summaryrefslogtreecommitdiff
path: root/ggml/src/vulkan-shaders/mul_mm.comp
blob: f481549911b92bb02ce4727ffce565c71345bf9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
#version 450

#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require

#ifdef FLOAT16
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#endif
#if defined(DATA_A_IQ1_M)
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#endif

#if defined(DATA_A_BF16) && defined(COOPMAT)
#extension GL_EXT_bfloat16 : enable
#endif

#ifdef COOPMAT
#extension GL_KHR_cooperative_matrix : enable
#extension GL_KHR_memory_scope_semantics : enable
#extension GL_KHR_shader_subgroup_basic : enable
#extension GL_KHR_shader_subgroup_ballot : enable
#endif

#ifdef MUL_MAT_ID
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#endif

#include "types.comp"

#ifndef LOAD_VEC_A
#define LOAD_VEC_A 1
#endif
#ifndef LOAD_VEC_B
#define LOAD_VEC_B 1
#endif

#if !defined(TO_FLOAT_TYPE)
#define TO_FLOAT_TYPE FLOAT_TYPE
#endif

layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif

layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};

#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif

layout (push_constant) uniform parameter
{
    uint M;
    uint N;
    uint K;
    uint stride_a;
    uint stride_b;
    uint stride_d;

    uint batch_stride_a;
    uint batch_stride_b;
    uint batch_stride_d;

#ifdef MUL_MAT_ID
    uint nei0;
    uint nei1;
    uint nbi1;
    uint ne11;
#else
    uint k_split;
    uint ne02;
    uint ne12;
    uint broadcast2;
    uint broadcast3;
#endif
} p;

layout (constant_id = 0) const uint BLOCK_SIZE = 64;
layout (constant_id = 1) const uint BM = 64;
layout (constant_id = 2) const uint BN = 64;
layout (constant_id = 3) const uint BK = 16;  // Assumed to be 32 if working with a quant
layout (constant_id = 4) const uint WM = 32;
layout (constant_id = 5) const uint WN = 32;
layout (constant_id = 6) const uint WMITER = 2;
layout (constant_id = 7) const uint TM = 4;
layout (constant_id = 8) const uint TN = 2;
layout (constant_id = 9) const uint TK = 1;  // Only needed for coopmat
layout (constant_id = 10) const uint WARP = 32;

#ifdef COOPMAT
#define SHMEM_STRIDE (BK + 8)
#else
#define SHMEM_STRIDE (BK + 1)
#endif

shared FLOAT_TYPE buf_a[BM * SHMEM_STRIDE];
shared FLOAT_TYPE buf_b[BN * SHMEM_STRIDE];

#ifdef MUL_MAT_ID
shared u16vec2 row_ids[4096];
uint _ne1;
#ifdef COOPMAT
shared uint _ne1_sh;
#endif
#endif // MUL_MAT_ID

#define NUM_WARPS (BLOCK_SIZE / WARP)

#ifdef COOPMAT
shared ACC_TYPE coopmat_stage[TM * TN * NUM_WARPS];
#endif

void main() {
#ifdef NEEDS_INIT_IQ_SHMEM
    init_iq_shmem(gl_WorkGroupSize);
#endif

#ifdef MUL_MAT_ID
    const uint expert_idx = gl_GlobalInvocationID.z;
#else
    const uint batch_idx = gl_GlobalInvocationID.z;

    const uint i13 = batch_idx / p.ne12;
    const uint i12 = batch_idx % p.ne12;

    const uint i03 = i13 / p.broadcast3;
    const uint i02 = i12 / p.broadcast2;

    const uint batch_idx_a = i03 * p.ne02 + i02;
#endif

    const uint blocks_m = (p.M + BM - 1) / BM;
    const uint ir = gl_WorkGroupID.x % blocks_m;
    const uint ik = gl_WorkGroupID.x / blocks_m;
    const uint ic = gl_WorkGroupID.y;

    const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
    const uint WSUBM = WM / WMITER;
    const uint WSUBN = WN / WNITER;

