1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
|
/* primegen.c - prime number generator
* Copyright (C) 1998, 2000, 2001, 2002, 2003
* 2004, 2008 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
#include "ath.h"
static gcry_mpi_t gen_prime (unsigned int nbits, int secret, int randomlevel,
int (*extra_check)(void *, gcry_mpi_t),
void *extra_check_arg);
static int check_prime( gcry_mpi_t prime, gcry_mpi_t val_2, int rm_rounds,
gcry_prime_check_func_t cb_func, void *cb_arg );
static int is_prime (gcry_mpi_t n, int steps, unsigned int *count);
static void m_out_of_n( char *array, int m, int n );
static void (*progress_cb) (void *,const char*,int,int, int );
static void *progress_cb_data;
/* Note: 2 is not included because it can be tested more easily by
looking at bit 0. The last entry in this list is marked by a zero */
static ushort small_prime_numbers[] = {
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,
1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,
2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,
2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,
2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,
3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,
3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,
3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,
4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,
4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,
4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,
4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
4957, 4967, 4969, 4973, 4987, 4993, 4999,
0
};
static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1;
/* An object and a list to build up a global pool of primes. See
save_pool_prime and get_pool_prime. */
struct primepool_s
{
struct primepool_s *next;
gcry_mpi_t prime; /* If this is NULL the entry is not used. */
unsigned int nbits;
gcry_random_level_t randomlevel;
};
struct primepool_s *primepool;
/* Mutex used to protect access to the primepool. */
static ath_mutex_t primepool_lock = ATH_MUTEX_INITIALIZER;
/* Save PRIME which has been generated at RANDOMLEVEL for later
use. Needs to be called while primepool_lock is being hold. Note
that PRIME should be considered released after calling this
function. */
static void
save_pool_prime (gcry_mpi_t prime, gcry_random_level_t randomlevel)
{
struct primepool_s *item, *item2;
size_t n;
for (n=0, item = primepool; item; item = item->next, n++)
if (!item->prime)
break;
if (!item && n > 100)
{
/* Remove some of the entries. Our strategy is removing
the last third from the list. */
int i;
for (i=0, item2 = primepool; item2; item2 = item2->next)
{
if (i >= n/3*2)
{
gcry_mpi_release (item2->prime);
item2->prime = NULL;
if (!item)
item = item2;
}
}
}
if (!item)
{
item = gcry_calloc (1, sizeof *item);
if (!item)
{
/* Out of memory. Silently giving up. */
gcry_mpi_release (prime);
return;
}
item->next = primepool;
primepool = item;
}
item->prime = prime;
item->nbits = mpi_get_nbits (prime);
item->randomlevel = randomlevel;
}
/* Return a prime for the prime pool or NULL if none has been found.
The prime needs to match NBITS and randomlevel. This function needs
to be called why the primepool_look is being hold. */
static gcry_mpi_t
get_pool_prime (unsigned int nbits, gcry_random_level_t randomlevel)
{
struct primepool_s *item;
for (item = primepool; item; item = item->next)
if (item->prime
&& item->nbits == nbits && item->randomlevel == randomlevel)
{
gcry_mpi_t prime = item->prime;
item->prime = NULL;
gcry_assert (nbits == mpi_get_nbits (prime));
return prime;
}
return NULL;
}
void
_gcry_register_primegen_progress ( void (*cb)(void *,const char*,int,int,int),
void *cb_data )
{
progress_cb = cb;
progress_cb_data = cb_data;
}
static void
progress( int c )
{
if ( progress_cb )
progress_cb ( progress_cb_data, "primegen", c, 0, 0 );
}
/****************
* Generate a prime number (stored in secure memory)
*/
gcry_mpi_t
_gcry_generate_secret_prime (unsigned int nbits,
gcry_random_level_t random_level,
int (*extra_check)(void*, gcry_mpi_t),
void *extra_check_arg)
{
gcry_mpi_t prime;
prime = gen_prime (nbits, 1, random_level, extra_check, extra_check_arg);
progress('\n');
return prime;
}
/* Generate a prime number which may be public, i.e. not allocated in
secure memory. */
gcry_mpi_t
_gcry_generate_public_prime (unsigned int nbits,
gcry_random_level_t random_level,
int (*extra_check)(void*, gcry_mpi_t),
void *extra_check_arg)
{
gcry_mpi_t prime;
prime = gen_prime (nbits, 0, random_level, extra_check, extra_check_arg);
progress('\n');
return prime;
}
/* Core prime generation function. The algorithm used to generate
practically save primes is due to Lim and Lee as described in the
CRYPTO '97 proceedings (ISBN3540633847) page 260.
NEED_Q_FACTOR: If true make sure that at least one factor is of
size qbits. This is for example required for DSA.
PRIME_GENERATED: Adresss of a variable where the resulting prime
number will be stored.
PBITS: Requested size of the prime number. At least 48.
QBITS: One factor of the prime needs to be of this size. Maybe 0
if this is not required. See also MODE.
G: If not NULL an MPI which will receive a generator for the prime
for use with Elgamal.
RET_FACTORS: if not NULL, an array with all factors are stored at
that address.
ALL_FACTORS: If set to true all factors of prime-1 are returned.
RANDOMLEVEL: How strong should the random numers be.
FLAGS: Prime generation bit flags. Currently supported:
GCRY_PRIME_FLAG_SECRET - The prime needs to be kept secret.
CB_FUNC, CB_ARG: Callback to be used for extra checks.
*/
static gcry_err_code_t
prime_generate_internal (int need_q_factor,
gcry_mpi_t *prime_generated, unsigned int pbits,
unsigned int qbits, gcry_mpi_t g,
gcry_mpi_t **ret_factors,
gcry_random_level_t randomlevel, unsigned int flags,
int all_factors,
gcry_prime_check_func_t cb_func, void *cb_arg)
{
gcry_err_code_t err = 0;
gcry_mpi_t *factors_new = NULL; /* Factors to return to the
caller. */
gcry_mpi_t *factors = NULL; /* Current factors. */
gcry_random_level_t poolrandomlevel; /* Random level used for pool primes. */
gcry_mpi_t *pool = NULL; /* Pool of primes. */
int *pool_in_use = NULL; /* Array with currently used POOL elements. */
unsigned char *perms = NULL; /* Permutations of POOL. */
gcry_mpi_t q_factor = NULL; /* Used if QBITS is non-zero. */
unsigned int fbits = 0; /* Length of prime factors. */
unsigned int n = 0; /* Number of factors. */
unsigned int m = 0; /* Number of primes in pool. */
gcry_mpi_t q = NULL; /* First prime factor. */
gcry_mpi_t prime = NULL; /* Prime candidate. */
unsigned int nprime = 0; /* Bits of PRIME. */
unsigned int req_qbits; /* The original QBITS value. */
gcry_mpi_t val_2; /* For check_prime(). */
int is_locked = 0; /* Flag to help unlocking the primepool. */
unsigned int is_secret = (flags & GCRY_PRIME_FLAG_SECRET);
unsigned int count1 = 0, count2 = 0;
unsigned int i = 0, j = 0;
if (pbits < 48)
return GPG_ERR_INV_ARG;
/* We won't use a too strong random elvel for the pooled subprimes. */
poolrandomlevel = (randomlevel > GCRY_STRONG_RANDOM?
