summaryrefslogtreecommitdiff
path: root/protocols/Sametime/src/glib/gthreadpool.c
blob: 54103607c60477a4749be09c265cec66e9052417 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * GAsyncQueue: thread pool implementation.
 * Copyright (C) 2000 Sebastian Wilhelmi; University of Karlsruhe
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/*
 * MT safe
 */

#include "config.h"

#include "gthreadpool.h"

#include "gasyncqueue.h"
#include "gmain.h"
#include "gtestutils.h"
#include "gtimer.h"

/**
 * SECTION: thread_pools
 * @title: Thread Pools
 * @short_description: pools of threads to execute work concurrently
 * @see_also: <para> <variablelist> <varlistentry>
 *            <term>#GThread</term> <listitem><para>GLib thread
 *            system.</para></listitem> </varlistentry> </variablelist>
 *            </para>
 *
 * Sometimes you wish to asynchronously fork out the execution of work
 * and continue working in your own thread. If that will happen often,
 * the overhead of starting and destroying a thread each time might be
 * too high. In such cases reusing already started threads seems like a
 * good idea. And it indeed is, but implementing this can be tedious
 * and error-prone.
 *
 * Therefore GLib provides thread pools for your convenience. An added
 * advantage is, that the threads can be shared between the different
 * subsystems of your program, when they are using GLib.
 *
 * To create a new thread pool, you use g_thread_pool_new(). It is
 * destroyed by g_thread_pool_free().
 *
 * If you want to execute a certain task within a thread pool, you call
 * g_thread_pool_push().
 *
 * To get the current number of running threads you call
 * g_thread_pool_get_num_threads(). To get the number of still
 * unprocessed tasks you call g_thread_pool_unprocessed(). To control
 * the maximal number of threads for a thread pool, you use
 * g_thread_pool_get_max_threads() and g_thread_pool_set_max_threads().
 *
 * Finally you can control the number of unused threads, that are kept
 * alive by GLib for future use. The current number can be fetched with
 * g_thread_pool_get_num_unused_threads(). The maximal number can be
 * controlled by g_thread_pool_get_max_unused_threads() and
 * g_thread_pool_set_max_unused_threads(). All currently unused threads
 * can be stopped by calling g_thread_pool_stop_unused_threads().
 **/

#define DEBUG_MSG(x)  
/* #define DEBUG_MSG(args) g_printerr args ; g_printerr ("\n");    */

typedef struct _GRealThreadPool GRealThreadPool;

/**
 * GThreadPool:
 * @func: the function to execute in the threads of this pool
 * @user_data: the user data for the threads of this pool
 * @exclusive: are all threads exclusive to this pool
 *
 * The #GThreadPool struct represents a thread pool. It has three
 * public read-only members, but the underlying struct is bigger, so
 * you must not copy this struct.
 **/
struct _GRealThreadPool
{
  GThreadPool pool;
  GAsyncQueue* queue;
  GCond* cond;
  gint max_threads;
  gint num_threads;
  gboolean running;
  gboolean immediate;
  gboolean waiting;
  GCompareDataFunc sort_func;
  gpointer sort_user_data;
};

/* The following is just an address to mark the wakeup order for a
 * thread, it could be any address (as long, as it isn't a valid
 * GThreadPool address) */
static const gpointer wakeup_thread_marker = (gpointer) &g_thread_pool_new;
static gint wakeup_thread_serial = 0;

/* Here all unused threads are waiting  */
static GAsyncQueue *unused_thread_queue = NULL;
static gint unused_threads = 0;
static gint max_unused_threads = 0;
static gint kill_unused_threads = 0;
static guint max_idle_time = 0;

static void             g_thread_pool_queue_push_unlocked (GRealThreadPool  *pool,
							   gpointer          data);
static void             g_thread_pool_free_internal       (GRealThreadPool  *pool);
static gpointer         g_thread_pool_thread_proxy        (gpointer          data);
static void             g_thread_pool_start_thread        (GRealThreadPool  *pool,
							   GError          **error);
static void             g_thread_pool_wakeup_and_stop_all (GRealThreadPool  *pool);
static GRealThreadPool* g_thread_pool_wait_for_new_pool   (void);
static gpointer         g_thread_pool_wait_for_new_task   (GRealThreadPool  *pool);