#ifdef COOPMAT
    const uint warp_i = gl_SubgroupID;

    const uint tiw = gl_SubgroupInvocationID;

    const uint cms_per_row = WM / TM;
    const uint cms_per_col = WN / TN;

    const uint storestride = WARP / TM;
    const uint store_r = tiw % TM;
    const uint store_c = tiw / TM;
#else
    const uint warp_i = gl_LocalInvocationID.x / WARP;

    const uint tiw = gl_LocalInvocationID.x % WARP;

    const uint tiwr = tiw % (WSUBM / TM);
    const uint tiwc = tiw / (WSUBM / TM);
#endif

    const uint warp_r = warp_i % (BM / WM);
    const uint warp_c = warp_i / (BM / WM);

    const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
    const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
    const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
    const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);

    const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK;
    const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;

#ifdef MUL_MAT_ID
#ifdef COOPMAT
    // Spread the search across all elements in the first subgroup
    if (gl_SubgroupID == 0) {
        _ne1 = 0;
        uint num_elements = p.nei1 * p.nei0;

        uint ids[16];
        uint iter = 0;

        for (uint j = 0; j < num_elements; j += gl_SubgroupSize) {
            // prefetch up to 16 elements
            if (iter == 0) {
                [[unroll]] for (uint k = 0; k < 16; ++k) {
                    uint i = j + gl_SubgroupInvocationID + k*gl_SubgroupSize;
                    bool in_range = i < num_elements;
                    uint ii1 = i / p.nei0;
                    uint ii0 = i % p.nei0;
                    ids[k] = in_range ? data_ids[ii1*p.nbi1 + ii0] : 0;
                }
            }
            uint i = j + gl_SubgroupInvocationID;
            bool in_range = i < num_elements;
            uint ii1 = i / p.nei0;
            uint ii0 = i % p.nei0;
            uint id = ids[iter++];
            uvec4 ballot = subgroupBallot(in_range && id == expert_idx);
            uint idx = subgroupBallotExclusiveBitCount(ballot);
            if (in_range && id == expert_idx) {
                row_ids[_ne1 + idx] = u16vec2(ii0, ii1);
            }
            _ne1 += subgroupBallotBitCount(ballot);
            iter &= 15;
        }
        _ne1_sh = _ne1;
    }

    barrier();

    _ne1 = _ne1_sh;
#else
    _ne1 = 0;
    for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
        for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
            if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
                row_ids[_ne1] = u16vec2(ii0, ii1);
                _ne1++;
            }
        }
    }

    barrier();
#endif

    // Workgroup has no work
    if (ic * BN >= _ne1) return;
#endif

#ifdef MUL_MAT_ID
    const uint start_k = 0;
    const uint end_k = p.K;
#else
    const uint start_k = ik * p.k_split;
    const uint end_k = min(p.K, (ik + 1) * p.k_split);
#endif

    uint pos_a = (
#ifdef MUL_MAT_ID
        expert_idx * p.batch_stride_a +
#else
        batch_idx_a * p.batch_stride_a +
#endif
        ir * BM * p.stride_a + start_k) / LOAD_VEC_A;
#ifdef MUL_MAT_ID
    uint pos_b = 0;
#else
    uint pos_b = (batch_idx * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC_B;
#endif

#ifdef COOPMAT
    coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
    coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
    coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> sums[cms_per_row * cms_per_col];

    [[unroll]] for (uint i = 0; i < cms_per_row * cms_per_col; i++) {
        sums[i] = coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator>(0.0f);
    }
#else
    ACC_TYPE sums[WMITER * TM * WNITER * TN];
    FLOAT_TYPE cache_a[WMITER * TM];
    FLOAT_TYPE cache_b[TN];

    [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
        sums[i] = ACC_TYPE(0.0f);
    }
#endif

    for (uint block = start_k; block < end_k; block += BK) {
        [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {

#if defined(DATA_A_F32) || defined(DATA_A_F16)
#if LOAD_VEC_A == 8
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx][0].x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y);
            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z);
            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w);
            buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x);
            buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y);
            buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z);
            buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w);
#elif LOAD_VEC_A == 4
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx].x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y);
            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z);
            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w);
#else
            if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
                buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
            } else {
                buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = FLOAT_TYPE(0.0f);
            }
#endif
#elif defined(DATA_A_BF16)
#if LOAD_VEC_A == 4
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
            buf_a[buf_idx    ] = TO_FLOAT_TYPE(data_a[idx].x);
            buf_a[buf_idx + 1] = TO_FLOAT_TYPE(data_a[idx].y);
            buf_a[buf_idx + 2] = TO_FLOAT_TYPE(data_a[idx].z);
            buf_a[buf_idx + 3] = TO_FLOAT_TYPE(data_a[idx].w);
#else
            if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
                buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
            } else {
                buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(uint16_t(0));
            }
#endif
#elif defined(DATA_A_Q4_0)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 4 * loadr_a;

