1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
// ==========================================================
// Tone mapping operator (Fattal, 2002)
//
// Design and implementation by
// - Hervé Drolon (drolon@infonie.fr)
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
#include "FreeImage.h"
#include "Utilities.h"
#include "ToneMapping.h"
// ----------------------------------------------------------
// Gradient domain HDR compression
// Reference:
// [1] R. Fattal, D. Lischinski, and M.Werman,
// Gradient domain high dynamic range compression,
// ACM Transactions on Graphics, special issue on Proc. of ACM SIGGRAPH 2002,
// San Antonio, Texas, vol. 21(3), pp. 257-266, 2002.
// ----------------------------------------------------------
static const float EPSILON = 1e-4F;
/**
Performs a 5 by 5 gaussian filtering using two 1D convolutions,
followed by a subsampling by 2.
@param dib Input image
@return Returns a blurred image of size SIZE(dib)/2
@see GaussianPyramid
*/
static FIBITMAP* GaussianLevel5x5(FIBITMAP *dib) {
FIBITMAP *h_dib = NULL, *v_dib = NULL, *dst = NULL;
float *src_pixel, *dst_pixel;
try {
const FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(dib);
if(image_type != FIT_FLOAT) throw(1);
const unsigned width = FreeImage_GetWidth(dib);
const unsigned height = FreeImage_GetHeight(dib);
h_dib = FreeImage_AllocateT(image_type, width, height);
v_dib = FreeImage_AllocateT(image_type, width, height);
if(!h_dib || !v_dib) throw(1);
const unsigned pitch = FreeImage_GetPitch(dib) / sizeof(float);
// horizontal convolution dib -> h_dib
src_pixel = (float*)FreeImage_GetBits(dib);
dst_pixel = (float*)FreeImage_GetBits(h_dib);
for(unsigned y = 0; y < height; y++) {
// work on line y
for(unsigned x = 2; x < width - 2; x++) {
dst_pixel[x] = src_pixel[x-2] + src_pixel[x+2] + 4 * (src_pixel[x-1] + src_pixel[x+1]) + 6 * src_pixel[x];
dst_pixel[x] /= 16;
}
// boundary mirroring
dst_pixel[0] = (2 * src_pixel[2] + 8 * src_pixel[1] + 6 * src_pixel[0]) / 16;
dst_pixel[1] = (src_pixel[3] + 4 * (src_pixel[0] + src_pixel[2]) + 7 * src_pixel[1]) / 16;
dst_pixel[width-2] = (src_pixel[width-4] + 5 * src_pixel[width-1] + 4 * src_pixel[width-3] + 6 * src_pixel[width-2]) / 16;
dst_pixel[width-1] = (src_pixel[width-3] + 5 * src_pixel[width-2] + 10 * src_pixel[width-1]) / 16;
// next line
src_pixel += pitch;
dst_pixel += pitch;
}
// vertical convolution h_dib -> v_dib
src_pixel = (float*)FreeImage_GetBits(h_dib);
dst_pixel = (float*)FreeImage_GetBits(v_dib);
for(unsigned x = 0; x < width; x++) {
// work on column x
for(unsigned y = 2; y < height - 2; y++) {
const unsigned index = y*pitch + x;
dst_pixel[index] = src_pixel[index-2*pitch] + src_pixel[index+2*pitch] + 4 * (src_pixel[index-pitch] + src_pixel[index+pitch]) + 6 * src_pixel[index];
dst_pixel[index] /= 16;
}
// boundary mirroring
dst_pixel[x] = (2 * src_pixel[x+2*pitch] + 8 * src_pixel[x+pitch] + 6 * src_pixel[x]) / 16;
dst_pixel[x+pitch] = (src_pixel[x+3*pitch] + 4 * (src_pixel[x] + src_pixel[x+2*pitch]) + 7 * src_pixel[x+pitch]) / 16;
dst_pixel[(height-2)*pitch+x] = (src_pixel[(height-4)*pitch+x] + 5 * src_pixel[(height-1)*pitch+x] + 4 * src_pixel[(height-3)*pitch+x] + 6 * src_pixel[(height-2)*pitch+x]) / 16;
dst_pixel[(height-1)*pitch+x] = (src_pixel[(height-3)*pitch+x] + 5 * src_pixel[(height-2)*pitch+x] + 10 * src_pixel[(height-1)*pitch+x]) / 16;
}
FreeImage_Unload(h_dib); h_dib = NULL;
// perform downsampling
dst = FreeImage_Rescale(v_dib, width/2, height/2, FILTER_BILINEAR);
FreeImage_Unload(v_dib);
return dst;
} catch(int) {
if(h_dib) FreeImage_Unload(h_dib);
if(v_dib) FreeImage_Unload(v_dib);
if(dst) FreeImage_Unload(dst);
return NULL;
}
}
/**
Compute a Gaussian pyramid using the specified number of levels.