static void
g_thread_pool_queue_push_unlocked (GRealThreadPool *pool,
				   gpointer         data)
{
  if (pool->sort_func) 
    g_async_queue_push_sorted_unlocked (pool->queue, 
					data,
					pool->sort_func, 
					pool->sort_user_data);
  else
    g_async_queue_push_unlocked (pool->queue, data);
}

static GRealThreadPool*
g_thread_pool_wait_for_new_pool (void)
{
  GRealThreadPool *pool;
  gint local_wakeup_thread_serial;
  guint local_max_unused_threads;
  gint local_max_idle_time;
  gint last_wakeup_thread_serial;
  gboolean have_relayed_thread_marker = FALSE;

  local_max_unused_threads = g_atomic_int_get (&max_unused_threads);
  local_max_idle_time = g_atomic_int_get (&max_idle_time);
  last_wakeup_thread_serial = g_atomic_int_get (&wakeup_thread_serial);

  g_atomic_int_inc (&unused_threads);

  do
    {
      if (g_atomic_int_get (&unused_threads) >= local_max_unused_threads)
	{
	  /* If this is a superfluous thread, stop it. */
	  pool = NULL;
	}
      else if (local_max_idle_time > 0)
	{
	  /* If a maximal idle time is given, wait for the given time. */
	  GTimeVal end_time;

	  g_get_current_time (&end_time);
	  g_time_val_add (&end_time, local_max_idle_time * 1000);

	  DEBUG_MSG (("thread %p waiting in global pool for %f seconds.",
		      g_thread_self (), local_max_idle_time / 1000.0));

	  pool = g_async_queue_timed_pop (unused_thread_queue, &end_time);
	}
      else
	{
	  /* If no maximal idle time is given, wait indefinitely. */
	  DEBUG_MSG (("thread %p waiting in global pool.",
		      g_thread_self ()));
	  pool = g_async_queue_pop (unused_thread_queue);
	}

      if (pool == wakeup_thread_marker)
	{
	  local_wakeup_thread_serial = g_atomic_int_get (&wakeup_thread_serial);
	  if (last_wakeup_thread_serial == local_wakeup_thread_serial)
	    {
	      if (!have_relayed_thread_marker)
	      {
		/* If this wakeup marker has been received for
		 * the second time, relay it. 
		 */
		DEBUG_MSG (("thread %p relaying wakeup message to "
			    "waiting thread with lower serial.",
			    g_thread_self ()));

		g_async_queue_push (unused_thread_queue, wakeup_thread_marker);
		have_relayed_thread_marker = TRUE;

		/* If a wakeup marker has been relayed, this thread
		 * will get out of the way for 100 microseconds to
		 * avoid receiving this marker again. */
		g_usleep (100);
	      }
	    }
	  else
	    {
	      if (g_atomic_int_exchange_and_add (&kill_unused_threads, -1) > 0)
	        {
		  pool = NULL;
		  break;
		}

	      DEBUG_MSG (("thread %p updating to new limits.",
			  g_thread_self ()));

	      local_max_unused_threads = g_atomic_int_get (&max_unused_threads);
	      local_max_idle_time = g_atomic_int_get (&max_idle_time);
	      last_wakeup_thread_serial = local_wakeup_thread_serial;

	      have_relayed_thread_marker = FALSE;
	    }
	}
    }
  while (pool == wakeup_thread_marker);

  g_atomic_int_add (&unused_threads, -1);

  return pool;
}

static gpointer
g_thread_pool_wait_for_new_task (GRealThreadPool *pool)
{
  gpointer task = NULL;

  if (pool->running || (!pool->immediate &&
			g_async_queue_length_unlocked (pool->queue) > 0))
    {
      /* This thread pool is still active. */
      if (pool->num_threads > pool->max_threads && pool->max_threads != -1)
	{
	  /* This is a superfluous thread, so it goes to the global pool. */
	  DEBUG_MSG (("superfluous thread %p in pool %p.",
		      g_thread_self (), pool));
	}
      else if (pool->pool.exclusive)
	{
	  /* Exclusive threads stay attached to the pool. */
	  task = g_async_queue_pop_unlocked (pool->queue);