            const uint ib = idx / 4;
            const uint iqs = idx & 0x03;

            const float d = float(data_a_packed16[ib].d);
            const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16);
            const vec4 v0 = (vec4(unpack8(vui & 0x0F0F0F0F)) - 8.0f) * d;
            const vec4 v1 = (vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) - 8.0f) * d;

            buf_a[buf_idx     ] = FLOAT_TYPE(v0.x);
            buf_a[buf_idx + 1 ] = FLOAT_TYPE(v0.y);
            buf_a[buf_idx + 2 ] = FLOAT_TYPE(v0.z);
            buf_a[buf_idx + 3 ] = FLOAT_TYPE(v0.w);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v1.x);
            buf_a[buf_idx + 17] = FLOAT_TYPE(v1.y);
            buf_a[buf_idx + 18] = FLOAT_TYPE(v1.z);
            buf_a[buf_idx + 19] = FLOAT_TYPE(v1.w);
#elif defined(DATA_A_Q4_1)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 4 * loadr_a;

            const uint ib = idx / 4;
            const uint iqs = idx & 0x03;

            const float d = float(data_a_packed16[ib].d);
            const float m = float(data_a_packed16[ib].m);
            const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16);
            const vec4 v0 = vec4(unpack8(vui & 0x0F0F0F0F)) * d + m;
            const vec4 v1 = vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) * d + m;

            buf_a[buf_idx     ] = FLOAT_TYPE(v0.x);
            buf_a[buf_idx + 1 ] = FLOAT_TYPE(v0.y);
            buf_a[buf_idx + 2 ] = FLOAT_TYPE(v0.z);
            buf_a[buf_idx + 3 ] = FLOAT_TYPE(v0.w);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v1.x);
            buf_a[buf_idx + 17] = FLOAT_TYPE(v1.y);
            buf_a[buf_idx + 18] = FLOAT_TYPE(v1.z);
            buf_a[buf_idx + 19] = FLOAT_TYPE(v1.w);
#elif defined(DATA_A_Q5_0)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;

            const uint ib = idx / 8;
            const uint iqs = idx & 0x07;

            const float d = float(data_a_packed16[ib].d);
            const uint uint_qh = uint(data_a_packed16[ib].qh[1]) << 16 | uint(data_a_packed16[ib].qh[0]);
            const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10);
            const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10);

            const uint vui = uint(data_a_packed16[ib].qs[iqs]);
            const vec4 v = (vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) - 16.0f) * d;

            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 1 ] = FLOAT_TYPE(v.z);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
            buf_a[buf_idx + 17] = FLOAT_TYPE(v.w);
#elif defined(DATA_A_Q5_1)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;

            const uint ib = idx / 8;
            const uint iqs = idx & 0x07;

            const float d = float(data_a_packed16[ib].d);
            const float m = float(data_a_packed16[ib].m);
            const uint uint_qh = data_a_packed16[ib].qh;
            const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10);
            const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10);

            const uint vui = uint(data_a_packed16[ib].qs[iqs]);
            const vec4 v = vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) * d + m;

            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 1 ] = FLOAT_TYPE(v.z);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
            buf_a[buf_idx + 17] = FLOAT_TYPE(v.w);
#elif defined(DATA_A_Q8_0)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 8;
            const uint iqs = idx & 0x07;

            const float d = float(data_a_packed16[ib].d);
            const i8vec2 v0 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs])).xy; // vec4 used due to #12147
            const i8vec2 v1 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs + 1])).xy;
            const vec4 v = vec4(v0.x, v0.y, v1.x, v1.y) * d;

            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
            buf_a[buf_idx + 2] = FLOAT_TYPE(v.z);
            buf_a[buf_idx + 3] = FLOAT_TYPE(v.w);
#elif defined(DATA_A_Q2_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                         // 2 values per idx
            const uint iqs = idx % 128;                        // 0..127

            const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
            const uint scalesi = iqs / 8;                      // 0..15
            const uint qsshift = ((iqs % 64) / 16) * 2;        // 0,2,4,6

            const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
            const uint scales = data_a[ib].scales[scalesi];
            const vec2 d = vec2(data_a[ib].d);

            const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);

