1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/*
Jabber Protocol Plugin for Miranda IM
XEP-0138 (Stream Compression) implementation
Copyright ( C ) 2005-12 George Hazan
Copyright ( C ) 2007 Kostya Chukavin, Taras Zackrepa
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or ( at your option ) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "jabber.h"
BOOL ThreadData::zlibInit( void )
{
proto->Log( "Zlib init..." );
zStreamIn.zalloc = Z_NULL;
zStreamIn.zfree = Z_NULL;
zStreamIn.opaque = Z_NULL;
zStreamIn.next_in = Z_NULL;
zStreamIn.avail_in = 0;
zStreamOut.zalloc = Z_NULL;
zStreamOut.zfree = Z_NULL;
zStreamOut.opaque = Z_NULL;
if ( deflateInit( &zStreamOut, Z_BEST_COMPRESSION) != Z_OK ) return FALSE;
if ( inflateInit( &zStreamIn ) != Z_OK ) return FALSE;
zRecvReady = true;
return TRUE;
}
void ThreadData::zlibUninit( void )
{
deflateEnd( &zStreamOut );
inflateEnd( &zStreamIn );
}
int ThreadData::zlibSend( char* data, int datalen )
{
char send_data[ ZLIB_CHUNK_SIZE ];
int bytesOut = 0;
zStreamOut.avail_in = datalen;
zStreamOut.next_in = ( unsigned char* )data;
do {
zStreamOut.avail_out = ZLIB_CHUNK_SIZE;
zStreamOut.next_out = ( unsigned char* )send_data;
switch ( deflate( &zStreamOut, Z_SYNC_FLUSH )) {
case Z_OK: proto->Log( "Deflate: Z_OK" ); break;
case Z_BUF_ERROR: proto->Log( "Deflate: Z_BUF_ERROR" ); break;
case Z_DATA_ERROR: proto->Log( "Deflate: Z_DATA_ERROR" ); break;
case Z_MEM_ERROR: proto->Log( "Deflate: Z_MEM_ERROR" ); break;
}
int len, send_datalen = ZLIB_CHUNK_SIZE - zStreamOut.avail_out;
if (( len = sendws( send_data, send_datalen, MSG_NODUMP )) == SOCKET_ERROR || len != send_datalen ) {
proto->Log( "Netlib_Send() failed, error=%d", WSAGetLastError());
return FALSE;
}
bytesOut += len;
}
while ( zStreamOut.avail_out == 0 );
if ( DBGetContactSettingByte( NULL, "Netlib", "DumpSent", TRUE ) == TRUE )
proto->Log( "(ZLIB) Data sent\n%s\n===OUT: %d(%d) bytes", data, datalen, bytesOut );
return TRUE;
}
int ThreadData::zlibRecv( char* data, long datalen )
{
if ( zRecvReady ) {
retry:
zRecvDatalen = recvws( zRecvData, ZLIB_CHUNK_SIZE, MSG_NODUMP );
if ( zRecvDatalen == SOCKET_ERROR ) {
proto->Log( "Netlib_Recv() failed, error=%d", WSAGetLastError());
return SOCKET_ERROR;
}
if ( zRecvDatalen == 0 )
return 0;
zStreamIn.avail_in = zRecvDatalen;
zStreamIn.next_in = ( Bytef* )zRecvData;
}
zStreamIn.avail_out = datalen;
zStreamIn.next_out = ( BYTE* )data;
switch ( inflate( &zStreamIn, Z_NO_FLUSH )) {
case Z_OK: proto->Log( "Inflate: Z_OK" ); break;
case Z_BUF_ERROR: proto->Log( "Inflate: Z_BUF_ERROR" ); break;
case Z_DATA_ERROR: proto->Log( "Inflate: Z_DATA_ERROR" ); break;
case Z_MEM_ERROR: proto->Log( "Inflate: Z_MEM_ERROR" ); break;
}
int len = datalen - zStreamIn.avail_out;
if ( DBGetContactSettingByte( NULL, "Netlib", "DumpRecv", TRUE ) == TRUE ) {
char* szLogBuffer = ( char* )alloca( len+32 );
memcpy( szLogBuffer, data, len );
szLogBuffer[ len ]='\0';
proto->Log( "(ZLIB) Data received\n%s\n===IN: %d(%d) bytes", szLogBuffer, len, zRecvDatalen );
}
if ( len == 0 )
goto retry;
zRecvReady = ( zStreamIn.avail_out != 0 );
return len;
}
|