1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
//
// Copyright (C) 2024 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//
#include "softcap.cuh"
static __global__ void softcap_f32(const float * x, float * dst, float s_before, float s_after, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
float xi = s_before*x[i];
dst[i] = s_after * tanh(xi);
}
static void softcap_f32_cuda(const float * x, float * dst, float s_before, float s_after, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SOFTCAP_BLOCK_SIZE - 1) / CUDA_SOFTCAP_BLOCK_SIZE;
softcap_f32<<<num_blocks, CUDA_SOFTCAP_BLOCK_SIZE, 0, stream>>>(x, dst, s_before, s_after, k);
}
void ggml_cuda_op_softcap(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float scales[2];
memcpy(scales, dst->op_params, sizeof(scales));
softcap_f32_cuda(src0_d, dst_d, scales[0], scales[1], ggml_nelements(src0), stream);
}
|