summaryrefslogtreecommitdiff
path: root/ekhtml/src/hash.c
blob: 95651d4e76ee6f639d8f8b53616ff02752b89845 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
/*
 * Hash Table Data Type
 * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
 *
 * Free Software License:
 *
 * All rights are reserved by the author, with the following exceptions:
 * Permission is granted to freely reproduce and distribute this software,
 * possibly in exchange for a fee, provided that this copyright notice appears
 * intact. Permission is also granted to adapt this software to produce
 * derivative works, as long as the modified versions carry this copyright
 * notice and additional notices stating that the work has been modified.
 * This source code may be translated into executable form and incorporated
 * into proprietary software; there is no requirement for such software to
 * contain a copyright notice related to this source.
 *
 * $Id: hash.c,v 1.1 2002/09/17 02:49:36 jick Exp $
 * $Name: EKHTML_RELEASE_0_3_2 $
 */

#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
#include <string.h>
#define HASH_IMPLEMENTATION
#include "hash.h"

#ifdef KAZLIB_RCSID
static const char rcsid[] = "$Id: hash.c,v 1.1 2002/09/17 02:49:36 jick Exp $";
#endif

#define INIT_BITS	6
#define INIT_SIZE	(1UL << (INIT_BITS))	/* must be power of two		*/
#define INIT_MASK	((INIT_SIZE) - 1)

#define next hash_next
#define key hash_key
#define data hash_data
#define hkey hash_hkey

#define table hash_table
#define nchains hash_nchains
#define nodecount hash_nodecount
#define maxcount hash_maxcount
#define highmark hash_highmark
#define lowmark hash_lowmark
#define compare hash_compare
#define function hash_function
#define allocnode hash_allocnode
#define freenode hash_freenode
#define context hash_context
#define mask hash_mask
#define dynamic hash_dynamic

#define table hash_table
#define chain hash_chain

static hnode_t *hnode_alloc(void *context);
static void hnode_free(hnode_t *node, void *context);
static hash_val_t hash_fun_default(const void *key);
static int hash_comp_default(const void *key1, const void *key2);

int hash_val_t_bit;

/*
 * Compute the number of bits in the hash_val_t type.  We know that hash_val_t
 * is an unsigned integral type. Thus the highest value it can hold is a
 * Mersenne number (power of two, less one). We initialize a hash_val_t
 * object with this value and then shift bits out one by one while counting.
 * Notes:
 * 1. HASH_VAL_T_MAX is a Mersenne number---one that is one less than a power
 *    of two. This means that its binary representation consists of all one
 *    bits, and hence ``val'' is initialized to all one bits.
 * 2. While bits remain in val, we increment the bit count and shift it to the
 *    right, replacing the topmost bit by zero.
 */

static void compute_bits(void)
{
    hash_val_t val = HASH_VAL_T_MAX;	/* 1 */
    int bits = 0;

    while (val) {	/* 2 */
	bits++;
	val >>= 1;
    }

    hash_val_t_bit = bits;
}

/*
 * Verify whether the given argument is a power of two.
 */

static int is_power_of_two(hash_val_t arg)
{
    if (arg == 0)
	return 0;
    while ((arg & 1) == 0)
	arg >>= 1;
    return (arg == 1);
}

/*
 * Compute a shift amount from a given table size 
 */

static hash_val_t compute_mask(hashcount_t size)
{
    assert (is_power_of_two(size));
    assert (size >= 2);

    return size - 1;
}

/*
 * Initialize the table of pointers to null.
 */

static void clear_table(hash_t *hash)
{
    hash_val_t i;