GCRY_STRONG_RANDOM : randomlevel);
/* If QBITS is not given, assume a reasonable value. */
if (!qbits)
qbits = pbits / 3;
req_qbits = qbits;
/* Find number of needed prime factors N. */
for (n = 1; (pbits - qbits - 1) / n >= qbits; n++)
;
n--;
val_2 = mpi_alloc_set_ui (2);
if ((! n) || ((need_q_factor) && (n < 2)))
{
err = GPG_ERR_INV_ARG;
goto leave;
}
if (need_q_factor)
{
n--; /* Need one factor less because we want a specific Q-FACTOR. */
fbits = (pbits - 2 * req_qbits -1) / n;
qbits = pbits - req_qbits - n * fbits;
}
else
{
fbits = (pbits - req_qbits -1) / n;
qbits = pbits - n * fbits;
}
if (DBG_CIPHER)
log_debug ("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n",
pbits, req_qbits, qbits, fbits, n);
/* Allocate an integer to old the new prime. */
prime = gcry_mpi_new (pbits);
/* Generate first prime factor. */
q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL);
/* Generate a specific Q-Factor if requested. */
if (need_q_factor)
q_factor = gen_prime (req_qbits, is_secret, randomlevel, NULL, NULL);
/* Allocate an array to hold all factors + 2 for later usage. */
factors = gcry_calloc (n + 2, sizeof (*factors));
if (!factors)
{
err = gpg_err_code_from_errno (errno);
goto leave;
}
/* Allocate an array to track pool usage. */
pool_in_use = gcry_malloc (n * sizeof *pool_in_use);
if (!pool_in_use)
{
err = gpg_err_code_from_errno (errno);
goto leave;
}
for (i=0; i < n; i++)
pool_in_use[i] = -1;
/* Make a pool of 3n+5 primes (this is an arbitrary value). We
require at least 30 primes for are useful selection process.
Fixme: We need to research the best formula for sizing the pool.
*/
m = n * 3 + 5;
if (need_q_factor) /* Need some more in this case. */
m += 5;
if (m < 30)
m = 30;
pool = gcry_calloc (m , sizeof (*pool));
if (! pool)
{
err = gpg_err_code_from_errno (errno);
goto leave;
}
/* Permutate over the pool of primes until we find a prime of the
requested length. */
do
{
next_try:
for (i=0; i < n; i++)
pool_in_use[i] = -1;
if (!perms)
{
/* Allocate new primes. This is done right at the beginning
of the loop and if we have later run out of primes. */
for (i = 0; i < m; i++)
{
mpi_free (pool[i]);
pool[i] = NULL;
}
/* Init m_out_of_n(). */
perms = gcry_calloc (1, m);
if (!perms)
{
err = gpg_err_code_from_errno (errno);
goto leave;
}
if (ath_mutex_lock (&primepool_lock))
{
err = GPG_ERR_INTERNAL;
goto leave;
}
is_locked = 1;
for (i = 0; i < n; i++)
{
perms[i] = 1;
/* At a maximum we use strong random for the factors.
This saves us a lot of entropy. Given that Q and
possible Q-factor are also used in the final prime
this should be acceptable. We also don't allocate in
secure memory to save on that scare resource too. If
Q has been allocated in secure memory, the final
prime will be saved there anyway. This is because
our MPI routines take care of that. GnuPG has worked
this way ever since. */
pool[i] = NULL;
if (is_locked)
{
pool[i] = get_pool_prime (fbits, poolrandomlevel);
if (!pool[i])
{
if (ath_mutex_unlock (&primepool_lock))
{
err = GPG_ERR_INTERNAL;
goto leave;
}
is_locked = 0;
}
}
if (!pool[i])
pool[i] = gen_prime (fbits, 0, poolrandomlevel, NULL, NULL);
pool_in_use[i] = i;
factors[i] = pool[i];
}
if (is_locked && ath_mutex_unlock (&primepool_lock))
{
err = GPG_ERR_INTERNAL;
goto leave;
}
is_locked = 0;
}
else
{
/* Get next permutation. */
m_out_of_n ( (char*)perms, n, m);
if (ath_mutex_lock (&primepool_lock))
{
err = GPG_ERR_INTERNAL;
goto leave;
}
is_locked = 1;
for (i = j = 0; (i < m) && (j < n); i++)
if (perms[i])
{
/* If the subprime has not yet beed generated do it now. */
if (!pool[i] && is_locked)
{
pool[i] = get_pool_prime (fbits, poolrandomlevel);
if (!pool[i])
{
if (ath_mutex_unlock (&primepool_lock))
{
err = GPG_ERR_INTERNAL;
goto leave;
}
is_locked = 0;
}
}
if (!pool[i])
pool[i] = gen_prime (fbits, 0, poolrandomlevel, NULL, NULL);
pool_in_use[j] = i;
factors[j++] = pool[i];
}
if (is_locked && ath_mutex_unlock (&primepool_lock))
{
err = GPG_ERR_INTERNAL;
goto leave;
}
is_locked = 0;
if (i == n)
{
/* Ran out of permutations: Allocate new primes. */
gcry_free (perms);
perms = NULL;
progress ('!');
goto next_try;
}
}
/* Generate next prime candidate:
p = 2 * q [ * q_factor] * factor_0 * factor_1 * ... * factor_n + 1.