            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_Q3_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                   // 2 values per idx
            const uint iqs = idx % 128;                  // 0..127

            const uint n = iqs / 64;                     // 0,1
            const uint qsi = n * 32 + (iqs % 16) * 2;    // 0,2,4..62
            const uint hmi =          (iqs % 16) * 2;    // 0,2,4..30
            const uint j = (iqs % 64) / 4;               // 0..3
            const uint is = iqs / 8;                     // 0..15
            const uint halfsplit = ((iqs % 64) / 16);    // 0,1,2,3
            const uint qsshift = halfsplit * 2;          // 0,2,4,6
            const uint m = 1 << (4 * n + halfsplit);     // 1,2,4,8,16,32,64,128

            const int8_t us = int8_t(((data_a[ib].scales[is % 8] >> (4 * int(is / 8))) & 0xF)
                                  | (((data_a[ib].scales[8 + (is % 4)] >> (2 * int(is / 4))) & 3) << 4));
            const float dl = float(data_a[ib].d) * float(us - 32);

            buf_a[buf_idx    ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi    ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi    ] & m) != 0) ? 0 : 4)));
            buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));
#elif defined(DATA_A_Q4_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                 // 2 values per idx
            const uint iqs = idx % 128;                // 0..127

            const uint n = iqs / 32;                   // 0,1,2,3
            const uint b = (iqs % 32) / 16;            // 0,1
            const uint is = 2 * n + b;                 // 0..7
            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126

            const vec2 loadd = vec2(data_a[ib].d);

            const uint scidx0 = (is < 4) ? is : (is + 4);
            const uint scidx1 = (is < 4) ? is : (is - 4);
            const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
            const uint scidxshift1 = (is < 4) ? 0 : 2;
            const uint mbidx0 = is + 4;
            const uint mbidx1 = (is < 4) ? is + 4 : is;
            const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
            const uint mbidxshift0 = (is < 4) ? 0 : 4;
            const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
            const uint mbidxshift1 = (is < 4) ? 0 : 2;

            const uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
            const uint8_t mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));

            const float d = loadd.x * sc;
            const float m = -loadd.y * mbyte;

            buf_a[buf_idx    ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF), m));
            buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF), m));
#elif defined(DATA_A_Q5_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                 // 2 values per idx
            const uint iqs = idx % 128;                // 0..127

            const uint n = iqs / 32;                   // 0,1,2,3
            const uint b = (iqs % 32) / 16;            // 0,1
            const uint is = 2 * n + b;                 // 0..7
            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126
            const uint qhi = (iqs % 16) * 2;           // 0,2,4..30

            const uint8_t hm = uint8_t(1 << (iqs / 16));

            const vec2 loadd = vec2(data_a[ib].d);

            const uint scidx0 = (is < 4) ? is : (is + 4);
            const uint scidx1 = (is < 4) ? is : (is - 4);
            const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
            const uint scidxshift1 = (is < 4) ? 0 : 2;
            const uint mbidx0 = is + 4;
            const uint mbidx1 = (is < 4) ? is + 4 : is;
            const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
            const uint mbidxshift0 = (is < 4) ? 0 : 4;
            const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
            const uint mbidxshift1 = (is < 4) ? 0 : 2;

            const uint8_t sc    = uint8_t((data_a[ib].scales[scidx0] & 0xF)                         | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
            const uint8_t mbyte = uint8_t(((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0) | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));

            const float d = loadd.x * sc;
            const float m = -loadd.y * mbyte;

            buf_a[buf_idx    ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi    ] & hm) != 0 ? 16 : 0), m));
            buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0), m));
#elif defined(DATA_A_Q6_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                  // 2 values per idx
            const uint iqs = idx % 128;                 // 0..127

            const uint n = iqs / 64;                    // 0,1
            const uint b = (iqs % 64) / 32;             // 0,1
            const uint is_b = (iqs % 16) / 8;           // 0,1
            const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
            const uint is = 8 * n + qhshift + is_b;     // 0..15
            const uint qsi = n * 64 + (iqs % 32) * 2;   // 0,2,4..126
            const uint qhi = n * 32 + (iqs % 16) * 2;   // 0,2,4..62

