1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2018
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/utils/tests.h"
#include "td/utils/BigNum.h"
#include "td/utils/common.h"
#include "td/utils/crypto.h"
#include "td/utils/format.h"
#include "td/utils/logging.h"
#include "td/utils/misc.h"
#include <algorithm>
#include <limits>
#include <utility>
REGISTER_TESTS(pq)
using namespace td;
#if TD_HAVE_OPENSSL
static bool is_prime(uint64 x) {
for (uint64 d = 2; d < x && d * d <= x; d++) {
if (x % d == 0) {
return false;
}
}
return true;
}
static std::vector<uint64> gen_primes(uint64 L, uint64 R, int limit = 0) {
std::vector<uint64> res;
for (auto x = L; x <= R && (limit <= 0 || res.size() < static_cast<std::size_t>(limit)); x++) {
if (is_prime(x)) {
res.push_back(x);
}
}
return res;
}
static std::vector<uint64> gen_primes() {
std::vector<uint64> result;
append(result, gen_primes(1, 100));
append(result, gen_primes((1ull << 31) - 500000, std::numeric_limits<uint64>::max(), 5));
append(result, gen_primes((1ull << 32) - 500000, std::numeric_limits<uint64>::max(), 5));
append(result, gen_primes((1ull << 39) - 500000, std::numeric_limits<uint64>::max(), 1));
return result;
}
using PqQuery = std::pair<uint64, uint64>;
static bool cmp(const PqQuery &a, const PqQuery &b) {
return a.first * a.second < b.first * b.second;
}
static std::vector<PqQuery> gen_pq_queries() {
std::vector<PqQuery> res;
auto primes = gen_primes();
for (auto q : primes) {
for (auto p : primes) {
if (p > q) {
break;
}
res.emplace_back(p, q);
}
}
std::sort(res.begin(), res.end(), cmp);
return res;
}
static void test_pq(uint64 first, uint64 second) {
BigNum p = BigNum::from_decimal(PSLICE() << first);
BigNum q = BigNum::from_decimal(PSLICE() << second);
BigNum pq;
BigNumContext context;
BigNum::mul(pq, p, q, context);
std::string pq_str = pq.to_binary();
std::string p_str, q_str;
int err = td::pq_factorize(pq_str, &p_str, &q_str);
CHECK(err == 0) << first << " * " << second;
BigNum p_res = BigNum::from_binary(p_str);
BigNum q_res = BigNum::from_binary(q_str);
CHECK(p_str == p.to_binary()) << td::tag("got", p_res.to_decimal()) << td::tag("expected", first);
CHECK(q_str == q.to_binary()) << td::tag("got", q_res.to_decimal()) << td::tag("expected", second);
}
#endif
TEST(CryptoPQ, hands) {
ASSERT_EQ(1ull, td::pq_factorize(0));
ASSERT_EQ(1ull, td::pq_factorize(1));
ASSERT_EQ(1ull, td::pq_factorize(2));
ASSERT_EQ(1ull, td::pq_factorize(3));
ASSERT_EQ(2ull, td::pq_factorize(4));
ASSERT_EQ(1ull, td::pq_factorize(5));
ASSERT_EQ(3ull, td::pq_factorize(7 * 3));
ASSERT_EQ(179424611ull, td::pq_factorize(179424611ull * 179424673ull));
#if TD_HAVE_OPENSSL
test_pq(4294467311, 4294467449);
#endif
}
#if TD_HAVE_OPENSSL
TEST(CryptoPQ, generated_slow) {
for (int i = 0; i < 100000; i++) {
test_pq(2, 2);
}
auto queries = gen_pq_queries();
for (auto query : queries) {
test_pq(query.first, query.second);
}
}
#endif
|