (y);
_gcry_mpi_release (r);
xfree (digest);
_gcry_mpi_ec_free (ctx);
point_free (&I);
point_free (&Q);
xfree (encpk);
xfree (rawmpi);
return rc;
}
/* Verify an EdDSA signature. See sign_eddsa for the reference.
* Check if R_IN and S_IN verifies INPUT. PKEY has the curve
* parameters and PK is the EdDSA style encoded public key.
*/
gpg_err_code_t
_gcry_ecc_eddsa_verify (gcry_mpi_t input, ECC_public_key *pkey,
gcry_mpi_t r_in, gcry_mpi_t s_in, int hashalgo,
gcry_mpi_t pk)
{
int rc;
mpi_ec_t ctx = NULL;
int b;
unsigned int tmp;
mpi_point_struct Q; /* Public key. */
unsigned char *encpk = NULL; /* Encoded public key. */
unsigned int encpklen;
const void *mbuf, *rbuf;
unsigned char *tbuf = NULL;
size_t mlen, rlen;
unsigned int tlen;
unsigned char digest[64];
gcry_buffer_t hvec[3];
gcry_mpi_t h, s;
mpi_point_struct Ia, Ib;
if (!mpi_is_opaque (input) || !mpi_is_opaque (r_in) || !mpi_is_opaque (s_in))
return GPG_ERR_INV_DATA;
if (hashalgo != GCRY_MD_SHA512)
return GPG_ERR_DIGEST_ALGO;
point_init (&Q);
point_init (&Ia);
point_init (&Ib);
h = mpi_new (0);
s = mpi_new (0);
ctx = _gcry_mpi_ec_p_internal_new (pkey->E.model, pkey->E.dialect, 0,
pkey->E.p, pkey->E.a, pkey->E.b);
b = ctx->nbits/8;
if (b != 256/8)
return GPG_ERR_INTERNAL; /* We only support 256 bit. */
/* Decode and check the public key. */
rc = _gcry_ecc_eddsa_decodepoint (pk, ctx, &Q, &encpk, &encpklen);
if (rc)
goto leave;
if (!_gcry_mpi_ec_curve_point (&Q, ctx))
{
rc = GPG_ERR_BROKEN_PUBKEY;
goto leave;
}
if (DBG_CIPHER)
log_printhex (" e_pk", encpk, encpklen);
if (encpklen != b)
{
rc = GPG_ERR_INV_LENGTH;
goto leave;
}
/* Convert the other input parameters. */
mbuf = mpi_get_opaque (input, &tmp);
mlen = (tmp +7)/8;
if (DBG_CIPHER)
log_printhex (" m", mbuf, mlen);
rbuf = mpi_get_opaque (r_in, &tmp);
rlen = (tmp +7)/8;
if (DBG_CIPHER)
log_printhex (" r", rbuf, rlen);
if (rlen != b)
{
rc = GPG_ERR_INV_LENGTH;
goto leave;
}
/* h = H(encodepoint(R) + encodepoint(pk) + m) */
hvec[0].data = (char*)rbuf;
hvec[0].off = 0;
hvec[0].len = rlen;
hvec[1].data = encpk;
hvec[1].off = 0;
hvec[1].len = encpklen;
hvec[2].data = (char*)mbuf;
hvec[2].off = 0;
hvec[2].len = mlen;
rc = _gcry_md_hash_buffers (hashalgo, 0, digest, hvec, 3);
if (rc)
goto leave;
reverse_buffer (digest, 64);
if (DBG_CIPHER)
log_printhex (" H(R+)", digest, 64);
_gcry_mpi_set_buffer (h, digest, 64, 0);
/* According to the paper the best way for verification is:
encodepoint(sG - h·Q) = encodepoint(r)
because we don't need to decode R. */
{
void *sbuf;
unsigned int slen;
sbuf = _gcry_mpi_get_opaque_copy (s_in, &tmp);
slen = (tmp +7)/8;
reverse_buffer (sbuf, slen);
if (DBG_CIPHER)
log_printhex (" s", sbuf, slen);
_gcry_mpi_set_buffer (s, sbuf, slen, 0);
xfree (sbuf);
if (slen != b)
{
rc = GPG_ERR_INV_LENGTH;
goto leave;
}
}
_gcry_mpi_ec_mul_point (&Ia, s, &pkey->E.G, ctx);
_gcry_mpi_ec_mul_point (&Ib, h, &Q, ctx);
_gcry_mpi_neg (Ib.x, Ib.x);
_gcry_mpi_ec_add_points (&Ia, &Ia, &Ib, ctx);
rc = _gcry_ecc_eddsa_encodepoint (&Ia, ctx, s, h, 0, &tbuf, &tlen);
if (rc)
goto leave;
if (tlen != rlen || memcmp (tbuf, rbuf, tlen))
{
rc = GPG_ERR_BAD_SIGNATURE;
goto leave;
}
rc = 0;
leave:
xfree (encpk);
xfree (tbuf);
_gcry_mpi_ec_free (ctx);
_gcry_mpi_release (s);
_gcry_mpi_release (h);
point_free (&Ia);
point_free (&Ib);
point_free (&Q);
return rc;
}
|