    for (i = 0; i < hash->nchains; i++)
	hash->table[i] = NULL;
}

/*
 * Double the size of a dynamic table. This works as follows. Each chain splits
 * into two adjacent chains.  The shift amount increases by one, exposing an
 * additional bit of each hashed key. For each node in the original chain, the
 * value of this newly exposed bit will decide which of the two new chains will
 * receive the node: if the bit is 1, the chain with the higher index will have
 * the node, otherwise the lower chain will receive the node. In this manner,
 * the hash table will continue to function exactly as before without having to
 * rehash any of the keys.
 * Notes:
 * 1.  Overflow check.
 * 2.  The new number of chains is twice the old number of chains.
 * 3.  The new mask is one bit wider than the previous, revealing a
 *     new bit in all hashed keys.
 * 4.  Allocate a new table of chain pointers that is twice as large as the
 *     previous one.
 * 5.  If the reallocation was successful, we perform the rest of the growth
 *     algorithm, otherwise we do nothing.
 * 6.  The exposed_bit variable holds a mask with which each hashed key can be
 *     AND-ed to test the value of its newly exposed bit.
 * 7.  Now loop over each chain in the table and sort its nodes into two
 *     chains based on the value of each node's newly exposed hash bit.
 * 8.  The low chain replaces the current chain.  The high chain goes
 *     into the corresponding sister chain in the upper half of the table.
 * 9.  We have finished dealing with the chains and nodes. We now update
 *     the various bookeeping fields of the hash structure.
 */

static void grow_table(hash_t *hash)
{
    hnode_t **newtable;

    assert (2 * hash->nchains > hash->nchains);	/* 1 */

    newtable = realloc(hash->table,
	    sizeof *newtable * hash->nchains * 2);	/* 4 */

    if (newtable) {	/* 5 */
	hash_val_t mask = (hash->mask << 1) | 1;	/* 3 */
	hash_val_t exposed_bit = mask ^ hash->mask;	/* 6 */
	hash_val_t chain;

	assert (mask != hash->mask);

	for (chain = 0; chain < hash->nchains; chain++) { /* 7 */
	    hnode_t *low_chain = 0, *high_chain = 0, *hptr, *next;

	    for (hptr = newtable[chain]; hptr != 0; hptr = next) {
		next = hptr->next;

		if (hptr->hkey & exposed_bit) {
		    hptr->next = high_chain;
		    high_chain = hptr;
		} else {
		    hptr->next = low_chain;
		    low_chain = hptr;
		}
	    }

	    newtable[chain] = low_chain; 	/* 8 */
	    newtable[chain + hash->nchains] = high_chain;
	}

	hash->table = newtable;			/* 9 */
	hash->mask = mask;
	hash->nchains *= 2;
	hash->lowmark *= 2;
	hash->highmark *= 2;
    }
    assert (hash_verify(hash));
}

/*
 * Cut a table size in half. This is done by folding together adjacent chains
 * and populating the lower half of the table with these chains. The chains are
 * simply spliced together. Once this is done, the whole table is reallocated
 * to a smaller object.
 * Notes:
 * 1.  It is illegal to have a hash table with one slot. This would mean that
 *     hash->shift is equal to hash_val_t_bit, an illegal shift value.
 *     Also, other things could go wrong, such as hash->lowmark becoming zero.
 * 2.  Looping over each pair of sister chains, the low_chain is set to
 *     point to the head node of the chain in the lower half of the table, 
 *     and high_chain points to the head node of the sister in the upper half.
 * 3.  The intent here is to compute a pointer to the last node of the
 *     lower chain into the low_tail variable. If this chain is empty,
 *     low_tail ends up with a null value.
 * 4.  If the lower chain is not empty, we simply tack the upper chain onto it.
 *     If the upper chain is a null pointer, nothing happens.
 * 5.  Otherwise if the lower chain is empty but the upper one is not,
 *     If the low chain is empty, but the high chain is not, then the
 *     high chain is simply transferred to the lower half of the table.
 * 6.  Otherwise if both chains are empty, there is nothing to do.
 * 7.  All the chain pointers are in the lower half of the table now, so
 *     we reallocate it to a smaller object. This, of course, invalidates
 *     all pointer-to-pointers which reference into the table from the
 *     first node of each chain.
 * 8.  Though it's unlikely, the reallocation may fail. In this case we
 *     pretend that the table _was_ reallocated to a smaller object.
 * 9.  Finally, update the various table parameters to reflect the new size.
 */

