summaryrefslogtreecommitdiff
path: root/protocols/Tlen/src/codec/gsm_rpe.c
blob: 21c5419672cf5933ff74533e61dd4fbc25f90320 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*

Tlen Protocol Plugin for Miranda NG
Copyright (C) 2004-2007  Piotr Piastucki

This program is based on GSM 06.10 source code developed by 
Jutta Degener and Carsten Bormann,
Copyright 1992, 1993, 1994 by Jutta Degener and Carsten Bormann,
Technische Universitaet Berlin 
  
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/
#include "gsm.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static const int gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 };
static const int gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 };
static const int gsm_FAC[8]   = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };
/*
 *  The coefficients of the weighting filter are stored in the gsm_H table.
 *  The following scaling is used:
 *
 *	gsm_H[0..10] = integer( real_H[ 0..10] * 8192 );
 */
static void weightingFilter (int *e, int *x)
{
	int	L_result;
	int	k, i;
	for (k = 0; k < 40; k++) {
		L_result = 4096;
		for (i = 0; i < 11; i++) {
			int ix = i + k;
			if (ix>4 && ix<45) L_result += e[ix - 5] * gsm_H[i];
		}
		L_result >>= 13;
		x[k] =  (L_result < -32768 ? -32768 : (L_result > 32767 ? 32767 : L_result));
	}
}

/*
 *  The signal x[0..39] is used to select the RPE grid which is
 *  represented by Mc.
 */
static void gridSelection( int *x, int *xM, int *Mc_out)
{
	int		m, i;
	int 	L_result, L_temp;
	int 	EM, Mc;

	EM = 0;
	Mc = 0;

	for (m = 0; m < 4; m++) {
		L_result = 0;
		for (i = 0; i < 13; i++) {
			int temp = x[m + 3*i] >> 2;
			L_temp = temp * temp << 1;
			L_result += L_temp;
		}
		if (L_result > EM) {
			Mc = m;
			EM = L_result;
		}
	}
	/*  Down-sampling by a factor 3 to get the selected xM[0..12]
	 *  RPE sequence.
	 */
	for (i = 0; i < 13; i ++) xM[i] = x[Mc + 3*i];
	*Mc_out = Mc;
}

/*
 *  This procedure computes the reconstructed long term residual signal
 *  ep[0..39] for the LTP analysis filter.  The inputs are the Mc
 *  which is the grid position selection and the xMp[0..12] decoded
 *  RPE samples which are upsampled by a factor of 3 by inserting zero
 *  values.
 */
static void gridPositioning (int Mc, int *xMp, int *ep)
{
	int i, k;
	for (k = 0; k < 40; k++) ep[k] = 0;
	for (i = 0; i < 13; i++) {
		ep[ Mc + (3*i) ] = xMp[i];
	}
}

static void APCMXmaxcToExpMant (int xmaxc, int *exp_out, int *mant_out )
{
	int 	exp, mant;
	/* Compute exponent and mantissa of the decoded version of xmaxc
	 */
	exp = 0;
	if (xmaxc > 15) exp = (xmaxc >> 3) - 1;
	mant = xmaxc - (exp << 3);

	if (mant == 0) {
		exp  = -4;
		mant = 7;
	}
	else {
		while (mant < 8) {
			mant = mant << 1 | 1;
			exp--;
		}
		mant -= 8;
	}

	*exp_out  = exp;
	*mant_out = mant;
}

static void APCMQuantization (int *xM, int *xMc, int *mant_out, int *exp_out, int *xmaxc_out)
{
	int		i, itest;
	int		xmax, xmaxc, temp, temp1, temp2;
	int		exp, mant;


	/*  Find the maximum absolute value xmax of xM[0..12].
	 */

	xmax = 0;
	for (i = 0; i < 13; i++) {
		temp = abs(xM[i]);
		if (temp > xmax) xmax = temp;
	}
	if (xmax > 32767) xmax = 32767;
	/*  Qantizing and coding of xmax to get xmaxc.
	 */

	exp   = 0;
	temp  = xmax >> 9;
	itest = 0;

	for (i = 0; i < 6; i++) {
		if (temp != 0) exp++;
		temp = temp >> 1;
	}

	temp = exp + 5;

	xmaxc = (xmax >> temp) + (exp << 3);

	/*   Quantizing and coding of the xM[0..12] RPE sequence
	 *   to get the xMc[0..12]
	 */
	APCMXmaxcToExpMant( xmaxc, &exp, &mant );

	/*  This computation uses the fact that the decoded version of xmaxc
	 *  can be calculated by using the exponent and the mantissa part of
	 *  xmaxc (logarithmic table).
	 *  So, this method avoids any division and uses only a scaling
	 *  of the RPE samples by a function of the exponent.  A direct
	 *  multiplication by the inverse of the mantissa (NRFAC[0..7]
	 *  found in table 4.5) gives the 3 bit coded version xMc[0..12]
	 *  of the RPE samples.
	 */

	/* Direct computation of xMc[0..12] using table 4.5
	 */
	temp = (mant|8)<<(5+exp);
	temp1 = 6 - exp;
	temp2 = gsm_NRFAC[ mant ];
	for (i = 0; i < 13; i++) {
		xMc[i] = ((xM[i] << temp1) * temp2 >> 27) + 4;
	}

	/*  NOTE: This equation is used to make all the xMc[i] positive.
	 */

	*mant_out  = mant;
	*exp_out   = exp;
	*xmaxc_out = xmaxc;
}

static void APCMDequantization (int *xMc, int mant, int exp, int *xMp)
{
   	int		i, temp1, temp2, temp3;
	temp1 = gsm_FAC[ mant ];
	temp2 = 6 - exp;
	if (temp2 <= 0) {
		temp3 = 1 >> (1 - temp2);
	} else {
		temp3 = 1 << (temp2 - 1);
	}
	for (i = 0; i < 13; i++) {
		xMp[i] = ((((((xMc[i]<<1)-7)<<12)*temp1+16384)>>15)+temp3)>>temp2;
	}
}

void encodeRPE(gsm_state *state)
{   int		x[40];
	int		xM[13], xMp[13];
	int		mant, exp;
	int     *Mc = state->Mc + state->subframe;
	int     *xMaxc = state->xMaxc + state->subframe;
	int 	*xMc = state->xMc + state->subframe * 13;
	int     *e = state->e + state->subframe * 40;
	//int		i;
	/*
	printf("RPE in: \n");
	for (i=0;i<40;i++) {
		printf("%7d ", e[i]);
	}
	printf("\n");
	*/
	weightingFilter(e, x);
	/*
	printf("RPE weighting filter: \n");
	for (i=0;i<40;i++) {
		printf("%7d ", x[i]);
	}
	printf("\n");
	*/
	gridSelection(x, xM, Mc);
	APCMQuantization(xM, xMc, &mant, &exp, xMaxc);
	/* printf("RPE Mc(grid #)=%d xmaxc=%d mant=%d exp=%d \n", *Mc, *xMaxc, mant, exp); */
	APCMDequantization(xMc, mant, exp, xMp);
	gridPositioning(*Mc, xMp, e);
}

void decodeRPE(gsm_state *state)
{
	int		exp, mant;
	int		xMp[ 13 ];
	int 	*xMc = state->xMc + state->subframe * 13;
	int     *e = state->e + state->subframe * 40;

	APCMXmaxcToExpMant(state->xMaxc[state->subframe], &exp, &mant);
	APCMDequantization(xMc, mant, exp, xMp);
	gridPositioning(state->Mc[state->subframe], xMp, e);
}