*/
mpi_set (prime, q);
mpi_mul_ui (prime, prime, 2);
if (need_q_factor)
mpi_mul (prime, prime, q_factor);
for(i = 0; i < n; i++)
mpi_mul (prime, prime, factors[i]);
mpi_add_ui (prime, prime, 1);
nprime = mpi_get_nbits (prime);
if (nprime < pbits)
{
if (++count1 > 20)
{
count1 = 0;
qbits++;
progress('>');
mpi_free (q);
q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL);
goto next_try;
}
}
else
count1 = 0;
if (nprime > pbits)
{
if (++count2 > 20)
{
count2 = 0;
qbits--;
progress('<');
mpi_free (q);
q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL);
goto next_try;
}
}
else
count2 = 0;
}
while (! ((nprime == pbits) && check_prime (prime, val_2, 5,
cb_func, cb_arg)));
if (DBG_CIPHER)
{
progress ('\n');
log_mpidump ("prime : ", prime);
log_mpidump ("factor q: ", q);
if (need_q_factor)
log_mpidump ("factor q0: ", q_factor);
for (i = 0; i < n; i++)
log_mpidump ("factor pi: ", factors[i]);
log_debug ("bit sizes: prime=%u, q=%u",
mpi_get_nbits (prime), mpi_get_nbits (q));
if (need_q_factor)
log_debug (", q0=%u", mpi_get_nbits (q_factor));
for (i = 0; i < n; i++)
log_debug (", p%d=%u", i, mpi_get_nbits (factors[i]));
progress('\n');
}
if (ret_factors)
{
/* Caller wants the factors. */
factors_new = gcry_calloc (n + 4, sizeof (*factors_new));
if (! factors_new)
{
err = gpg_err_code_from_errno (errno);
goto leave;
}
if (all_factors)
{
i = 0;
factors_new[i++] = gcry_mpi_set_ui (NULL, 2);
factors_new[i++] = mpi_copy (q);
if (need_q_factor)
factors_new[i++] = mpi_copy (q_factor);
for(j=0; j < n; j++)
factors_new[i++] = mpi_copy (factors[j]);
}
else
{
i = 0;
if (need_q_factor)
{
factors_new[i++] = mpi_copy (q_factor);
for (; i <= n; i++)
factors_new[i] = mpi_copy (factors[i]);
}
else
for (; i < n; i++ )
factors_new[i] = mpi_copy (factors[i]);
}
}
if (g)
{
/* Create a generator (start with 3). */
gcry_mpi_t tmp = mpi_alloc (mpi_get_nlimbs (prime));
gcry_mpi_t b = mpi_alloc (mpi_get_nlimbs (prime));
gcry_mpi_t pmin1 = mpi_alloc (mpi_get_nlimbs (prime));
if (need_q_factor)
err = GPG_ERR_NOT_IMPLEMENTED;
else
{
factors[n] = q;
factors[n + 1] = mpi_alloc_set_ui (2);
mpi_sub_ui (pmin1, prime, 1);
mpi_set_ui (g, 2);
do
{
mpi_add_ui (g, g, 1);
if (DBG_CIPHER)
{
log_debug ("checking g:");
gcry_mpi_dump (g);
log_printf ("\n");
}
else
progress('^');
for (i = 0; i < n + 2; i++)
{
mpi_fdiv_q (tmp, pmin1, factors[i]);
/* No mpi_pow(), but it is okay to use this with mod
prime. */
gcry_mpi_powm (b, g, tmp, prime);
if (! mpi_cmp_ui (b, 1))
break;
}
if (DBG_CIPHER)
progress('\n');
}
while (i < n + 2);
mpi_free (factors[n+1]);
mpi_free (tmp);
mpi_free (b);
mpi_free (pmin1);
}
}
if (! DBG_CIPHER)
progress ('\n');
leave:
if (pool)
{
is_locked = !ath_mutex_lock (&primepool_lock);
for(i = 0; i < m; i++)
{
if (pool[i])
{
for (j=0; j < n; j++)
if (pool_in_use[j] == i)
break;
if (j == n && is_locked)
{
/* This pooled subprime has not been used. */
save_pool_prime (pool[i], poolrandomlevel);
}
else
mpi_free (pool[i]);
}
}
if (is_locked && ath_mutex_unlock (&primepool_lock))
err = GPG_ERR_INTERNAL;
is_locked = 0;
gcry_free (pool);
}
gcry_free (pool_in_use);
if (factors)
gcry_free (factors); /* Factors are shallow copies. */
if (perms)
gcry_free (perms);
mpi_free (val_2);
mpi_free (q);
mpi_free (q_factor);
if (! err)
{
*prime_generated = prime;
if (ret_factors)
*ret_factors = factors_new;
}
else
{
if (factors_new)
{
for (i = 0; factors_new[i]; i++)
mpi_free (factors_new[i]);
gcry_free (factors_new);
}
mpi_free (prime);
}
return err;
}
/* Generate a prime used for discrete logarithm algorithms; i.e. this
prime will be public and no strong random is required. */
gcry_mpi_t
_gcry_generate_elg_prime (int mode, unsigned pbits, unsigned qbits,
gcry_mpi_t g, gcry_mpi_t **ret_factors)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
gcry_mpi_t prime = NULL;
err = prime_generate_internal ((mode == 1), &prime, pbits, qbits, g,
ret_factors, GCRY_WEAK_RANDOM, 0, 0,
NULL, NULL);
return prime;
}
static gcry_mpi_t
gen_prime (unsigned int nbits, int secret, int randomlevel,
int (*extra_check)(void *, gcry_mpi_t), void *extra_check_arg)
{
gcry_mpi_t prime, ptest, pminus1, val_2, val_3, result;
int i;
unsigned int x, step;
unsigned int count1, count2;
int *mods;
/* if ( DBG_CIPHER ) */
/* log_debug ("generate a prime of %u bits ", nbits ); */
if (nbits < 16)
log_fatal ("can't generate a prime with less than %d bits\n", 16);
mods = gcry_xmalloc( no_of_small_prime_numbers * sizeof *mods );
/* Make nbits fit into gcry_mpi_t implementation. */
val_2 = mpi_alloc_set_ui( 2 );
val_3 = mpi_alloc_set_ui( 3);
prime = secret? gcry_mpi_snew ( nbits ): gcry_mpi_new ( nbits );
result = mpi_alloc_like( prime );
pminus1= mpi_alloc_like( prime );
ptest = mpi_alloc_like( prime );
count1 = count2 = 0;
for (;;)
{ /* try forvever */
int dotcount=0;
/* generate a random number */
gcry_mpi_randomize( prime, nbits, randomlevel );