static void shrink_table(hash_t *hash)
{
    hash_val_t chain, nchains;
    hnode_t **newtable, *low_tail, *low_chain, *high_chain;

    assert (hash->nchains >= 2);			/* 1 */
    nchains = hash->nchains / 2;

    for (chain = 0; chain < nchains; chain++) {
	low_chain = hash->table[chain];		/* 2 */
	high_chain = hash->table[chain + nchains];
	for (low_tail = low_chain; low_tail && low_tail->next; low_tail = low_tail->next)
	    ;	/* 3 */
	if (low_chain != 0)				/* 4 */
	    low_tail->next = high_chain;
	else if (high_chain != 0)			/* 5 */
	    hash->table[chain] = high_chain;
	else
	    assert (hash->table[chain] == NULL);	/* 6 */
    }
    newtable = realloc(hash->table,
	    sizeof *newtable * nchains);		/* 7 */
    if (newtable)					/* 8 */
	hash->table = newtable;
    hash->mask >>= 1;			/* 9 */
    hash->nchains = nchains;
    hash->lowmark /= 2;
    hash->highmark /= 2;
    assert (hash_verify(hash));
}


/*
 * Create a dynamic hash table. Both the hash table structure and the table
 * itself are dynamically allocated. Furthermore, the table is extendible in
 * that it will automatically grow as its load factor increases beyond a
 * certain threshold.
 * Notes:
 * 1. If the number of bits in the hash_val_t type has not been computed yet,
 *    we do so here, because this is likely to be the first function that the
 *    user calls.
 * 2. Allocate a hash table control structure.
 * 3. If a hash table control structure is successfully allocated, we
 *    proceed to initialize it. Otherwise we return a null pointer.
 * 4. We try to allocate the table of hash chains.
 * 5. If we were able to allocate the hash chain table, we can finish
 *    initializing the hash structure and the table. Otherwise, we must
 *    backtrack by freeing the hash structure.
 * 6. INIT_SIZE should be a power of two. The high and low marks are always set
 *    to be twice the table size and half the table size respectively. When the
 *    number of nodes in the table grows beyond the high size (beyond load
 *    factor 2), it will double in size to cut the load factor down to about
 *    about 1. If the table shrinks down to or beneath load factor 0.5,
 *    it will shrink, bringing the load up to about 1. However, the table
 *    will never shrink beneath INIT_SIZE even if it's emptied.
 * 7. This indicates that the table is dynamically allocated and dynamically
 *    resized on the fly. A table that has this value set to zero is
 *    assumed to be statically allocated and will not be resized.
 * 8. The table of chains must be properly reset to all null pointers.
 */

hash_t *hash_create(hashcount_t maxcount, hash_comp_t compfun,
	hash_fun_t hashfun)
{
    hash_t *hash;

    if (hash_val_t_bit == 0)	/* 1 */
	compute_bits();

    hash = malloc(sizeof *hash);	/* 2 */

    if (hash) {		/* 3 */
	hash->table = malloc(sizeof *hash->table * INIT_SIZE);	/* 4 */
	if (hash->table) {	/* 5 */
	    hash->nchains = INIT_SIZE;		/* 6 */
	    hash->highmark = INIT_SIZE * 2;
	    hash->lowmark = INIT_SIZE / 2;
	    hash->nodecount = 0;
	    hash->maxcount = maxcount;
	    hash->compare = compfun ? compfun : hash_comp_default;
	    hash->function = hashfun ? hashfun : hash_fun_default;
	    hash->allocnode = hnode_alloc;
	    hash->freenode = hnode_free;
	    hash->context = NULL;
	    hash->mask = INIT_MASK;
	    hash->dynamic = 1;			/* 7 */
	    clear_table(hash);			/* 8 */
	    assert (hash_verify(hash));
	    return hash;
	} 
	free(hash);
    }