@param H Original bitmap
@param pyramid Resulting pyramid array
@param nlevels Number of resolution levels
@return Returns TRUE if successful, returns FALSE otherwise
*/
static BOOL GaussianPyramid(FIBITMAP *H, FIBITMAP **pyramid, int nlevels) {
try {
// first level is the original image
pyramid[0] = FreeImage_Clone(H);
if(pyramid[0] == NULL) throw(1);
// compute next levels
for(int k = 1; k < nlevels; k++) {
pyramid[k] = GaussianLevel5x5(pyramid[k-1]);
if(pyramid[k] == NULL) throw(1);
}
return TRUE;
} catch(int) {
for(int k = 0; k < nlevels; k++) {
if(pyramid[k] != NULL) {
FreeImage_Unload(pyramid[k]);
pyramid[k] = NULL;
}
}
return FALSE;
}
}
/**
Compute the gradient magnitude of an input image H using central differences,
and returns the average gradient.
@param H Input image
@param avgGrad [out] Average gradient
@param k Level number
@return Returns the gradient magnitude if successful, returns NULL otherwise
@see GradientPyramid
*/
static FIBITMAP* GradientLevel(FIBITMAP *H, float *avgGrad, int k) {
FIBITMAP *G = NULL;
try {
const FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(H);
if(image_type != FIT_FLOAT) throw(1);
const unsigned width = FreeImage_GetWidth(H);
const unsigned height = FreeImage_GetHeight(H);
G = FreeImage_AllocateT(image_type, width, height);
if(!G) throw(1);
const unsigned pitch = FreeImage_GetPitch(H) / sizeof(float);
const float divider = (float)(1 << (k + 1));
float average = 0;
float *src_pixel = (float*)FreeImage_GetBits(H);
float *dst_pixel = (float*)FreeImage_GetBits(G);
for(unsigned y = 0; y < height; y++) {
const unsigned n = (y == 0 ? 0 : y-1);
const unsigned s = (y+1 == height ? y : y+1);
for(unsigned x = 0; x < width; x++) {
const unsigned w = (x == 0 ? 0 : x-1);
const unsigned e = (x+1 == width ? x : x+1);
// central difference
const float gx = (src_pixel[y*pitch+e] - src_pixel[y*pitch+w]) / divider; // [Hk(x+1, y) - Hk(x-1, y)] / 2**(k+1)
const float gy = (src_pixel[s*pitch+x] - src_pixel[n*pitch+x]) / divider; // [Hk(x, y+1) - Hk(x, y-1)] / 2**(k+1)
// gradient
dst_pixel[x] = sqrt(gx*gx + gy*gy);
// average gradient
average += dst_pixel[x];
}
// next line
dst_pixel += pitch;
}
*avgGrad = average / (width * height);
return G;
} catch(int) {
if(G) FreeImage_Unload(G);
return NULL;
}
}
/**
Calculate gradient magnitude and its average value on each pyramid level
@param pyramid Gaussian pyramid (nlevels levels)
@param nlevels Number of levels
@param gradients [out] Gradient pyramid (nlevels levels)
@param avgGrad [out] Average gradient on each level (array of size nlevels)
@return Returns TRUE if successful, returns FALSE otherwise
*/
static BOOL GradientPyramid(FIBITMAP **pyramid, int nlevels, FIBITMAP **gradients, float *avgGrad) {
try {
for(int k = 0; k < nlevels; k++) {
FIBITMAP *Hk = pyramid[k];
gradients[k] = GradientLevel(Hk, &avgGrad[k], k);