/* Set high order bit to 1, set low order bit to 1. If we are
generating a secret prime we are most probably doing that
for RSA, to make sure that the modulus does have the
requested key size we set the 2 high order bits. */
mpi_set_highbit (prime, nbits-1);
if (secret)
mpi_set_bit (prime, nbits-2);
mpi_set_bit(prime, 0);
/* Calculate all remainders. */
for (i=0; (x = small_prime_numbers[i]); i++ )
mods[i] = mpi_fdiv_r_ui(NULL, prime, x);
/* Now try some primes starting with prime. */
for(step=0; step < 20000; step += 2 )
{
/* Check against all the small primes we have in mods. */
count1++;
for (i=0; (x = small_prime_numbers[i]); i++ )
{
while ( mods[i] + step >= x )
mods[i] -= x;
if ( !(mods[i] + step) )
break;
}
if ( x )
continue; /* Found a multiple of an already known prime. */
mpi_add_ui( ptest, prime, step );
/* Do a fast Fermat test now. */
count2++;
mpi_sub_ui( pminus1, ptest, 1);
gcry_mpi_powm( result, val_2, pminus1, ptest );
if ( !mpi_cmp_ui( result, 1 ) )
{
/* Not composite, perform stronger tests */
if (is_prime(ptest, 5, &count2 ))
{
if (!mpi_test_bit( ptest, nbits-1-secret ))
{
progress('\n');
log_debug ("overflow in prime generation\n");
break; /* Stop loop, continue with a new prime. */
}
if (extra_check && extra_check (extra_check_arg, ptest))
{
/* The extra check told us that this prime is
not of the caller's taste. */
progress ('/');
}
else
{
/* Got it. */
mpi_free(val_2);
mpi_free(val_3);
mpi_free(result);
mpi_free(pminus1);
mpi_free(prime);
gcry_free(mods);
return ptest;
}
}
}
if (++dotcount == 10 )
{
progress('.');
dotcount = 0;
}
}
progress(':'); /* restart with a new random value */
}
}
/****************
* Returns: true if this may be a prime
* RM_ROUNDS gives the number of Rabin-Miller tests to run.
*/
static int
check_prime( gcry_mpi_t prime, gcry_mpi_t val_2, int rm_rounds,
gcry_prime_check_func_t cb_func, void *cb_arg)
{
int i;
unsigned int x;
unsigned int count=0;
/* Check against small primes. */
for (i=0; (x = small_prime_numbers[i]); i++ )
{
if ( mpi_divisible_ui( prime, x ) )
return 0;
}
/* A quick Fermat test. */
{
gcry_mpi_t result = mpi_alloc_like( prime );
gcry_mpi_t pminus1 = mpi_alloc_like( prime );
mpi_sub_ui( pminus1, prime, 1);
gcry_mpi_powm( result, val_2, pminus1, prime );
mpi_free( pminus1 );
if ( mpi_cmp_ui( result, 1 ) )
{
/* Is composite. */
mpi_free( result );
progress('.');
return 0;
}
mpi_free( result );
}
if (!cb_func || cb_func (cb_arg, GCRY_PRIME_CHECK_AT_MAYBE_PRIME, prime))
{
/* Perform stronger tests. */
if ( is_prime( prime, rm_rounds, &count ) )
{
if (!cb_func
|| cb_func (cb_arg, GCRY_PRIME_CHECK_AT_GOT_PRIME, prime))
return 1; /* Probably a prime. */
}
}
progress('.');
return 0;
}
/*
* Return true if n is probably a prime
*/
static int
is_prime (gcry_mpi_t n, int steps, unsigned int *count)
{
gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs( n ) );
gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs( n ) );
gcry_mpi_t z = mpi_alloc( mpi_get_nlimbs( n ) );
gcry_mpi_t nminus1 = mpi_alloc( mpi_get_nlimbs( n ) );
gcry_mpi_t a2 = mpi_alloc_set_ui( 2 );
gcry_mpi_t q;
unsigned i, j, k;
int rc = 0;
unsigned nbits = mpi_get_nbits( n );
if (steps < 5) /* Make sure that we do at least 5 rounds. */
steps = 5;
mpi_sub_ui( nminus1, n, 1 );
/* Find q and k, so that n = 1 + 2^k * q . */
q = mpi_copy ( nminus1 );
k = mpi_trailing_zeros ( q );
mpi_tdiv_q_2exp (q, q, k);
for (i=0 ; i < steps; i++ )
{
++*count;
if( !i )
{
mpi_set_ui( x, 2 );
}
else
{
gcry_mpi_randomize( x, nbits, GCRY_WEAK_RANDOM );
/* Make sure that the number is smaller than the prime and
keep the randomness of the high bit. */
if ( mpi_test_bit ( x, nbits-2) )
{
mpi_set_highbit ( x, nbits-2); /* Clear all higher bits. */
}
else
{
mpi_set_highbit( x, nbits-2 );
mpi_clear_bit( x, nbits-2 );
}
gcry_assert (mpi_cmp (x, nminus1) < 0 && mpi_cmp_ui (x, 1) > 0);
}
gcry_mpi_powm ( y, x, q, n);
if ( mpi_cmp_ui(y, 1) && mpi_cmp( y, nminus1 ) )
{
for ( j=1; j < k && mpi_cmp( y, nminus1 ); j++ )
{
gcry_mpi_powm(y, y, a2, n);
if( !mpi_cmp_ui( y, 1 ) )
goto leave; /* Not a prime. */
}
if (mpi_cmp( y, nminus1 ) )
goto leave; /* Not a prime. */
}
progress('+');
}
rc = 1; /* May be a prime. */
leave:
mpi_free( x );
mpi_free( y );
mpi_free( z );
mpi_free( nminus1 );
mpi_free( q );
mpi_free( a2 );
return rc;
}
/* Given ARRAY of size N with M elements set to true produce a
modified array with the next permutation of M elements. Note, that
ARRAY is used in a one-bit-per-byte approach. To detected the last
permutation it is useful to initialize the array with the first M
element set to true and use this test:
m_out_of_n (array, m, n);
for (i = j = 0; i < n && j < m; i++)
if (array[i])
j++;
if (j == m)
goto ready;
This code is based on the algorithm 452 from the "Collected
Algorithms From ACM, Volume II" by C. N. Liu and D. T. Tang.
