summaryrefslogtreecommitdiff
path: root/protocols/Xfire/src/SHA1.cpp
blob: cd0fe7514964cc520973bbaa992f715de3f3ec6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*
	100% free public domain implementation of the SHA-1 algorithm
	by Dominik Reichl <dominik.reichl@t-online.de>

	Version 1.5 - 2005-01-01
	- 64-bit compiler compatibility added
	- Made variable wiping optional (define SHA1_WIPE_VARIABLES)
	- Removed unnecessary variable initializations
	- ROL32 improvement for the Microsoft compiler (using _rotl)

	======== Test Vectors (from FIPS PUB 180-1) ========

	SHA1("abc") =
		A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D

	SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") =
		84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1

	SHA1(A million repetitions of "a") =
		34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/

#include "stdafx.h"

#include "SHA1.h"

#define SHA1_MAX_FILE_BUFFER 8000

// Rotate x bits to the left
#ifndef ROL32
#ifdef _MSC_VER
#define ROL32(_val32, _nBits) _rotl(_val32, _nBits)
#else
#define ROL32(_val32, _nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))
#endif
#endif

#ifdef SHA1_LITTLE_ENDIAN
#define SHABLK0(i) (m_block->l[i] = \
	(ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))
#else
#define SHABLK0(i) (m_block->l[i])
#endif

#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \
	^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))

// SHA-1 rounds
#define _R0(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
#define _R1(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
#define _R2(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5); w=ROL32(w,30); }
#define _R3(v,w,x,y,z,i) { z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5); w=ROL32(w,30); }
#define _R4(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5); w=ROL32(w,30); }


CSHA1::CSHA1()
{
	m_block = (SHA1_WORKSPACE_BLOCK *)m_workspace;

	Reset();
}

CSHA1::~CSHA1()
{
	Reset();
}

void CSHA1::Reset()
{
	// SHA1 initialization constants
	m_state[0] = 0x67452301;
	m_state[1] = 0xEFCDAB89;
	m_state[2] = 0x98BADCFE;
	m_state[3] = 0x10325476;
	m_state[4] = 0xC3D2E1F0;

	m_count[0] = 0;
	m_count[1] = 0;
}

void CSHA1::Transform(UINT_32 *state, UINT_8 *buffer)
{
	// Copy state[] to working vars
	UINT_32 a = state[0], b = state[1], c = state[2], d = state[3], e = state[4];

	memcpy(m_block, buffer, 64);

	// 4 rounds of 20 operations each. Loop unrolled.
	_R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3);
	_R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7);
	_R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11);
	_R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15);
	_R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19);
	_R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23);
	_R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27);
	_R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31);
	_R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35);
	_R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39);
	_R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43);
	_R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47);
	_R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51);
	_R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55);
	_R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59);
	_R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63);
	_R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67);
	_R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71);
	_R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75);
	_R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);

	// Add the working vars back into state
	state[0] += a;
	state[1] += b;
	state[2] += c;
	state[3] += d;
	state[4] += e;

	// Wipe variables
#ifdef SHA1_WIPE_VARIABLES
	a = b = c = d = e = 0;
#endif
}

// Use this function to hash in binary data and strings
void CSHA1::Update(UINT_8 *data, UINT_32 len)
{
	UINT_32 i, j;

	j = (m_count[0] >> 3) & 63;

	if((m_count[0] += len << 3) < (len << 3)) m_count[1]++;

	m_count[1] += (len >> 29);

	if((j + len) > 63)
	{
		i = 64 - j;
		memcpy(&m_buffer[j], data, i);
		Transform(m_state, m_buffer);

		for( ; i + 63 < len; i += 64) Transform(m_state, &data[i]);

		j = 0;
	}
	else i = 0;

	memcpy(&m_buffer[j], &data[i], len - i);
}

// Hash in file contents
bool CSHA1::HashFile(char *szFileName)
{
	unsigned long ulFileSize, ulRest, ulBlocks;
	unsigned long i;
	UINT_8 uData[SHA1_MAX_FILE_BUFFER];
	FILE *fIn;

	if(szFileName == NULL) return false;

	fIn = fopen(szFileName, "rb");
	if(fIn == NULL) return false;

	fseek(fIn, 0, SEEK_END);
	ulFileSize = (unsigned long)ftell(fIn);
	fseek(fIn, 0, SEEK_SET);

	if(ulFileSize != 0)
	{
		ulBlocks = ulFileSize / SHA1_MAX_FILE_BUFFER;
		ulRest = ulFileSize % SHA1_MAX_FILE_BUFFER;
	}
	else
	{
		ulBlocks = 0;
		ulRest = 0;
	}

	for(i = 0; i < ulBlocks; i++)
	{
		fread(uData, 1, SHA1_MAX_FILE_BUFFER, fIn);
		Update((UINT_8 *)uData, SHA1_MAX_FILE_BUFFER);
	}

	if(ulRest != 0)
	{
		fread(uData, 1, ulRest, fIn);
		Update((UINT_8 *)uData, ulRest);
	}

	fclose(fIn); fIn = NULL;
	return true;
}

void CSHA1::Final()
{
	UINT_32 i;
	UINT_8 finalcount[8];

	for(i = 0; i < 8; i++)
		finalcount[i] = (UINT_8)((m_count[((i >= 4) ? 0 : 1)]
			>> ((3 - (i & 3)) * 8) ) & 255); // Endian independent

	Update((UINT_8 *)"\200", 1);

	while ((m_count[0] & 504) != 448)
		Update((UINT_8 *)"\0", 1);

	Update(finalcount, 8); // Cause a SHA1Transform()

	for(i = 0; i < 20; i++)
	{
		m_digest[i] = (UINT_8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255);
	}

	// Wipe variables for security reasons
#ifdef SHA1_WIPE_VARIABLES
	i = 0;
	memset(m_buffer, 0, 64);
	memset(m_state, 0, 20);
	memset(m_count, 0, 8);
	memset(finalcount, 0, 8);
	Transform(m_state, m_buffer);
#endif
}

// Get the final hash as a pre-formatted string
void CSHA1::ReportHash(char *szReport, unsigned char uReportType)
{
	unsigned char i;
	char szTemp[16];

	if(szReport == NULL) return;

	if(uReportType == REPORT_HEX)
	{
		mir_snprintf(szTemp, SIZEOF(szTemp), "%02X", m_digest[0]);
		strcat(szReport, szTemp);

		for(i = 1; i < 20; i++)
		{
			mir_snprintf(szTemp, SIZEOF(szTemp), " %02X", m_digest[i]);
			strcat(szReport, szTemp);
		}
	}
	else if(uReportType == REPORT_DIGIT)
	{
		mir_snprintf(szTemp, SIZEOF(szTemp), "%u", m_digest[0]);
		strcat(szReport, szTemp);

		for(i = 1; i < 20; i++)
		{
			mir_snprintf(szTemp, SIZEOF(szTemp), " %u", m_digest[i]);
			strcat(szReport, szTemp);
		}
	}
	else strcpy(szReport, "Error: Unknown report type!");
}

// Get the raw message digest
void CSHA1::GetHash(UINT_8 *puDest)
{
	memcpy(puDest, m_digest, 20);
}