if(gradients[k] == NULL) throw(1);
}
return TRUE;
} catch(int) {
for(int k = 0; k < nlevels; k++) {
if(gradients[k] != NULL) {
FreeImage_Unload(gradients[k]);
gradients[k] = NULL;
}
}
return FALSE;
}
}
/**
Compute the gradient attenuation function PHI(x, y)
@param gradients Gradient pyramid (nlevels levels)
@param avgGrad Average gradient on each level (array of size nlevels)
@param nlevels Number of levels
@param alpha Parameter alpha in the paper
@param beta Parameter beta in the paper
@return Returns the attenuation matrix Phi if successful, returns NULL otherwise
*/
static FIBITMAP* PhiMatrix(FIBITMAP **gradients, float *avgGrad, int nlevels, float alpha, float beta) {
float *src_pixel, *dst_pixel;
FIBITMAP **phi = NULL;
try {
phi = (FIBITMAP**)malloc(nlevels * sizeof(FIBITMAP*));
if(!phi) throw(1);
memset(phi, 0, nlevels * sizeof(FIBITMAP*));
for(int k = nlevels-1; k >= 0; k--) {
// compute phi(k)
FIBITMAP *Gk = gradients[k];
const unsigned width = FreeImage_GetWidth(Gk);
const unsigned height = FreeImage_GetHeight(Gk);
const unsigned pitch = FreeImage_GetPitch(Gk) / sizeof(float);
// parameter alpha is 0.1 times the average gradient magnitude
// also, note the factor of 2**k in the denominator;
// that is there to correct for the fact that an average gradient avgGrad(H) over 2**k pixels
// in the original image will appear as a gradient grad(Hk) = 2**k*avgGrad(H) over a single pixel in Hk.
float ALPHA = alpha * avgGrad[k] * (float)((int)1 << k);
if(ALPHA == 0) ALPHA = EPSILON;
phi[k] = FreeImage_AllocateT(FIT_FLOAT, width, height);
if(!phi[k]) throw(1);
src_pixel = (float*)FreeImage_GetBits(Gk);
dst_pixel = (float*)FreeImage_GetBits(phi[k]);
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
// compute (alpha / grad) * (grad / alpha) ** beta
const float v = src_pixel[x] / ALPHA;
const float value = (float)pow((float)v, (float)(beta-1));
dst_pixel[x] = (value > 1) ? 1 : value;
}
// next line
src_pixel += pitch;
dst_pixel += pitch;
}
if(k < nlevels-1) {
// compute PHI(k) = L( PHI(k+1) ) * phi(k)
FIBITMAP *L = FreeImage_Rescale(phi[k+1], width, height, FILTER_BILINEAR);
if(!L) throw(1);
src_pixel = (float*)FreeImage_GetBits(L);
dst_pixel = (float*)FreeImage_GetBits(phi[k]);
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
dst_pixel[x] *= src_pixel[x];
}
// next line
src_pixel += pitch;
dst_pixel += pitch;
}
FreeImage_Unload(L);
// PHI(k+1) is no longer needed
FreeImage_Unload(phi[k+1]);
phi[k+1] = NULL;
}
// next level
}
// get the final result and return
FIBITMAP *dst = phi[0];
free(phi);
return dst;
} catch(int) {
if(phi) {
for(int k = nlevels-1; k >= 0; k--) {
if(phi[k]) FreeImage_Unload(phi[k]);
}
free(phi);
}
return NULL;
}
}
/**
Compute gradients in x and y directions, attenuate them with the attenuation matrix,
then compute the divergence div G from the attenuated gradient.