*/
static void
m_out_of_n ( char *array, int m, int n )
{
int i=0, i1=0, j=0, jp=0, j1=0, k1=0, k2=0;
if( !m || m >= n )
return;
/* Need to handle this simple case separately. */
if( m == 1 )
{
for (i=0; i < n; i++ )
{
if ( array[i] )
{
array[i++] = 0;
if( i >= n )
i = 0;
array[i] = 1;
return;
}
}
BUG();
}
for (j=1; j < n; j++ )
{
if ( array[n-1] == array[n-j-1])
continue;
j1 = j;
break;
}
if ( (m & 1) )
{
/* M is odd. */
if( array[n-1] )
{
if( j1 & 1 )
{
k1 = n - j1;
k2 = k1+2;
if( k2 > n )
k2 = n;
goto leave;
}
goto scan;
}
k2 = n - j1 - 1;
if( k2 == 0 )
{
k1 = i;
k2 = n - j1;
}
else if( array[k2] && array[k2-1] )
k1 = n;
else
k1 = k2 + 1;
}
else
{
/* M is even. */
if( !array[n-1] )
{
k1 = n - j1;
k2 = k1 + 1;
goto leave;
}
if( !(j1 & 1) )
{
k1 = n - j1;
k2 = k1+2;
if( k2 > n )
k2 = n;
goto leave;
}
scan:
jp = n - j1 - 1;
for (i=1; i <= jp; i++ )
{
i1 = jp + 2 - i;
if( array[i1-1] )
{
if( array[i1-2] )
{
k1 = i1 - 1;
k2 = n - j1;
}
else
{
k1 = i1 - 1;
k2 = n + 1 - j1;
}
goto leave;
}
}
k1 = 1;
k2 = n + 1 - m;
}
leave:
/* Now complement the two selected bits. */
array[k1-1] = !array[k1-1];
array[k2-1] = !array[k2-1];
}
/* Generate a new prime number of PRIME_BITS bits and store it in
PRIME. If FACTOR_BITS is non-zero, one of the prime factors of
(prime - 1) / 2 must be FACTOR_BITS bits long. If FACTORS is
non-zero, allocate a new, NULL-terminated array holding the prime
factors and store it in FACTORS. FLAGS might be used to influence
the prime number generation process. */
gcry_error_t
gcry_prime_generate (gcry_mpi_t *prime, unsigned int prime_bits,
unsigned int factor_bits, gcry_mpi_t **factors,
gcry_prime_check_func_t cb_func, void *cb_arg,
gcry_random_level_t random_level,
unsigned int flags)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
gcry_mpi_t *factors_generated = NULL;
gcry_mpi_t prime_generated = NULL;
unsigned int mode = 0;
if (!prime)
return gpg_error (GPG_ERR_INV_ARG);
*prime = NULL;
if (flags & GCRY_PRIME_FLAG_SPECIAL_FACTOR)
mode = 1;
/* Generate. */
err = prime_generate_internal ((mode==1), &prime_generated, prime_bits,
factor_bits, NULL,
factors? &factors_generated : NULL,
random_level, flags, 1,
cb_func, cb_arg);
if (! err)
if (cb_func)
{
/* Additional check. */
if ( !cb_func (cb_arg, GCRY_PRIME_CHECK_AT_FINISH, prime_generated))
{
/* Failed, deallocate resources. */
unsigned int i;
mpi_free (prime_generated);
if (factors)
{
for (i = 0; factors_generated[i]; i++)
mpi_free (factors_generated[i]);
gcry_free (factors_generated);
}
err = GPG_ERR_GENERAL;
}
}
if (! err)
{
if (factors)
*factors = factors_generated;
*prime = prime_generated;
}
return gcry_error (err);
}
/* Check whether the number X is prime. */
gcry_error_t
gcry_prime_check (gcry_mpi_t x, unsigned int flags)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
gcry_mpi_t val_2 = mpi_alloc_set_ui (2); /* Used by the Fermat test. */
(void)flags;
/* We use 64 rounds because the prime we are going to test is not
guaranteed to be a random one. */
if (! check_prime (x, val_2, 64, NULL, NULL))
err = GPG_ERR_NO_PRIME;
mpi_free (val_2);
return gcry_error (err);
}
/* Find a generator for PRIME where the factorization of (prime-1) is
in the NULL terminated array FACTORS. Return the generator as a
newly allocated MPI in R_G. If START_G is not NULL, use this as s
atart for the search. Returns 0 on success.*/
gcry_error_t
gcry_prime_group_generator (gcry_mpi_t *r_g,
gcry_mpi_t prime, gcry_mpi_t *factors,
gcry_mpi_t start_g)
{
gcry_mpi_t tmp = gcry_mpi_new (0);
gcry_mpi_t b = gcry_mpi_new (0);
gcry_mpi_t pmin1 = gcry_mpi_new (0);
gcry_mpi_t g = start_g? gcry_mpi_copy (start_g) : gcry_mpi_set_ui (NULL, 3);
int first = 1;
int i, n;
if (!factors || !r_g || !prime)
return gpg_error (GPG_ERR_INV_ARG);
*r_g = NULL;
for (n=0; factors[n]; n++)
;
if (n < 2)
return gpg_error (GPG_ERR_INV_ARG);
/* Extra sanity check - usually disabled. */
/* mpi_set (tmp, factors[0]); */
/* for(i = 1; i < n; i++) */
/* mpi_mul (tmp, tmp, factors[i]); */
/* mpi_add_ui (tmp, tmp, 1); */
/* if (mpi_cmp (prime, tmp)) */
/* return gpg_error (GPG_ERR_INV_ARG); */
gcry_mpi_sub_ui (pmin1, prime, 1);
do
{
if (first)
first = 0;
else
gcry_mpi_add_ui (g, g, 1);
if (DBG_CIPHER)
{
log_debug ("checking g:");
gcry_mpi_dump (g);
log_debug ("\n");
}
else
progress('^');
for (i = 0; i < n; i++)
{
mpi_fdiv_q (tmp, pmin1, factors[i]);
gcry_mpi_powm (b, g, tmp, prime);
if (! mpi_cmp_ui (b, 1))
break;
}
if (DBG_CIPHER)
progress('\n');
}
while (i < n);
gcry_mpi_release (tmp);
gcry_mpi_release (b);
gcry_mpi_release (pmin1);
*r_g = g;
return 0;
}
/* Convenience function to release the factors array. */
void
gcry_prime_release_factors (gcry_mpi_t *factors)
{
if (factors)
{
int i;
for (i=0; factors[i]; i++)
mpi_free (factors[i]);
gcry_free (factors);
}
}
/* Helper for _gcry_derive_x931_prime. */
static gcry_mpi_t
find_x931_prime (const gcry_mpi_t pfirst)
{
gcry_mpi_t val_2 = mpi_alloc_set_ui (2);
gcry_mpi_t prime;
prime = gcry_mpi_copy (pfirst);
/* If P is even add 1. */
mpi_set_bit (prime, 0);
/* We use 64 Rabin-Miller rounds which is better and thus
sufficient. We do not have a Lucas test implementaion thus we
can't do it in the X9.31 preferred way of running a few
Rabin-Miller followed by one Lucas test. */
while ( !check_prime (prime, val_2, 64, NULL, NULL) )
mpi_add_ui (prime, prime, 2);
mpi_free (val_2);
return prime;
}
/* Generate a prime using the algorithm from X9.31 appendix B.4.