	  DEBUG_MSG (("thread %p in exclusive pool %p waits for task "
		      "(%d running, %d unprocessed).",
		      g_thread_self (), pool, pool->num_threads,
		      g_async_queue_length_unlocked (pool->queue)));
	}
      else
	{
	  /* A thread will wait for new tasks for at most 1/2
	   * second before going to the global pool.
	   */
	  GTimeVal end_time;

	  g_get_current_time (&end_time);
	  g_time_val_add (&end_time, G_USEC_PER_SEC / 2);	/* 1/2 second */

	  DEBUG_MSG (("thread %p in pool %p waits for up to a 1/2 second for task "
		      "(%d running, %d unprocessed).",
		      g_thread_self (), pool, pool->num_threads,
		      g_async_queue_length_unlocked (pool->queue)));

	  task = g_async_queue_timed_pop_unlocked (pool->queue, &end_time);
	}
    }
  else
    {
      /* This thread pool is inactive, it will no longer process tasks. */
      DEBUG_MSG (("pool %p not active, thread %p will go to global pool "
		  "(running: %s, immediate: %s, len: %d).",
		  pool, g_thread_self (),
		  pool->running ? "true" : "false",
		  pool->immediate ? "true" : "false",
		  g_async_queue_length_unlocked (pool->queue)));
    }

  return task;
}


static gpointer 
g_thread_pool_thread_proxy (gpointer data)
{
  GRealThreadPool *pool;

  pool = data;

  DEBUG_MSG (("thread %p started for pool %p.", 
	      g_thread_self (), pool));

  g_async_queue_lock (pool->queue);

  while (TRUE)
    {
      gpointer task;

      task = g_thread_pool_wait_for_new_task (pool);
      if (task)
	{
	  if (pool->running || !pool->immediate)
	    {
	      /* A task was received and the thread pool is active, so
	       * execute the function. 
	       */
	      g_async_queue_unlock (pool->queue);
	      DEBUG_MSG (("thread %p in pool %p calling func.", 
			  g_thread_self (), pool));
	      pool->pool.func (task, pool->pool.user_data);
	      g_async_queue_lock (pool->queue);
	    }
	}
      else
	{
	  /* No task was received, so this thread goes to the global
	   * pool. 
	   */
	  gboolean free_pool = FALSE;
 
	  DEBUG_MSG (("thread %p leaving pool %p for global pool.", 
		      g_thread_self (), pool));
	  pool->num_threads--;

	  if (!pool->running)
	    {
	      if (!pool->waiting)
		{
		  if (pool->num_threads == 0)
		    {
		      /* If the pool is not running and no other
		       * thread is waiting for this thread pool to
		       * finish and this is the last thread of this
		       * pool, free the pool.
		       */
		      free_pool = TRUE;
		    }		
		  else 
		    {
		      /* If the pool is not running and no other
		       * thread is waiting for this thread pool to
		       * finish and this is not the last thread of
		       * this pool and there are no tasks left in the
		       * queue, wakeup the remaining threads. 
		       */
		      if (g_async_queue_length_unlocked (pool->queue) == 
			  - pool->num_threads)
			g_thread_pool_wakeup_and_stop_all (pool);
		    }
		}
	      else if (pool->immediate || 
		       g_async_queue_length_unlocked (pool->queue) <= 0)
		{
		  /* If the pool is not running and another thread is
		   * waiting for this thread pool to finish and there
		   * are either no tasks left or the pool shall stop
		   * immediatly, inform the waiting thread of a change
		   * of the thread pool state. 
		   */
		  g_cond_broadcast (pool->cond);
		}
	    }

	  g_async_queue_unlock (pool->queue);

	  if (free_pool)
	    g_thread_pool_free_internal (pool);

	  if ((pool = g_thread_pool_wait_for_new_pool ()) == NULL) 
	    break;

	  g_async_queue_lock (pool->queue);
	  
	  DEBUG_MSG (("thread %p entering pool %p from global pool.", 
		      g_thread_self (), pool));