@param H Normalized luminance
@param PHI Attenuation matrix
@return Returns the divergence matrix if successful, returns NULL otherwise
*/
static FIBITMAP* Divergence(FIBITMAP *H, FIBITMAP *PHI) {
FIBITMAP *Gx = NULL, *Gy = NULL, *divG = NULL;
float *phi, *h, *gx, *gy, *divg;
try {
const FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(H);
if(image_type != FIT_FLOAT) throw(1);
const unsigned width = FreeImage_GetWidth(H);
const unsigned height = FreeImage_GetHeight(H);
Gx = FreeImage_AllocateT(image_type, width, height);
if(!Gx) throw(1);
Gy = FreeImage_AllocateT(image_type, width, height);
if(!Gy) throw(1);
const unsigned pitch = FreeImage_GetPitch(H) / sizeof(float);
// perform gradient attenuation
phi = (float*)FreeImage_GetBits(PHI);
h = (float*)FreeImage_GetBits(H);
gx = (float*)FreeImage_GetBits(Gx);
gy = (float*)FreeImage_GetBits(Gy);
for(unsigned y = 0; y < height; y++) {
const unsigned s = (y+1 == height ? y : y+1);
for(unsigned x = 0; x < width; x++) {
const unsigned e = (x+1 == width ? x : x+1);
// forward difference
const unsigned index = y*pitch + x;
const float phi_xy = phi[index];
const float h_xy = h[index];
gx[x] = (h[y*pitch+e] - h_xy) * phi_xy; // [H(x+1, y) - H(x, y)] * PHI(x, y)
gy[x] = (h[s*pitch+x] - h_xy) * phi_xy; // [H(x, y+1) - H(x, y)] * PHI(x, y)
}
// next line
gx += pitch;
gy += pitch;
}
// calculate the divergence
divG = FreeImage_AllocateT(image_type, width, height);
if(!divG) throw(1);
gx = (float*)FreeImage_GetBits(Gx);
gy = (float*)FreeImage_GetBits(Gy);
divg = (float*)FreeImage_GetBits(divG);
for(unsigned y0 = 0; y0 < height; y0++) {
for(unsigned x = 0; x < width; x++) {
// backward difference approximation
// divG = Gx(x, y) - Gx(x-1, y) + Gy(x, y) - Gy(x, y-1)
const unsigned index = y0*pitch + x;
divg[index] = gx[index] + gy[index];
if(x > 0) divg[index] -= gx[index-1];
if(y0 > 0) divg[index] -= gy[index-pitch];
}
}
// no longer needed ...
FreeImage_Unload(Gx);
FreeImage_Unload(Gy);
// return the divergence
return divG;
} catch(int) {
if(Gx) FreeImage_Unload(Gx);
if(Gy) FreeImage_Unload(Gy);
if(divG) FreeImage_Unload(divG);
return NULL;
}
}
/**
Given the luminance channel, find max & min luminance values,
normalize to range 0..100 and take the logarithm.
@param Y Image luminance
@return Returns the normalized luminance H if successful, returns NULL otherwise
*/
static FIBITMAP* LogLuminance(FIBITMAP *Y) {
FIBITMAP *H = NULL;
try {
// get the luminance channel
FIBITMAP *H = FreeImage_Clone(Y);
if(!H) throw(1);
const unsigned width = FreeImage_GetWidth(H);
const unsigned height = FreeImage_GetHeight(H);
const unsigned pitch = FreeImage_GetPitch(H);
// find max & min luminance values
float maxLum = -1e20F, minLum = 1e20F;
BYTE *bits = (BYTE*)FreeImage_GetBits(H);
for(unsigned y = 0; y < height; y++) {
const float *pixel = (float*)bits;
for(unsigned x = 0; x < width; x++) {
const float value = pixel[x];
maxLum = (maxLum < value) ? value : maxLum; // max Luminance in the scene
minLum = (minLum < value) ? minLum : value; // min Luminance in the scene
}
// next line
bits += pitch;
}
if(maxLum == minLum) throw(1);
// normalize to range 0..100 and take the logarithm