            const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);

            buf_a[buf_idx    ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi    ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi    ] >> qhshift) & 3) << 4)) - 32));
            buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));
#elif defined(DATA_A_IQ1_S)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 32;                  // 8 values per idx
            const uint ib32 = (idx % 32) / 4;         // 0..7
            const uint ib8 = idx % 32;

            const float d = float(data_a[ib].d);
            const uint qh = data_a[ib].qh[ib32];
            const uint qs = data_a[ib].qs[ib8];
            const float dl = d * (2 * bitfieldExtract(qh, 12, 3) + 1);
            const float delta = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA;
            const int16_t grid = int16_t(iq1s_grid[qs | (bitfieldExtract(qh, 3 * int(ib8 & 3), 3) << 8)]);

            [[unroll]] for (int k = 0; k < 8; ++k) {
                buf_a[buf_idx + k] = FLOAT_TYPE(dl * (bitfieldExtract(grid, 2 * k, 2) + delta));
            }
#elif defined(DATA_A_IQ1_M)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 32;  // 8 values per idx
            const uint ib8 = idx % 32;
            const uint ib16 = ib8 / 2;

            const uint16_t[4] scales = data_a[ib].scales;
            const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12;
            const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x);
            const uint sc = scales[ib8 / 8];
            const uint qs = data_a[ib].qs[ib8];
            const uint qh = data_a[ib].qh[ib16] >> (4 * (ib8 & 1));
            const float dl = d * (2 * bitfieldExtract(sc, 3 * int(ib16 & 3), 3) + 1);
            const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
            const int16_t grid = int16_t(iq1s_grid[qs | ((qh & 7) << 8)]);

            [[unroll]] for (int k = 0; k < 8; ++k) {
                buf_a[buf_idx + k] = FLOAT_TYPE(dl * (bitfieldExtract(grid, 2 * k, 2) + delta));
            }
#elif defined(DATA_A_IQ2_XXS)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 32;                 // 8 values per idx
            const uint ib32 = (idx % 32) / 4;         // 0..7
            const uint ib8 = idx % 4;

            const float d = float(data_a[ib].d);
            const uint qs = data_a[ib].qs[8 * ib32 + ib8];
            const uint signs = pack32(u8vec4(
                data_a[ib].qs[8*ib32 + 4],
                data_a[ib].qs[8*ib32 + 5],
                data_a[ib].qs[8*ib32 + 6],
                data_a[ib].qs[8*ib32 + 7]
            ));
            const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + (signs >> 28)));
            const uint32_t sign7 = bitfieldExtract(signs, 7 * int(ib8), 7);
            const uint sign = sign7 | (bitCount(sign7) << 7);
            const uvec2 grid = iq2xxs_grid[qs];
            const vec4 grid0 = vec4(unpack8(grid.x));
            const vec4 grid1 = vec4(unpack8(grid.y));

            buf_a[buf_idx    ] = db * FLOAT_TYPE((sign &   1) != 0 ? -grid0.x : grid0.x);
            buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign &   2) != 0 ? -grid0.y : grid0.y);
            buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign &   4) != 0 ? -grid0.z : grid0.z);
            buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign &   8) != 0 ? -grid0.w : grid0.w);
            buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign &  16) != 0 ? -grid1.x : grid1.x);
            buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign &  32) != 0 ? -grid1.y : grid1.y);
            buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign &  64) != 0 ? -grid1.z : grid1.z);
            buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
#elif defined(DATA_A_IQ2_XS)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 32;            // 8 values per idx
            const uint ib32 = (idx % 32) / 4;    // 0..7
            const uint ib8 = idx % 4;            // 0..3

            const float d = float(data_a[ib].d);
            const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf;
            const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale));
            const uint qs = data_a[ib].qs[4 * ib32 + ib8];
            const uint sign7 = qs >> 9;
            const uint sign = sign7 | (bitCount(sign7) << 7);
            const uvec2 grid = iq2xs_grid[qs & 511];
            const vec4 grid0 = vec4(unpack8(grid.x));
            const vec4 grid1 = vec4(unpack8(grid.y));