    return NULL;
}

/*
 * Select a different set of node allocator routines.
 */

void hash_set_allocator(hash_t *hash, hnode_alloc_t al,
	hnode_free_t fr, void *context)
{
    assert (hash_count(hash) == 0);
    assert ((al == 0 && fr == 0) || (al != 0 && fr != 0));

    hash->allocnode = al ? al : hnode_alloc;
    hash->freenode = fr ? fr : hnode_free;
    hash->context = context;
}

/*
 * Free every node in the hash using the hash->freenode() function pointer, and
 * cause the hash to become empty.
 */

void hash_free_nodes(hash_t *hash)
{
    hscan_t hs;
    hnode_t *node;
    hash_scan_begin(&hs, hash);
    while ((node = hash_scan_next(&hs))) {
	hash_scan_delete(hash, node);
	hash->freenode(node, hash->context);
    }
    hash->nodecount = 0;
    clear_table(hash);
}

/*
 * Obsolescent function for removing all nodes from a table,
 * freeing them and then freeing the table all in one step.
 */

void hash_free(hash_t *hash)
{
#ifdef KAZLIB_OBSOLESCENT_DEBUG
    assert ("call to obsolescent function hash_free()" && 0);
#endif
    hash_free_nodes(hash);
    hash_destroy(hash);
}

/*
 * Free a dynamic hash table structure.
 */

void hash_destroy(hash_t *hash)
{
    assert (hash_val_t_bit != 0);
    assert (hash_isempty(hash));
    free(hash->table);
    free(hash);
}

/*
 * Initialize a user supplied hash structure. The user also supplies a table of
 * chains which is assigned to the hash structure. The table is static---it
 * will not grow or shrink.
 * 1. See note 1. in hash_create().
 * 2. The user supplied array of pointers hopefully contains nchains nodes.
 * 3. See note 7. in hash_create().
 * 4. We must dynamically compute the mask from the given power of two table
 *    size. 
 * 5. The user supplied table can't be assumed to contain null pointers,
 *    so we reset it here.
 */

hash_t *hash_init(hash_t *hash, hashcount_t maxcount,
	hash_comp_t compfun, hash_fun_t hashfun, hnode_t **table,
	hashcount_t nchains)
{
    if (hash_val_t_bit == 0)	/* 1 */
	compute_bits();

    assert (is_power_of_two(nchains));

    hash->table = table;	/* 2 */
    hash->nchains = nchains;
    hash->nodecount = 0;
    hash->maxcount = maxcount;
    hash->compare = compfun ? compfun : hash_comp_default;
    hash->function = hashfun ? hashfun : hash_fun_default;
    hash->dynamic = 0;		/* 3 */
    hash->mask = compute_mask(nchains);	/* 4 */
    clear_table(hash);		/* 5 */

    assert (hash_verify(hash));

    return hash;
}

/*
 * Reset the hash scanner so that the next element retrieved by
 * hash_scan_next() shall be the first element on the first non-empty chain. 
 * Notes:
 * 1. Locate the first non empty chain.
 * 2. If an empty chain is found, remember which one it is and set the next
 *    pointer to refer to its first element.
 * 3. Otherwise if a chain is not found, set the next pointer to NULL
 *    so that hash_scan_next() shall indicate failure.
 */

void hash_scan_begin(hscan_t *scan, hash_t *hash)
{
    hash_val_t nchains = hash->nchains;
    hash_val_t chain;

    scan->table = hash;

    /* 1 */

    for (chain = 0; chain < nchains && hash->table[chain] == 0; chain++)
	;

    if (chain < nchains) {	/* 2 */
	scan->chain = chain;
	scan->next = hash->table[chain];
    } else {			/* 3 */
	scan->next = NULL;
    }
}