const float scale = 100.F / (maxLum - minLum);
bits = (BYTE*)FreeImage_GetBits(H);
for(unsigned y0 = 0; y0 < height; y0++) {
float *pixel = (float*)bits;
for(unsigned x = 0; x < width; x++) {
const float value = (pixel[x] - minLum) * scale;
pixel[x] = log(value + EPSILON);
}
// next line
bits += pitch;
}
return H;
} catch(int) {
if(H) FreeImage_Unload(H);
return NULL;
}
}
/**
Given a normalized luminance, perform exponentiation and recover the log compressed image
@param Y Input/Output luminance image
*/
static void ExpLuminance(FIBITMAP *Y) {
const unsigned width = FreeImage_GetWidth(Y);
const unsigned height = FreeImage_GetHeight(Y);
const unsigned pitch = FreeImage_GetPitch(Y);
BYTE *bits = (BYTE*)FreeImage_GetBits(Y);
for(unsigned y = 0; y < height; y++) {
float *pixel = (float*)bits;
for(unsigned x = 0; x < width; x++) {
pixel[x] = exp(pixel[x]) - EPSILON;
}
bits += pitch;
}
}
// --------------------------------------------------------------------------
/**
Gradient Domain HDR tone mapping operator
@param Y Image luminance values
@param alpha Parameter alpha of the paper (suggested value is 0.1)
@param beta Parameter beta of the paper (suggested value is between 0.8 and 0.9)
@return returns the tone mapped luminance
*/
static FIBITMAP* tmoFattal02(FIBITMAP *Y, float alpha, float beta) {
const unsigned MIN_PYRAMID_SIZE = 32; // minimun size (width or height) of the coarsest level of the pyramid
FIBITMAP *H = NULL;
FIBITMAP **pyramid = NULL;
FIBITMAP **gradients = NULL;
FIBITMAP *phy = NULL;
FIBITMAP *divG = NULL;
FIBITMAP *U = NULL;
float *avgGrad = NULL;
int k;
int nlevels = 0;
try {
// get the normalized luminance
FIBITMAP *H = LogLuminance(Y);
if(!H) throw(1);
// get the number of levels for the pyramid
const unsigned width = FreeImage_GetWidth(H);
const unsigned height = FreeImage_GetHeight(H);
unsigned minsize = MIN(width, height);
while(minsize >= MIN_PYRAMID_SIZE) {
nlevels++;
minsize /= 2;
}
// create the Gaussian pyramid
pyramid = (FIBITMAP**)malloc(nlevels * sizeof(FIBITMAP*));
if(!pyramid) throw(1);
memset(pyramid, 0, nlevels * sizeof(FIBITMAP*));
if(!GaussianPyramid(H, pyramid, nlevels)) throw(1);
// calculate gradient magnitude and its average value on each pyramid level
gradients = (FIBITMAP**)malloc(nlevels * sizeof(FIBITMAP*));
if(!gradients) throw(1);
memset(gradients, 0, nlevels * sizeof(FIBITMAP*));
avgGrad = (float*)malloc(nlevels * sizeof(float));
if(!avgGrad) throw(1);
if(!GradientPyramid(pyramid, nlevels, gradients, avgGrad)) throw(1);
// free the Gaussian pyramid
for(k = 0; k < nlevels; k++) {
if(pyramid[k]) FreeImage_Unload(pyramid[k]);
}
free(pyramid); pyramid = NULL;
// compute the gradient attenuation function PHI(x, y)
phy = PhiMatrix(gradients, avgGrad, nlevels, alpha, beta);
if(!phy) throw(1);
// free the gradient pyramid
for(k = 0; k < nlevels; k++) {
if(gradients[k]) FreeImage_Unload(gradients[k]);
}
free(gradients); gradients = NULL;
free(avgGrad); avgGrad = NULL;
// compute gradients in x and y directions, attenuate them with the attenuation matrix,
// then compute the divergence div G from the attenuated gradient.