This function requires that the provided public exponent E is odd.
XP, XP1 and XP2 are the seed values. All values are mandatory.
On success the prime is returned. If R_P1 or R_P2 are given the
internal values P1 and P2 are saved at these addresses. On error
NULL is returned. */
gcry_mpi_t
_gcry_derive_x931_prime (const gcry_mpi_t xp,
const gcry_mpi_t xp1, const gcry_mpi_t xp2,
const gcry_mpi_t e,
gcry_mpi_t *r_p1, gcry_mpi_t *r_p2)
{
gcry_mpi_t p1, p2, p1p2, yp0;
if (!xp || !xp1 || !xp2)
return NULL;
if (!e || !mpi_test_bit (e, 0))
return NULL; /* We support only odd values for E. */
p1 = find_x931_prime (xp1);
p2 = find_x931_prime (xp2);
p1p2 = mpi_alloc_like (xp);
mpi_mul (p1p2, p1, p2);
{
gcry_mpi_t r1, tmp;
/* r1 = (p2^{-1} mod p1)p2 - (p1^{-1} mod p2) */
tmp = mpi_alloc_like (p1);
mpi_invm (tmp, p2, p1);
mpi_mul (tmp, tmp, p2);
r1 = tmp;
tmp = mpi_alloc_like (p2);
mpi_invm (tmp, p1, p2);
mpi_mul (tmp, tmp, p1);
mpi_sub (r1, r1, tmp);
/* Fixup a negative value. */
if (mpi_is_neg (r1))
mpi_add (r1, r1, p1p2);
/* yp0 = xp + (r1 - xp mod p1*p2) */
yp0 = tmp; tmp = NULL;
mpi_subm (yp0, r1, xp, p1p2);
mpi_add (yp0, yp0, xp);
mpi_free (r1);
/* Fixup a negative value. */
if (mpi_cmp (yp0, xp) < 0 )
mpi_add (yp0, yp0, p1p2);
}
/* yp0 is now the first integer greater than xp with p1 being a
large prime factor of yp0-1 and p2 a large prime factor of yp0+1. */
/* Note that the first example from X9.31 (D.1.1) which uses
(Xq1 #1A5CF72EE770DE50CB09ACCEA9#)
(Xq2 #134E4CAA16D2350A21D775C404#)
(Xq #CC1092495D867E64065DEE3E7955F2EBC7D47A2D
7C9953388F97DDDC3E1CA19C35CA659EDC2FC325
6D29C2627479C086A699A49C4C9CEE7EF7BD1B34
321DE34A#))))
returns an yp0 of
#CC1092495D867E64065DEE3E7955F2EBC7D47A2D
7C9953388F97DDDC3E1CA19C35CA659EDC2FC4E3
BF20CB896EE37E098A906313271422162CB6C642
75C1201F#
and not
#CC1092495D867E64065DEE3E7955F2EBC7D47A2D
7C9953388F97DDDC3E1CA19C35CA659EDC2FC2E6
C88FE299D52D78BE405A97E01FD71DD7819ECB91
FA85A076#
as stated in the standard. This seems to be a bug in X9.31.
*/
{
gcry_mpi_t val_2 = mpi_alloc_set_ui (2);
gcry_mpi_t gcdtmp = mpi_alloc_like (yp0);
int gcdres;
mpi_sub_ui (p1p2, p1p2, 1); /* Adjust for loop body. */
mpi_sub_ui (yp0, yp0, 1); /* Ditto. */
for (;;)
{
gcdres = gcry_mpi_gcd (gcdtmp, e, yp0);
mpi_add_ui (yp0, yp0, 1);
if (!gcdres)
progress ('/'); /* gcd (e, yp0-1) != 1 */
else if (check_prime (yp0, val_2, 64, NULL, NULL))
break; /* Found. */
/* We add p1p2-1 because yp0 is incremented after the gcd test. */
mpi_add (yp0, yp0, p1p2);
}
mpi_free (gcdtmp);
mpi_free (val_2);
}
mpi_free (p1p2);
progress('\n');
if (r_p1)
*r_p1 = p1;
else
mpi_free (p1);
if (r_p2)
*r_p2 = p2;
else
mpi_free (p2);
return yp0;
}
/* Generate the two prime used for DSA using the algorithm specified
in FIPS 186-2. PBITS is the desired length of the prime P and a
QBITS the length of the prime Q. If SEED is not supplied and
SEEDLEN is 0 the function generates an appropriate SEED. On
success the generated primes are stored at R_Q and R_P, the counter
value is stored at R_COUNTER and the seed actually used for
generation is stored at R_SEED and R_SEEDVALUE. */
gpg_err_code_t
_gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits,
const void *seed, size_t seedlen,
gcry_mpi_t *r_q, gcry_mpi_t *r_p,
int *r_counter,
void **r_seed, size_t *r_seedlen)
{
gpg_err_code_t ec;
unsigned char seed_help_buffer[160/8]; /* Used to hold a generated SEED. */
unsigned char *seed_plus; /* Malloced buffer to hold SEED+x. */
unsigned char digest[160/8]; /* Helper buffer for SHA-1 digest. */
gcry_mpi_t val_2 = NULL; /* Helper for the prime test. */
gcry_mpi_t tmpval = NULL; /* Helper variable. */
int i;
unsigned char value_u[160/8];
int value_n, value_b, value_k;
int counter;
gcry_mpi_t value_w = NULL;
gcry_mpi_t value_x = NULL;
gcry_mpi_t prime_q = NULL;
gcry_mpi_t prime_p = NULL;
/* FIPS 186-2 allows only for 1024/160 bit. */
if (pbits != 1024 || qbits != 160)
return GPG_ERR_INV_KEYLEN;
if (!seed && !seedlen)
; /* No seed value given: We are asked to generate it. */
else if (!seed || seedlen < qbits/8)
return GPG_ERR_INV_ARG;
/* Allocate a buffer to later compute SEED+some_increment. */
seed_plus = gcry_malloc (seedlen < 20? 20:seedlen);
if (!seed_plus)
{
ec = gpg_err_code_from_syserror ();
goto leave;
}
val_2 = mpi_alloc_set_ui (2);
value_n = (pbits - 1) / qbits;
value_b = (pbits - 1) - value_n * qbits;
value_w = gcry_mpi_new (pbits);
value_x = gcry_mpi_new (pbits);
restart:
/* Generate Q. */
for (;;)
{
/* Step 1: Generate a (new) seed unless one has been supplied. */
if (!seed)
{
seedlen = sizeof seed_help_buffer;
gcry_create_nonce (seed_help_buffer, seedlen);
seed = seed_help_buffer;
}
/* Step 2: U = sha1(seed) ^ sha1((seed+1) mod 2^{qbits}) */
memcpy (seed_plus, seed, seedlen);
for (i=seedlen-1; i >= 0; i--)
{
seed_plus[i]++;
if (seed_plus[i])
break;
}
gcry_md_hash_buffer (GCRY_MD_SHA1, value_u, seed, seedlen);
gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen);
for (i=0; i < sizeof value_u; i++)
value_u[i] ^= digest[i];
/* Step 3: Form q from U */
gcry_mpi_release (prime_q); prime_q = NULL;
ec = gpg_err_code (gcry_mpi_scan (&prime_q, GCRYMPI_FMT_USG,
value_u, sizeof value_u, NULL));
if (ec)
goto leave;
mpi_set_highbit (prime_q, qbits-1 );
mpi_set_bit (prime_q, 0);
/* Step 4: Test whether Q is prime using 64 round of Rabin-Miller. */
if (check_prime (prime_q, val_2, 64, NULL, NULL))
break; /* Yes, Q is prime. */
/* Step 5. */
seed = NULL; /* Force a new seed at Step 1. */
}
/* Step 6. Note that we do no use an explicit offset but increment
SEED_PLUS accordingly. SEED_PLUS is currently SEED+1. */
counter = 0;
/* Generate P. */
prime_p = gcry_mpi_new (pbits);
for (;;)
{
/* Step 7: For k = 0,...n let
V_k = sha1(seed+offset+k) mod 2^{qbits}
Step 8: W = V_0 + V_1*2^160 +
...
+ V_{n-1}*2^{(n-1)*160}
+ (V_{n} mod 2^b)*2^{n*160}
*/
mpi_set_ui (value_w, 0);
for (value_k=0; value_k <= value_n; value_k++)
{
/* There is no need to have an explicit offset variable: In
the first round we shall have an offset of 2, this is
achieved by using SEED_PLUS which is already at SEED+1,
thus we just need to increment it once again. The
requirement for the next round is to update offset by N,
which we implictly did at the end of this loop, and then
to add one; this one is the same as in the first round. */
for (i=seedlen-1; i >= 0; i--)
{
seed_plus[i]++;
if (seed_plus[i])
break;
}
gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen);
gcry_mpi_release (tmpval); tmpval = NULL;
ec = gpg_err_code (gcry_mpi_scan (&tmpval, GCRYMPI_FMT_USG,
digest, sizeof digest, NULL));
if (ec)
goto leave;
if (value_k == value_n)
mpi_clear_highbit (tmpval, value_b); /* (V_n mod 2^b) */
mpi_lshift (tmpval, tmpval, value_k*qbits);
mpi_add (value_w, value_w, tmpval);
}
/* Step 8 continued: X = W + 2^{L-1} */
mpi_set_ui (value_x, 0);
mpi_set_highbit (value_x, pbits-1);
mpi_add (value_x, value_x, value_w);
/* Step 9: c = X mod 2q, p = X - (c - 1) */
mpi_mul_2exp (tmpval, prime_q, 1);
mpi_mod (tmpval, value_x, tmpval);
mpi_sub_ui (tmpval, tmpval, 1);
mpi_sub (prime_p, value_x, tmpval);
/* Step 10: If p < 2^{L-1} skip the primality test. */
/* Step 11 and 12: Primality test. */
if (mpi_get_nbits (prime_p) >= pbits-1
&& check_prime (prime_p, val_2, 64, NULL, NULL) )
break; /* Yes, P is prime, continue with Step 15. */
/* Step 13: counter = counter + 1, offset = offset + n + 1. */
counter++;
/* Step 14: If counter >= 2^12 goto Step 1. */
if (counter >= 4096)
goto restart;
}
/* Step 15: Save p, q, counter and seed. */
/* log_debug ("fips186-2 pbits p=%u q=%u counter=%d\n", */
/* mpi_get_nbits (prime_p), mpi_get_nbits (prime_q), counter); */
/* log_printhex("fips186-2 seed:", seed, seedlen); */
/* log_mpidump ("fips186-2 prime p", prime_p); */
/* log_mpidump ("fips186-2 prime q", prime_q); */
if (r_q)
{
*r_q = prime_q;
prime_q = NULL;
}
if (r_p)
{
*r_p = prime_p;
prime_p = NULL;
}
if (r_counter)
*r_counter = counter;
if (r_seed && r_seedlen)
{
memcpy (seed_plus, seed, seedlen);
*r_seed = seed_plus;
seed_plus = NULL;
*r_seedlen = seedlen;
}
leave:
gcry_mpi_release (tmpval);
gcry_mpi_release (value_x);
gcry_mpi_release (value_w);
gcry_mpi_release (prime_p);
gcry_mpi_release (prime_q);
gcry_free (seed_plus);
gcry_mpi_release (val_2);
return ec;
}
/* WARNING: The code below has not yet been tested! However, it is
not yet used. We need to wait for FIPS 186-3 final and for test
vectors.
Generate the two prime used for DSA using the algorithm specified
in FIPS 186-3, A.1.1.2. PBITS is the desired length of the prime P
and a QBITS the length of the prime Q. If SEED is not supplied and
SEEDLEN is 0 the function generates an appropriate SEED. On
success the generated primes are stored at R_Q and R_P, the counter
value is stored at R_COUNTER and the seed actually used for
generation is stored at R_SEED and R_SEEDVALUE. The hash algorithm
used is stored at R_HASHALGO.