/*
 * Retrieve the next node from the hash table, and update the pointer
 * for the next invocation of hash_scan_next(). 
 * Notes:
 * 1. Remember the next pointer in a temporary value so that it can be
 *    returned.
 * 2. This assertion essentially checks whether the module has been properly
 *    initialized. The first point of interaction with the module should be
 *    either hash_create() or hash_init(), both of which set hash_val_t_bit to
 *    a non zero value.
 * 3. If the next pointer we are returning is not NULL, then the user is
 *    allowed to call hash_scan_next() again. We prepare the new next pointer
 *    for that call right now. That way the user is allowed to delete the node
 *    we are about to return, since we will no longer be needing it to locate
 *    the next node.
 * 4. If there is a next node in the chain (next->next), then that becomes the
 *    new next node, otherwise ...
 * 5. We have exhausted the current chain, and must locate the next subsequent
 *    non-empty chain in the table.
 * 6. If a non-empty chain is found, the first element of that chain becomes
 *    the new next node. Otherwise there is no new next node and we set the
 *    pointer to NULL so that the next time hash_scan_next() is called, a null
 *    pointer shall be immediately returned.
 */


hnode_t *hash_scan_next(hscan_t *scan)
{
    hnode_t *next = scan->next;		/* 1 */
    hash_t *hash = scan->table;
    hash_val_t chain = scan->chain + 1;
    hash_val_t nchains = hash->nchains;

    assert (hash_val_t_bit != 0);	/* 2 */

    if (next) {			/* 3 */
	if (next->next) {	/* 4 */
	    scan->next = next->next;
	} else {
	    while (chain < nchains && hash->table[chain] == 0)	/* 5 */
	    	chain++;
	    if (chain < nchains) {	/* 6 */
		scan->chain = chain;
		scan->next = hash->table[chain];
	    } else {
		scan->next = NULL;
	    }
	}
    }
    return next;
}

/*
 * Insert a node into the hash table.
 * Notes:
 * 1. It's illegal to insert more than the maximum number of nodes. The client
 *    should verify that the hash table is not full before attempting an
 *    insertion.
 * 2. The same key may not be inserted into a table twice.
 * 3. If the table is dynamic and the load factor is already at >= 2,
 *    grow the table.
 * 4. We take the bottom N bits of the hash value to derive the chain index,
 *    where N is the base 2 logarithm of the size of the hash table. 
 */

void hash_insert(hash_t *hash, hnode_t *node, const void *key)
{
    hash_val_t hkey, chain;

    assert (hash_val_t_bit != 0);
    assert (node->next == NULL);
    assert (hash->nodecount < hash->maxcount);	/* 1 */
    assert (hash_lookup(hash, key) == NULL);	/* 2 */

    if (hash->dynamic && hash->nodecount >= hash->highmark)	/* 3 */
	grow_table(hash);

    hkey = hash->function(key);
    chain = hkey & hash->mask;	/* 4 */

    node->key = key;
    node->hkey = hkey;
    node->next = hash->table[chain];
    hash->table[chain] = node;
    hash->nodecount++;

    assert (hash_verify(hash));
}

/*
 * Find a node in the hash table and return a pointer to it.
 * Notes:
 * 1. We hash the key and keep the entire hash value. As an optimization, when
 *    we descend down the chain, we can compare hash values first and only if
 *    hash values match do we perform a full key comparison. 
 * 2. To locate the chain from among 2^N chains, we look at the lower N bits of
 *    the hash value by anding them with the current mask.
 * 3. Looping through the chain, we compare the stored hash value inside each
 *    node against our computed hash. If they match, then we do a full
 *    comparison between the unhashed keys. If these match, we have located the
 *    entry.
 */

hnode_t *hash_lookup(hash_t *hash, const void *key)
{
    hash_val_t hkey, chain;
    hnode_t *nptr;