	  /* pool->num_threads++ is not done here, but in
           * g_thread_pool_start_thread to make the new started thread
           * known to the pool, before itself can do it. 
	   */
	}
    }

  return NULL;
}

static void
g_thread_pool_start_thread (GRealThreadPool  *pool, 
			    GError          **error)
{
  gboolean success = FALSE;
  
  if (pool->num_threads >= pool->max_threads && pool->max_threads != -1)
    /* Enough threads are already running */
    return;

  g_async_queue_lock (unused_thread_queue);

  if (g_async_queue_length_unlocked (unused_thread_queue) < 0)
    {
      g_async_queue_push_unlocked (unused_thread_queue, pool);
      success = TRUE;
    }

  g_async_queue_unlock (unused_thread_queue);

  if (!success)
    {
      GError *local_error = NULL;
      /* No thread was found, we have to start a new one */
      g_thread_create (g_thread_pool_thread_proxy, pool, FALSE, &local_error);
      
      if (local_error)
	{
	  g_propagate_error (error, local_error);
	  return;
	}
    }

  /* See comment in g_thread_pool_thread_proxy as to why this is done
   * here and not there
   */
  pool->num_threads++;
}

/**
 * g_thread_pool_new: 
 * @func: a function to execute in the threads of the new thread pool
 * @user_data: user data that is handed over to @func every time it 
 *   is called
 * @max_threads: the maximal number of threads to execute concurrently in 
 *   the new thread pool, -1 means no limit
 * @exclusive: should this thread pool be exclusive?
 * @error: return location for error
 *
 * This function creates a new thread pool.
 *
 * Whenever you call g_thread_pool_push(), either a new thread is
 * created or an unused one is reused. At most @max_threads threads
 * are running concurrently for this thread pool. @max_threads = -1
 * allows unlimited threads to be created for this thread pool. The
 * newly created or reused thread now executes the function @func with
 * the two arguments. The first one is the parameter to
 * g_thread_pool_push() and the second one is @user_data.
 *
 * The parameter @exclusive determines, whether the thread pool owns
 * all threads exclusive or whether the threads are shared
 * globally. If @exclusive is %TRUE, @max_threads threads are started
 * immediately and they will run exclusively for this thread pool until
 * it is destroyed by g_thread_pool_free(). If @exclusive is %FALSE,
 * threads are created, when needed and shared between all
 * non-exclusive thread pools. This implies that @max_threads may not
 * be -1 for exclusive thread pools.
 *
 * @error can be %NULL to ignore errors, or non-%NULL to report
 * errors. An error can only occur when @exclusive is set to %TRUE and
 * not all @max_threads threads could be created.
 *
 * Return value: the new #GThreadPool
 **/
GThreadPool* 
g_thread_pool_new (GFunc            func,
		   gpointer         user_data,
		   gint             max_threads,
		   gboolean         exclusive,
		   GError         **error)
{
  GRealThreadPool *retval;
  G_LOCK_DEFINE_STATIC (init);

  g_return_val_if_fail (func, NULL);
  g_return_val_if_fail (!exclusive || max_threads != -1, NULL);
  g_return_val_if_fail (max_threads >= -1, NULL);
  g_return_val_if_fail (g_thread_supported (), NULL);

  retval = g_new (GRealThreadPool, 1);

  retval->pool.func = func;
  retval->pool.user_data = user_data;
  retval->pool.exclusive = exclusive;
  retval->queue = g_async_queue_new ();
  retval->cond = NULL;
  retval->max_threads = max_threads;
  retval->num_threads = 0;
  retval->running = TRUE;
  retval->sort_func = NULL;
  retval->sort_user_data = NULL;

  G_LOCK (init);
  if (!unused_thread_queue)
      unused_thread_queue = g_async_queue_new ();
  G_UNLOCK (init);

  if (retval->pool.exclusive)
    {
      g_async_queue_lock (retval->queue);
  
      while (retval->num_threads < retval->max_threads)
	{
	  GError *local_error = NULL;
	  g_thread_pool_start_thread (retval, &local_error);
	  if (local_error)
	    {
	      g_propagate_error (error, local_error);
	      break;
	    }
	}

      g_async_queue_unlock (retval->queue);
    }

  return (GThreadPool*) retval;
}

/**
 * g_thread_pool_push:
 * @pool: a #GThreadPool
 * @data: a new task for @pool
 * @error: return location for error
 * 
 * Inserts @data into the list of tasks to be executed by @pool. When
 * the number of currently running threads is lower than the maximal
 * allowed number of threads, a new thread is started (or reused) with
 * the properties given to g_thread_pool_new (). Otherwise @data stays
 * in the queue until a thread in this pool finishes its previous task
 * and processes @data. 
 *
 * @error can be %NULL to ignore errors, or non-%NULL to report
 * errors. An error can only occur when a new thread couldn't be
 * created. In that case @data is simply appended to the queue of work
 * to do.  
 **/
void 
g_thread_pool_push (GThreadPool  *pool,
		    gpointer      data,
		    GError      **error)
{
  GRealThreadPool *real;