            buf_a[buf_idx    ] = db * FLOAT_TYPE((sign &   1) != 0 ? -grid0.x : grid0.x);
            buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign &   2) != 0 ? -grid0.y : grid0.y);
            buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign &   4) != 0 ? -grid0.z : grid0.z);
            buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign &   8) != 0 ? -grid0.w : grid0.w);
            buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign &  16) != 0 ? -grid1.x : grid1.x);
            buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign &  32) != 0 ? -grid1.y : grid1.y);
            buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign &  64) != 0 ? -grid1.z : grid1.z);
            buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
#elif defined(DATA_A_IQ2_S)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 32;  // 8 values per idx
            const uint ib8 = idx % 32; // 0..31
            const uint ib32 = ib8 / 4; // 0..7

            const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf;
            const uint qs = data_a[ib].qs[ib8];
            const uint qh = data_a[ib].qh[ib32];
            const uint qhshift = 2 * (ib8 % 4);
            const uint sign = data_a[ib].qs[QUANT_K / 8 + ib8];

            const float d = float(data_a[ib].d);
            const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale));
            const uvec2 grid = iq2s_grid[qs | ((qh << (8 - qhshift)) & 0x300)];
            const vec4 grid0 = vec4(unpack8(grid.x));
            const vec4 grid1 = vec4(unpack8(grid.y));

            buf_a[buf_idx    ] = db * FLOAT_TYPE((sign &   1) != 0 ? -grid0.x : grid0.x);
            buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign &   2) != 0 ? -grid0.y : grid0.y);
            buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign &   4) != 0 ? -grid0.z : grid0.z);
            buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign &   8) != 0 ? -grid0.w : grid0.w);
            buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign &  16) != 0 ? -grid1.x : grid1.x);
            buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign &  32) != 0 ? -grid1.y : grid1.y);
            buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign &  64) != 0 ? -grid1.z : grid1.z);
            buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
#elif defined(DATA_A_IQ3_XXS)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 64;            // 4 values per idx
            const uint iqs = idx % 64;           // 0..63
            const uint is = QUANT_K / 4 + 4 * (iqs / 8); // 8 values

            const float d = float(data_a[ib].d);
            const uint qs = data_a[ib].qs[iqs];
            const uint signs = pack32(u8vec4(
                data_a[ib].qs[is+0],
                data_a[ib].qs[is+1],
                data_a[ib].qs[is+2],
                data_a[ib].qs[is+3]
            ));
            const float db = d * 0.5 * (0.5 + (signs >> 28));
            const uint32_t sign7 = bitfieldExtract(signs, 7 * (int(iqs / 2) % 4), 7);
            const uint sign = (sign7 | (bitCount(sign7) << 7)) >> (4 * (idx % 2));
            const uint grid = iq3xxs_grid[qs];
            const vec4 v = db * vec4(unpack8(grid));

            buf_a[buf_idx    ] = FLOAT_TYPE((sign &   1) != 0 ? -v.x : v.x);
            buf_a[buf_idx + 1] = FLOAT_TYPE((sign &   2) != 0 ? -v.y : v.y);
            buf_a[buf_idx + 2] = FLOAT_TYPE((sign &   4) != 0 ? -v.z : v.z);
            buf_a[buf_idx + 3] = FLOAT_TYPE((sign &   8) != 0 ? -v.w : v.w);
#elif defined(DATA_A_IQ3_S)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 64;            // 4 values per idx
            const uint iqs = idx % 64;           // 0..63
            const uint iqh = iqs / 8;

            const float d = float(data_a[ib].d);
            const uint qs = data_a[ib].qs[iqs];
            const uint qh = data_a[ib].qh[iqh];
            const int8_t sign = int8_t(data_a[ib].signs[iqs / 2] >> (4 * (idx % 2)));
            const uint scale = data_a[ib].scales[iqs / 16];
            const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(sign << 1, sign)));
            const float db = d * (1 + 2 * ((scale >> (4 * (iqh & 1))) & 0xf));
            const uint32_t grid = iq3s_grid[qs | ((qh << (8 - (iqs % 8))) & 256)];
            const vec4 v = db * vec4(unpack8(grid));