    hkey = hash->function(key);		/* 1 */
    chain = hkey & hash->mask;		/* 2 */

    for (nptr = hash->table[chain]; nptr; nptr = nptr->next) {	/* 3 */
	if (nptr->hkey == hkey && hash->compare(nptr->key, key) == 0)
	    return nptr;
    }

    return NULL;
}

/*
 * Delete the given node from the hash table.  Since the chains
 * are singly linked, we must locate the start of the node's chain
 * and traverse.
 * Notes:
 * 1. The node must belong to this hash table, and its key must not have
 *    been tampered with.
 * 2. If this deletion will take the node count below the low mark, we
 *    shrink the table now. 
 * 3. Determine which chain the node belongs to, and fetch the pointer
 *    to the first node in this chain.
 * 4. If the node being deleted is the first node in the chain, then
 *    simply update the chain head pointer.
 * 5. Otherwise advance to the node's predecessor, and splice out
 *    by updating the predecessor's next pointer.
 * 6. Indicate that the node is no longer in a hash table.
 */

hnode_t *hash_delete(hash_t *hash, hnode_t *node)
{
    hash_val_t chain;
    hnode_t *hptr;

    assert (hash_lookup(hash, node->key) == node);	/* 1 */
    assert (hash_val_t_bit != 0);

    if (hash->dynamic && hash->nodecount <= hash->lowmark
	    && hash->nodecount > INIT_SIZE)
	shrink_table(hash);				/* 2 */

    chain = node->hkey & hash->mask;			/* 3 */
    hptr = hash->table[chain];

    if (hptr == node) {					/* 4 */
	hash->table[chain] = node->next;
    } else {
	while (hptr->next != node) {			/* 5 */
	    assert (hptr != 0);
	    hptr = hptr->next;
	}
	assert (hptr->next == node);
	hptr->next = node->next;
    }
	
    hash->nodecount--;
    assert (hash_verify(hash));

    node->next = NULL;					/* 6 */
    return node;
}

int hash_alloc_insert(hash_t *hash, const void *key, void *data)
{
    hnode_t *node = hash->allocnode(hash->context);

    if (node) {
	hnode_init(node, data);
	hash_insert(hash, node, key);
	return 1;
    }
    return 0;
}

void hash_delete_free(hash_t *hash, hnode_t *node)
{
    hash_delete(hash, node);
    hash->freenode(node, hash->context);
}

/*
 *  Exactly like hash_delete, except does not trigger table shrinkage. This is to be
 *  used from within a hash table scan operation. See notes for hash_delete.
 */

hnode_t *hash_scan_delete(hash_t *hash, hnode_t *node)
{
    hash_val_t chain;
    hnode_t *hptr;

    assert (hash_lookup(hash, node->key) == node);
    assert (hash_val_t_bit != 0);

    chain = node->hkey & hash->mask;
    hptr = hash->table[chain];

    if (hptr == node) {
	hash->table[chain] = node->next;
    } else {
	while (hptr->next != node) 
	    hptr = hptr->next;
	hptr->next = node->next;
    }
	
    hash->nodecount--;
    assert (hash_verify(hash));
    node->next = NULL;

    return node;
}

/*
 * Like hash_delete_free but based on hash_scan_delete.
 */

void hash_scan_delfree(hash_t *hash, hnode_t *node)
{
    hash_scan_delete(hash, node);
    hash->freenode(node, hash->context);
}