  real = (GRealThreadPool*) pool;

  g_return_if_fail (real);
  g_return_if_fail (real->running);

  g_async_queue_lock (real->queue);

  if (g_async_queue_length_unlocked (real->queue) >= 0)
    /* No thread is waiting in the queue */
    g_thread_pool_start_thread (real, error);

  g_thread_pool_queue_push_unlocked (real, data);
  g_async_queue_unlock (real->queue);
}

/**
 * g_thread_pool_set_max_threads:
 * @pool: a #GThreadPool
 * @max_threads: a new maximal number of threads for @pool
 * @error: return location for error
 * 
 * Sets the maximal allowed number of threads for @pool. A value of -1
 * means, that the maximal number of threads is unlimited.
 *
 * Setting @max_threads to 0 means stopping all work for @pool. It is
 * effectively frozen until @max_threads is set to a non-zero value
 * again.
 * 
 * A thread is never terminated while calling @func, as supplied by
 * g_thread_pool_new (). Instead the maximal number of threads only
 * has effect for the allocation of new threads in g_thread_pool_push(). 
 * A new thread is allocated, whenever the number of currently
 * running threads in @pool is smaller than the maximal number.
 *
 * @error can be %NULL to ignore errors, or non-%NULL to report
 * errors. An error can only occur when a new thread couldn't be
 * created. 
 **/
void
g_thread_pool_set_max_threads (GThreadPool  *pool,
			       gint          max_threads,
			       GError      **error)
{
  GRealThreadPool *real;
  gint to_start;

  real = (GRealThreadPool*) pool;

  g_return_if_fail (real);
  g_return_if_fail (real->running);
  g_return_if_fail (!real->pool.exclusive || max_threads != -1);
  g_return_if_fail (max_threads >= -1);

  g_async_queue_lock (real->queue);

  real->max_threads = max_threads;
  
  if (pool->exclusive)
    to_start = real->max_threads - real->num_threads;
  else
    to_start = g_async_queue_length_unlocked (real->queue);
  
  for ( ; to_start > 0; to_start--)
    {
      GError *local_error = NULL;

      g_thread_pool_start_thread (real, &local_error);
      if (local_error)
	{
	  g_propagate_error (error, local_error);
	  break;
	}
    }
   
  g_async_queue_unlock (real->queue);
}

/**
 * g_thread_pool_get_max_threads:
 * @pool: a #GThreadPool
 *
 * Returns the maximal number of threads for @pool.
 *
 * Return value: the maximal number of threads
 **/
gint
g_thread_pool_get_max_threads (GThreadPool *pool)
{
  GRealThreadPool *real;
  gint retval;

  real = (GRealThreadPool*) pool;

  g_return_val_if_fail (real, 0);
  g_return_val_if_fail (real->running, 0);

  g_async_queue_lock (real->queue);
  retval = real->max_threads;
  g_async_queue_unlock (real->queue);

  return retval;
}

/**
 * g_thread_pool_get_num_threads:
 * @pool: a #GThreadPool
 *
 * Returns the number of threads currently running in @pool.
 *
 * Return value: the number of threads currently running
 **/
guint
g_thread_pool_get_num_threads (GThreadPool *pool)
{
  GRealThreadPool *real;
  guint retval;

  real = (GRealThreadPool*) pool;

  g_return_val_if_fail (real, 0);
  g_return_val_if_fail (real->running, 0);

  g_async_queue_lock (real->queue);
  retval = real->num_threads;
  g_async_queue_unlock (real->queue);

  return retval;
}

/**
 * g_thread_pool_unprocessed:
 * @pool: a #GThreadPool
 *
 * Returns the number of tasks still unprocessed in @pool.
 *
 * Return value: the number of unprocessed tasks
 **/
guint
g_thread_pool_unprocessed (GThreadPool *pool)
{
  GRealThreadPool *real;
  gint unprocessed;

  real = (GRealThreadPool*) pool;