            buf_a[buf_idx    ] = FLOAT_TYPE((sign &   1) != 0 ? -v.x : v.x);
            buf_a[buf_idx + 1] = FLOAT_TYPE((sign &   2) != 0 ? -v.y : v.y);
            buf_a[buf_idx + 2] = FLOAT_TYPE((sign &   4) != 0 ? -v.z : v.z);
            buf_a[buf_idx + 3] = FLOAT_TYPE((sign &   8) != 0 ? -v.w : v.w);
#elif defined(DATA_A_IQ4_XS)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                  // 2 values per idx
            const uint ib32 = (idx % 128) / 16;         // 0..7
            const uint iq = 16 * ib32 + 2 * (idx % 8);

            const uint sl = (data_a[ib].scales_l[ib32/2] >> (4 * (ib32 & 1))) & 0xF;
            const uint sh = ((data_a[ib].scales_h) >> (2 * ib32)) & 3;
            const uint qshift = (idx & 8) >> 1;
            u8vec2 qs = u8vec2(data_a[ib].qs[iq], data_a[ib].qs[iq + 1]);
            qs = (qs >> qshift) & uint8_t(0xF);

            const float d = float(data_a[ib].d);
            const vec2 v = d * float(int(sl | (sh << 4)) - 32) * vec2(kvalues_iq4nl[qs.x], kvalues_iq4nl[qs.y]);

            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_IQ4_NL)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;

            const uint ib = idx / 8;
            const uint iqs = idx & 0x07;

            const FLOAT_TYPE d = FLOAT_TYPE(data_a_packed16[ib].d);
            const uint vui = uint(data_a_packed16[ib].qs[iqs]);

            buf_a[buf_idx     ] = FLOAT_TYPE(kvalues_iq4nl[vui & 0xF]) * d;
            buf_a[buf_idx + 1 ] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 8, 4)]) * d;
            buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 4, 4)]) * d;
            buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_iq4nl[vui >> 12]) * d;
#endif
        }
        [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
#if LOAD_VEC_B == 8
#ifdef MUL_MAT_ID
            const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
            const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
#else
            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
#endif
            const uint buf_idx = (loadc_b + l) * SHMEM_STRIDE + loadr_b * LOAD_VEC_B;
            buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x);
            buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y);
            buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z);
            buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w);
            buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x);
            buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y);
            buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z);
            buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w);
#elif LOAD_VEC_B == 4
#ifdef MUL_MAT_ID
            const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
            const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
#else
            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
#endif
            const uint buf_idx = (loadc_b + l) * SHMEM_STRIDE + loadr_b * LOAD_VEC_B;
            buf_b[buf_idx + 0] = TO_FLOAT_TYPE(data_b[idx].x);
            buf_b[buf_idx + 1] = TO_FLOAT_TYPE(data_b[idx].y);
            buf_b[buf_idx + 2] = TO_FLOAT_TYPE(data_b[idx].z);
            buf_b[buf_idx + 3] = TO_FLOAT_TYPE(data_b[idx].w);
#elif !MUL_MAT_ID
            if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
                buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
            } else {
                buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
            }
#else
            const uint row_i = ic * BN + loadc_b + l;
            if (row_i < _ne1) {
                const u16vec2 row_idx = row_ids[row_i];
                buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
            } else {
                buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
            }
#endif
        }

        barrier();

        pos_a += BK / LOAD_VEC_A;
        pos_b += BK / LOAD_VEC_B;

#ifdef COOPMAT
        [[unroll]] for (uint i = 0; i < BK; i += TK) {
            [[unroll]] for (uint cm_row = 0; cm_row < cms_per_row; cm_row++) {
                // Load from shared into cache
                coopMatLoad(cache_a, buf_a, (warp_r * WM + cm_row * TM) * SHMEM_STRIDE + i, SHMEM_STRIDE, gl_CooperativeMatrixLayoutRowMajor);

                [[unroll]] for (uint cm_col = 0; cm_col < cms_per_col; cm_col++) {
                    coopMatLoad(cache_b, buf_b, (warp_c * WN + cm_col * TN) * SHMEM_STRIDE + i, SHMEM_STRIDE, gl_CooperativeMatrixLayoutColumnMajor);

                    sums[cm_col * cms_per_row + cm_row] = coopMatMulAdd(cache_a, cache_b, sums[cm_col * cms_per_row + cm_row]);
                }
            }
        }
#else
        [[unroll]] for (uint i = 0; i < BK; i++) {
            // Load from shared into cache
            [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
                [[unroll]] for (uint j = 0; j < TM; j++) {
                    cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * SHMEM_STRIDE + i];
                }
            }
            [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
                [[unroll]] for (uint j = 0; j < TN; j++) {
                    cache_b[j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * SHMEM_STRIDE + i];
                }