/*
 * Verify whether the given object is a valid hash table. This means
 * Notes:
 * 1. If the hash table is dynamic, verify whether the high and
 *    low expansion/shrinkage thresholds are powers of two.
 * 2. Count all nodes in the table, and test each hash value
 *    to see whether it is correct for the node's chain.
 */

int hash_verify(hash_t *hash)
{
    hashcount_t count = 0;
    hash_val_t chain;
    hnode_t *hptr;

    if (hash->dynamic) {	/* 1 */
	if (hash->lowmark >= hash->highmark)
	    return 0;
	if (!is_power_of_two(hash->highmark))
	    return 0;
	if (!is_power_of_two(hash->lowmark))
	    return 0;
    }

    for (chain = 0; chain < hash->nchains; chain++) {	/* 2 */
	for (hptr = hash->table[chain]; hptr != 0; hptr = hptr->next) {
	    if ((hptr->hkey & hash->mask) != chain)
		return 0;
	    count++;
	}
    }

    if (count != hash->nodecount)
	return 0;

    return 1;
}

/*
 * Test whether the hash table is full and return 1 if this is true,
 * 0 if it is false.
 */

#undef hash_isfull
int hash_isfull(hash_t *hash)
{
    return hash->nodecount == hash->maxcount;
}

/*
 * Test whether the hash table is empty and return 1 if this is true,
 * 0 if it is false.
 */

#undef hash_isempty
int hash_isempty(hash_t *hash)
{
    return hash->nodecount == 0;
}

static hnode_t *hnode_alloc(void *context)
{
    return malloc(sizeof *hnode_alloc(NULL));
}

static void hnode_free(hnode_t *node, void *context)
{
    free(node);
}


/*
 * Create a hash table node dynamically and assign it the given data.
 */

hnode_t *hnode_create(void *data)
{
    hnode_t *node = malloc(sizeof *node);
    if (node) {
	node->data = data;
	node->next = NULL;
    }
    return node;
}

/*
 * Initialize a client-supplied node 
 */

hnode_t *hnode_init(hnode_t *hnode, void *data)
{
    hnode->data = data;
    hnode->next = NULL;
    return hnode;
}

/*
 * Destroy a dynamically allocated node.
 */

void hnode_destroy(hnode_t *hnode)
{
    free(hnode);
}

#undef hnode_put
void hnode_put(hnode_t *node, void *data)
{
    node->data = data;
}

#undef hnode_get
void *hnode_get(hnode_t *node)
{
    return node->data;
}

#undef hnode_getkey
const void *hnode_getkey(hnode_t *node)
{
    return node->key;
}

#undef hash_count
hashcount_t hash_count(hash_t *hash)
{
    return hash->nodecount;
}

#undef hash_size
hashcount_t hash_size(hash_t *hash)
{
    return hash->nchains;
}

static hash_val_t hash_fun_default(const void *key)
{
    static unsigned long randbox[] = {
	0x49848f1bU, 0xe6255dbaU, 0x36da5bdcU, 0x47bf94e9U,
	0x8cbcce22U, 0x559fc06aU, 0xd268f536U, 0xe10af79aU,
	0xc1af4d69U, 0x1d2917b5U, 0xec4c304dU, 0x9ee5016cU,
	0x69232f74U, 0xfead7bb3U, 0xe9089ab6U, 0xf012f6aeU,
    };

    const unsigned char *str = key;
    hash_val_t acc = 0;

    while (*str) {
	acc ^= randbox[(*str + acc) & 0xf];
	acc = (acc << 1) | (acc >> 31);
	acc &= 0xffffffffU;
	acc ^= randbox[((*str++ >> 4) + acc) & 0xf];
	acc = (acc << 2) | (acc >> 30);
	acc &= 0xffffffffU;
    }
    return acc;
}

static int hash_comp_default(const void *key1, const void *key2)
{
    return strcmp(key1, key2);
}