  g_return_val_if_fail (real, 0);
  g_return_val_if_fail (real->running, 0);

  unprocessed = g_async_queue_length (real->queue);

  return MAX (unprocessed, 0);
}

/**
 * g_thread_pool_free:
 * @pool: a #GThreadPool
 * @immediate: should @pool shut down immediately?
 * @wait_: should the function wait for all tasks to be finished?
 *
 * Frees all resources allocated for @pool.
 *
 * If @immediate is %TRUE, no new task is processed for
 * @pool. Otherwise @pool is not freed before the last task is
 * processed. Note however, that no thread of this pool is
 * interrupted, while processing a task. Instead at least all still
 * running threads can finish their tasks before the @pool is freed.
 *
 * If @wait_ is %TRUE, the functions does not return before all tasks
 * to be processed (dependent on @immediate, whether all or only the
 * currently running) are ready. Otherwise the function returns immediately.
 *
 * After calling this function @pool must not be used anymore. 
 **/
void
g_thread_pool_free (GThreadPool *pool,
		    gboolean     immediate,
		    gboolean     wait_)
{
  GRealThreadPool *real;

  real = (GRealThreadPool*) pool;

  g_return_if_fail (real);
  g_return_if_fail (real->running);

  /* If there's no thread allowed here, there is not much sense in
   * not stopping this pool immediately, when it's not empty 
   */
  g_return_if_fail (immediate || 
		    real->max_threads != 0 || 
		    g_async_queue_length (real->queue) == 0);

  g_async_queue_lock (real->queue);

  real->running = FALSE;
  real->immediate = immediate;
  real->waiting = wait_;

  if (wait_)
    {
      real->cond = g_cond_new ();

      while (g_async_queue_length_unlocked (real->queue) != -real->num_threads &&
	     !(immediate && real->num_threads == 0))
	g_cond_wait (real->cond, _g_async_queue_get_mutex (real->queue));
    }

  if (immediate || g_async_queue_length_unlocked (real->queue) == -real->num_threads)
    {
      /* No thread is currently doing something (and nothing is left
       * to process in the queue) 
       */
      if (real->num_threads == 0) 
	{
	  /* No threads left, we clean up */
	  g_async_queue_unlock (real->queue);
	  g_thread_pool_free_internal (real);
	  return;
	}

      g_thread_pool_wakeup_and_stop_all (real);
    }
  
  /* The last thread should cleanup the pool */
  real->waiting = FALSE; 
  g_async_queue_unlock (real->queue);
}

static void
g_thread_pool_free_internal (GRealThreadPool* pool)
{
  g_return_if_fail (pool);
  g_return_if_fail (pool->running == FALSE);
  g_return_if_fail (pool->num_threads == 0);

  g_async_queue_unref (pool->queue);

  if (pool->cond)
    g_cond_free (pool->cond);

  g_free (pool);
}

static void
g_thread_pool_wakeup_and_stop_all (GRealThreadPool* pool)
{
  guint i;
  
  g_return_if_fail (pool);
  g_return_if_fail (pool->running == FALSE);
  g_return_if_fail (pool->num_threads != 0);

  pool->immediate = TRUE; 

  for (i = 0; i < pool->num_threads; i++)
    g_thread_pool_queue_push_unlocked (pool, GUINT_TO_POINTER (1));
}

/**
 * g_thread_pool_set_max_unused_threads:
 * @max_threads: maximal number of unused threads
 *
 * Sets the maximal number of unused threads to @max_threads. If
 * @max_threads is -1, no limit is imposed on the number of unused
 * threads.
 **/
void
g_thread_pool_set_max_unused_threads (gint max_threads)
{
  g_return_if_fail (max_threads >= -1);  

  g_atomic_int_set (&max_unused_threads, max_threads);

  if (max_threads != -1)
    {
      max_threads -= g_atomic_int_get (&unused_threads);
      if (max_threads < 0)
	{
	  g_atomic_int_set (&kill_unused_threads, -max_threads);
	  g_atomic_int_inc (&wakeup_thread_serial);

	  g_async_queue_lock (unused_thread_queue);

	  do
	    {
	      g_async_queue_push_unlocked (unused_thread_queue,
					   wakeup_thread_marker);
	    }
	  while (++max_threads);

	  g_async_queue_unlock (unused_thread_queue);
	}
    }
}

/**
 * g_thread_pool_get_max_unused_threads:
 * 
 * Returns the maximal allowed number of unused threads.
 *
 * Return value: the maximal number of unused threads
 **/
gint
g_thread_pool_get_max_unused_threads (void)
{
  return g_atomic_int_get (&max_unused_threads);
}

