blob: 6428ca7ba330098cc916e1b74733b22608edf634 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
#version 450
#include "generic_binary_head.comp"
#include "types.comp"
#extension GL_EXT_control_flow_attributes : enable
#define BLOCK_SIZE 512
layout (constant_id = 1) const bool do_multiply = false;
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE sum[BLOCK_SIZE];
void main() {
const uint ncols = p.ne00;
const uint nrows = gl_NumWorkGroups.x;
const uint nchannels = gl_NumWorkGroups.y;
const uint row = gl_WorkGroupID.x;
const uint channel = gl_WorkGroupID.y;
const uint samp = gl_WorkGroupID.z;
const uint tid = gl_LocalInvocationID.x;
const uint stride_row = p.nb01;
const uint stride_channel = p.nb02;
const uint stride_sample = p.nb03;
uint32_t a_offset = samp*stride_sample + channel*stride_channel + row*stride_row + get_aoffset();
uint32_t b_offset = src1_idx(0, row, channel, samp) + get_boffset();
uint32_t d_offset = ((samp*nchannels + channel)*nrows + row)*ncols + get_doffset();
sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp
[[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) {
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[a_offset + col]);
sum[tid] += xi * xi;
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
sum[tid] += sum[tid + s];
}
barrier();
}
const FLOAT_TYPE mean = sum[0] / FLOAT_TYPE(ncols);
const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1));
if (do_multiply) {
[[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) {
data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + col]));
}
} else {
[[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) {
data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]));
}
}
}
|