#ifdef KAZLIB_TEST_MAIN

#include <stdio.h>
#include <ctype.h>
#include <stdarg.h>

typedef char input_t[256];

static int tokenize(char *string, ...)
{
    char **tokptr; 
    va_list arglist;
    int tokcount = 0;

    va_start(arglist, string);
    tokptr = va_arg(arglist, char **);
    while (tokptr) {
	while (*string && isspace((unsigned char) *string))
	    string++;
	if (!*string)
	    break;
	*tokptr = string;
	while (*string && !isspace((unsigned char) *string))
	    string++;
	tokptr = va_arg(arglist, char **);
	tokcount++;
	if (!*string)
	    break;
	*string++ = 0;
    }
    va_end(arglist);

    return tokcount;
}

static char *dupstring(char *str)
{
    int sz = strlen(str) + 1;
    char *new = malloc(sz);
    if (new)
	memcpy(new, str, sz);
    return new;
}

static hnode_t *new_node(void *c)
{
    static hnode_t few[5];
    static int count;

    if (count < 5)
	return few + count++;

    return NULL;
}

static void del_node(hnode_t *n, void *c)
{
}

int main(void)
{
    input_t in;
    hash_t *h = hash_create(HASHCOUNT_T_MAX, 0, 0);
    hnode_t *hn;
    hscan_t hs;
    char *tok1, *tok2, *val;
    const char *key;
    int prompt = 0;

    char *help =
	"a <key> <val>          add value to hash table\n"
	"d <key>                delete value from hash table\n"
	"l <key>                lookup value in hash table\n"
	"n                      show size of hash table\n"
	"c                      show number of entries\n"
	"t                      dump whole hash table\n"
	"+                      increase hash table (private func)\n"
	"-                      decrease hash table (private func)\n"
	"b                      print hash_t_bit value\n"
	"p                      turn prompt on\n"
	"s                      switch to non-functioning allocator\n"
	"q                      quit";

    if (!h)
	puts("hash_create failed");

    for (;;) {
	if (prompt)
	    putchar('>');
	fflush(stdout);

	if (!fgets(in, sizeof(input_t), stdin))
	    break;

	switch(in[0]) {
	    case '?':
		puts(help);
		break;
	    case 'b':
		printf("%d\n", hash_val_t_bit);
		break;
	    case 'a':
		if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
		    puts("what?");
		    break;
		}
		key = dupstring(tok1);
		val = dupstring(tok2);

		if (!key || !val) {
		    puts("out of memory");
		    free((void *) key);
		    free(val);
		}

		if (!hash_alloc_insert(h, key, val)) {
		    puts("hash_alloc_insert failed");
		    free((void *) key);
		    free(val);
		    break;
		}
		break;
	    case 'd':
		if (tokenize(in+1, &tok1, (char **) 0) != 1) {
		    puts("what?");
		    break;
		}
		hn = hash_lookup(h, tok1);
		if (!hn) {
		    puts("hash_lookup failed");
		    break;
		}
		val = hnode_get(hn);
		key = hnode_getkey(hn);
		hash_scan_delfree(h, hn);
		free((void *) key);
		free(val);
		break;
	    case 'l':
		if (tokenize(in+1, &tok1, (char **) 0) != 1) {
		    puts("what?");
		    break;
		}
		hn = hash_lookup(h, tok1);
		if (!hn) {
		    puts("hash_lookup failed");
		    break;
		}
		val = hnode_get(hn);
		puts(val);
		break;
	    case 'n':
		printf("%lu\n", (unsigned long) hash_size(h));
		break;
	    case 'c':
		printf("%lu\n", (unsigned long) hash_count(h));
		break;
	    case 't':
		hash_scan_begin(&hs, h);
		while ((hn = hash_scan_next(&hs)))
		    printf("%s\t%s\n", (char*) hnode_getkey(hn),
			    (char*) hnode_get(hn));
		break;
	    case '+':
		grow_table(h);		/* private function	*/
		break;
	    case '-':
		shrink_table(h);	/* private function	*/
		break;
	    case 'q':
		exit(0);
		break;
	    case '\0':
		break;
	    case 'p':
		prompt = 1;
		break;
	    case 's':
		hash_set_allocator(h, new_node, del_node, NULL);
		break;
	    default:
		putchar('?');
		putchar('\n');
		break;
	}
    }

    return 0;
}

#endif