/**
 * g_thread_pool_get_num_unused_threads:
 * 
 * Returns the number of currently unused threads.
 *
 * Return value: the number of currently unused threads
 **/
guint 
g_thread_pool_get_num_unused_threads (void)
{
  return g_atomic_int_get (&unused_threads);
}

/**
 * g_thread_pool_stop_unused_threads:
 * 
 * Stops all currently unused threads. This does not change the
 * maximal number of unused threads. This function can be used to
 * regularly stop all unused threads e.g. from g_timeout_add().
 **/
void
g_thread_pool_stop_unused_threads (void)
{ 
  guint oldval;

  oldval = g_thread_pool_get_max_unused_threads ();

  g_thread_pool_set_max_unused_threads (0);
  g_thread_pool_set_max_unused_threads (oldval);
}

/**
 * g_thread_pool_set_sort_function:
 * @pool: a #GThreadPool
 * @func: the #GCompareDataFunc used to sort the list of tasks. 
 *     This function is passed two tasks. It should return
 *     0 if the order in which they are handled does not matter, 
 *     a negative value if the first task should be processed before
 *     the second or a positive value if the second task should be 
 *     processed first.
 * @user_data: user data passed to @func.
 *
 * Sets the function used to sort the list of tasks. This allows the
 * tasks to be processed by a priority determined by @func, and not
 * just in the order in which they were added to the pool.
 *
 * Note, if the maximum number of threads is more than 1, the order
 * that threads are executed can not be guranteed 100%. Threads are
 * scheduled by the operating system and are executed at random. It
 * cannot be assumed that threads are executed in the order they are
 * created. 
 *
 * Since: 2.10
 **/
void 
g_thread_pool_set_sort_function (GThreadPool      *pool,
				 GCompareDataFunc  func,
				 gpointer          user_data)
{ 
  GRealThreadPool *real;

  real = (GRealThreadPool*) pool;

  g_return_if_fail (real);
  g_return_if_fail (real->running);

  g_async_queue_lock (real->queue);

  real->sort_func = func;
  real->sort_user_data = user_data;
  
  if (func) 
    g_async_queue_sort_unlocked (real->queue, 
				 real->sort_func,
				 real->sort_user_data);

  g_async_queue_unlock (real->queue);
}

/**
 * g_thread_pool_set_max_idle_time:
 * @interval: the maximum @interval (1/1000ths of a second) a thread
 *     can be idle. 
 *
 * This function will set the maximum @interval that a thread waiting
 * in the pool for new tasks can be idle for before being
 * stopped. This function is similar to calling
 * g_thread_pool_stop_unused_threads() on a regular timeout, except,
 * this is done on a per thread basis.    
 *
 * By setting @interval to 0, idle threads will not be stopped.
 *  
 * This function makes use of g_async_queue_timed_pop () using
 * @interval.
 *
 * Since: 2.10
 **/
void
g_thread_pool_set_max_idle_time (guint interval)
{ 
  guint i;

  g_atomic_int_set (&max_idle_time, interval);

  i = g_atomic_int_get (&unused_threads);
  if (i > 0)
    {
      g_atomic_int_inc (&wakeup_thread_serial);
      g_async_queue_lock (unused_thread_queue);

      do
	{
	  g_async_queue_push_unlocked (unused_thread_queue,
				       wakeup_thread_marker);
	}
      while (--i);

      g_async_queue_unlock (unused_thread_queue);
    }
}

/**
 * g_thread_pool_get_max_idle_time:
 * 
 * This function will return the maximum @interval that a thread will
 * wait in the thread pool for new tasks before being stopped.
 *
 * If this function returns 0, threads waiting in the thread pool for
 * new work are not stopped.
 *
 * Return value: the maximum @interval to wait for new tasks in the
 *     thread pool before stopping the thread (1/1000ths of a second).
 *  
 * Since: 2.10
 **/
guint
g_thread_pool_get_max_idle_time (void)
{ 
  return g_atomic_int_get (&max_idle_time);
}