divG = Divergence(H, phy);
if(!divG) throw(1);
// H & phy no longer needed
FreeImage_Unload(H); H = NULL;
FreeImage_Unload(phy); phy = NULL;
// solve the PDE (Poisson equation) using a multigrid solver and 3 cycles
FIBITMAP *U = FreeImage_MultigridPoissonSolver(divG, 3);
if(!U) throw(1);
FreeImage_Unload(divG);
// perform exponentiation and recover the log compressed image
ExpLuminance(U);
return U;
} catch(int) {
if(H) FreeImage_Unload(H);
if(pyramid) {
for(int i = 0; i < nlevels; i++) {
if(pyramid[i]) FreeImage_Unload(pyramid[i]);
}
free(pyramid);
}
if(gradients) {
for(int i = 0; i < nlevels; i++) {
if(gradients[i]) FreeImage_Unload(gradients[i]);
}
free(gradients);
}
if(avgGrad) free(avgGrad);
if(phy) FreeImage_Unload(phy);
if(divG) FreeImage_Unload(divG);
if(U) FreeImage_Unload(U);
return NULL;
}
}
// ----------------------------------------------------------
// Main algorithm
// ----------------------------------------------------------
/**
Apply the Gradient Domain High Dynamic Range Compression to a RGBF image and convert to 24-bit RGB
@param dib Input RGBF / RGB16 image
@param color_saturation Color saturation (s parameter in the paper) in [0.4..0.6]
@param attenuation Atenuation factor (beta parameter in the paper) in [0.8..0.9]
@return Returns a 24-bit RGB image if successful, returns NULL otherwise
*/
FIBITMAP* DLL_CALLCONV
FreeImage_TmoFattal02(FIBITMAP *dib, double color_saturation, double attenuation) {
const float alpha = 0.1F; // parameter alpha = 0.1
const float beta = (float)MAX(0.8, MIN(0.9, attenuation)); // parameter beta = [0.8..0.9]
const float s = (float)MAX(0.4, MIN(0.6, color_saturation));// exponent s controls color saturation = [0.4..0.6]
FIBITMAP *src = NULL;
FIBITMAP *Yin = NULL;
FIBITMAP *Yout = NULL;
FIBITMAP *dst = NULL;
if(!FreeImage_HasPixels(dib)) return NULL;
try {
// convert to RGBF
src = FreeImage_ConvertToRGBF(dib);
if(!src) throw(1);
// get the luminance channel
Yin = ConvertRGBFToY(src);
if(!Yin) throw(1);
// perform the tone mapping
Yout = tmoFattal02(Yin, alpha, beta);
if(!Yout) throw(1);
// clip low and high values and normalize to [0..1]
//NormalizeY(Yout, 0.001F, 0.995F);
NormalizeY(Yout, 0, 1);
// compress the dynamic range
const unsigned width = FreeImage_GetWidth(src);
const unsigned height = FreeImage_GetHeight(src);
const unsigned rgb_pitch = FreeImage_GetPitch(src);
const unsigned y_pitch = FreeImage_GetPitch(Yin);
BYTE *bits = (BYTE*)FreeImage_GetBits(src);
BYTE *bits_yin = (BYTE*)FreeImage_GetBits(Yin);
BYTE *bits_yout = (BYTE*)FreeImage_GetBits(Yout);
for(unsigned y = 0; y < height; y++) {
float *Lin = (float*)bits_yin;
float *Lout = (float*)bits_yout;
float *color = (float*)bits;
for(unsigned x = 0; x < width; x++) {
for(unsigned c = 0; c < 3; c++) {
*color = (Lin[x] > 0) ? pow(*color/Lin[x], s) * Lout[x] : 0;
color++;
}
}
bits += rgb_pitch;
bits_yin += y_pitch;
bits_yout += y_pitch;
}
// not needed anymore
FreeImage_Unload(Yin); Yin = NULL;
FreeImage_Unload(Yout); Yout = NULL;
// clamp image highest values to display white, then convert to 24-bit RGB
dst = ClampConvertRGBFTo24(src);
// clean-up and return
FreeImage_Unload(src); src = NULL;
// copy metadata from src to dst
FreeImage_CloneMetadata(dst, dib);
return dst;
} catch(int) {
if(src) FreeImage_Unload(src);
if(Yin) FreeImage_Unload(Yin);
if(Yout) FreeImage_Unload(Yout);
return NULL;
}
}
|