                [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
                    [[unroll]] for (uint cc = 0; cc < TN; cc++) {
                        [[unroll]] for (uint cr = 0; cr < TM; cr++) {
                            const uint sums_idx = (wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr;
                            sums[sums_idx] = fma(ACC_TYPE(cache_a[wsir * TM + cr]), ACC_TYPE(cache_b[cc]), sums[sums_idx]);
                        }
                    }
                }
            }
        }
#endif

        barrier();
    }

    const uint dr = ir * BM + warp_r * WM;
    const uint dc = ic * BN + warp_c * WN;

#ifndef MUL_MAT_ID
    const uint offsets = batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
#endif

#ifdef COOPMAT
#ifdef MUL_MAT_ID
    [[unroll]] for (uint cm_row = 0; cm_row < cms_per_row; cm_row++) {
        [[unroll]] for (uint cm_col = 0; cm_col < cms_per_col; cm_col++) {
            coopMatStore(sums[cm_col * cms_per_row + cm_row], coopmat_stage, warp_i * TM * TN, TM, gl_CooperativeMatrixLayoutColumnMajor);

            [[unroll]] for (uint col = 0; col < TN; col += storestride) {
                const uint row_i = dc + cm_col * TN + col + store_c;
                if (row_i >= _ne1) break;

                const u16vec2 row_idx = row_ids[row_i];

                data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
            }
        }
    }
#else
    const bool is_aligned = p.stride_d % 4 == 0;  // Assumption: D_TYPE == float

    [[unroll]] for (uint cm_row = 0; cm_row < cms_per_row; cm_row++) {
        [[unroll]] for (uint cm_col = 0; cm_col < cms_per_col; cm_col++) {
            const bool is_in_bounds = dr + (cm_row + 1) * TM <= p.M && dc + (cm_col + 1) * TN <= p.N;

            if (is_aligned && is_in_bounds) {
                // Full coopMat is within bounds and stride_d is aligned with 16B
                coopmat<D_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> cm_dtype = coopmat<D_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator>(sums[cm_col * cms_per_row + cm_row]);
                coopMatStore(cm_dtype, data_d, offsets + (dc + cm_col * TN) * p.stride_d + dr + cm_row * TM, p.stride_d, gl_CooperativeMatrixLayoutColumnMajor);
            } else if (is_in_bounds) {
                // Full coopMat is within bounds, but stride_d is not aligned
                coopMatStore(sums[cm_col * cms_per_row + cm_row], coopmat_stage, warp_i * TM * TN, TM, gl_CooperativeMatrixLayoutColumnMajor);

                [[unroll]] for (uint col = 0; col < TN; col += storestride) {
                    data_d[offsets + (dc + cm_col * TN + col + store_c) * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
                }
            } else if (dr + cm_row * TM < p.M && dc + cm_col * TN < p.N) {
                // Partial coopMat is within bounds
                coopMatStore(sums[cm_col * cms_per_row + cm_row], coopmat_stage, warp_i * TM * TN, TM, gl_CooperativeMatrixLayoutColumnMajor);

                [[unroll]] for (uint col = 0; col < TN; col += storestride) {
                    if (dr + cm_row * TM + store_r < p.M && dc + cm_col * TN + col + store_c < p.N) {
                        data_d[offsets + (dc + cm_col * TN + col + store_c) * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
                    }
                }
            }
        }
    }
#endif // MUL_MAT_ID
#else
    [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
        [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {

            const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
            const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
            [[unroll]] for (uint cc = 0; cc < TN; cc++) {
#ifdef MUL_MAT_ID
                const uint row_i = dc_warp + cc;
                if (row_i >= _ne1) break;

                const u16vec2 row_idx = row_ids[row_i];
#endif // MUL_MAT_ID
                [[unroll]] for (uint cr = 0; cr < TM; cr++) {
#ifdef MUL_MAT_ID
                    data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
#else
                    if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
                        data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
                    }
#endif // MUL_MAT_ID
                }
            }
        }
    }
#endif // COOPMAT
}