Note that this function is very similar to the fips186_2 code. Due
to the minor differences, other buffer sizes and for documentarion,
we use a separate function.
*/
gpg_err_code_t
_gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits,
const void *seed, size_t seedlen,
gcry_mpi_t *r_q, gcry_mpi_t *r_p,
int *r_counter,
void **r_seed, size_t *r_seedlen,
int *r_hashalgo)
{
gpg_err_code_t ec;
unsigned char seed_help_buffer[256/8]; /* Used to hold a generated SEED. */
unsigned char *seed_plus; /* Malloced buffer to hold SEED+x. */
unsigned char digest[256/8]; /* Helper buffer for SHA-1 digest. */
gcry_mpi_t val_2 = NULL; /* Helper for the prime test. */
gcry_mpi_t tmpval = NULL; /* Helper variable. */
int hashalgo; /* The id of the Approved Hash Function. */
int i;
unsigned char value_u[256/8];
int value_n, value_b, value_j;
int counter;
gcry_mpi_t value_w = NULL;
gcry_mpi_t value_x = NULL;
gcry_mpi_t prime_q = NULL;
gcry_mpi_t prime_p = NULL;
gcry_assert (sizeof seed_help_buffer == sizeof digest
&& sizeof seed_help_buffer == sizeof value_u);
/* Step 1: Check the requested prime lengths. */
/* Note that due to the size of our buffers QBITS is limited to 256. */
if (pbits == 1024 && qbits == 160)
hashalgo = GCRY_MD_SHA1;
else if (pbits == 2048 && qbits == 224)
hashalgo = GCRY_MD_SHA224;
else if (pbits == 2048 && qbits == 256)
hashalgo = GCRY_MD_SHA256;
else if (pbits == 3072 && qbits == 256)
hashalgo = GCRY_MD_SHA256;
else
return GPG_ERR_INV_KEYLEN;
/* Also check that the hash algorithm is available. */
ec = gpg_err_code (gcry_md_test_algo (hashalgo));
if (ec)
return ec;
gcry_assert (qbits/8 <= sizeof digest);
gcry_assert (gcry_md_get_algo_dlen (hashalgo) == qbits/8);
/* Step 2: Check seedlen. */
if (!seed && !seedlen)
; /* No seed value given: We are asked to generate it. */
else if (!seed || seedlen < qbits/8)
return GPG_ERR_INV_ARG;
/* Allocate a buffer to later compute SEED+some_increment and a few
helper variables. */
seed_plus = gcry_malloc (seedlen < sizeof seed_help_buffer?
sizeof seed_help_buffer : seedlen);
if (!seed_plus)
{
ec = gpg_err_code_from_syserror ();
goto leave;
}
val_2 = mpi_alloc_set_ui (2);
value_w = gcry_mpi_new (pbits);
value_x = gcry_mpi_new (pbits);
/* Step 3: n = \lceil L / outlen \rceil - 1 */
value_n = (pbits + qbits - 1) / qbits - 1;
/* Step 4: b = L - 1 - (n * outlen) */
value_b = pbits - 1 - (value_n * qbits);
restart:
/* Generate Q. */
for (;;)
{
/* Step 5: Generate a (new) seed unless one has been supplied. */
if (!seed)
{
seedlen = qbits/8;
gcry_assert (seedlen <= sizeof seed_help_buffer);
gcry_create_nonce (seed_help_buffer, seedlen);
seed = seed_help_buffer;
}
/* Step 6: U = hash(seed) */
gcry_md_hash_buffer (hashalgo, value_u, seed, seedlen);
/* Step 7: q = 2^{N-1} + U + 1 - (U mod 2) */
if ( !(value_u[qbits/8-1] & 0x01) )
{
for (i=qbits/8-1; i >= 0; i--)
{
value_u[i]++;
if (value_u[i])
break;
}
}
gcry_mpi_release (prime_q); prime_q = NULL;
ec = gpg_err_code (gcry_mpi_scan (&prime_q, GCRYMPI_FMT_USG,
value_u, sizeof value_u, NULL));
if (ec)
goto leave;
mpi_set_highbit (prime_q, qbits-1 );
/* Step 8: Test whether Q is prime using 64 round of Rabin-Miller.
According to table C.1 this is sufficient for all
supported prime sizes (i.e. up 3072/256). */
if (check_prime (prime_q, val_2, 64, NULL, NULL))
break; /* Yes, Q is prime. */
/* Step 8. */
seed = NULL; /* Force a new seed at Step 5. */
}
/* Step 11. Note that we do no use an explicit offset but increment
SEED_PLUS accordingly. */
memcpy (seed_plus, seed, seedlen);
counter = 0;
/* Generate P. */
prime_p = gcry_mpi_new (pbits);
for (;;)
{
/* Step 11.1: For j = 0,...n let
V_j = hash(seed+offset+j)
Step 11.2: W = V_0 + V_1*2^outlen +
...
+ V_{n-1}*2^{(n-1)*outlen}
+ (V_{n} mod 2^b)*2^{n*outlen}
*/
mpi_set_ui (value_w, 0);
for (value_j=0; value_j <= value_n; value_j++)
{
/* There is no need to have an explicit offset variable: In
the first round we shall have an offset of 1 and a j of
0. This is achieved by incrementing SEED_PLUS here. For
the next round offset is implicitly updated by using
SEED_PLUS again. */
for (i=seedlen-1; i >= 0; i--)
{
seed_plus[i]++;
if (seed_plus[i])
break;
}
gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen);
gcry_mpi_release (tmpval); tmpval = NULL;
ec = gpg_err_code (gcry_mpi_scan (&tmpval, GCRYMPI_FMT_USG,
digest, sizeof digest, NULL));
if (ec)
goto leave;
if (value_j == value_n)
mpi_clear_highbit (tmpval, value_b); /* (V_n mod 2^b) */
mpi_lshift (tmpval, tmpval, value_j*qbits);
mpi_add (value_w, value_w, tmpval);
}
/* Step 11.3: X = W + 2^{L-1} */
mpi_set_ui (value_x, 0);
mpi_set_highbit (value_x, pbits-1);
mpi_add (value_x, value_x, value_w);
/* Step 11.4: c = X mod 2q */
mpi_mul_2exp (tmpval, prime_q, 1);
mpi_mod (tmpval, value_x, tmpval);
/* Step 11.5: p = X - (c - 1) */
mpi_sub_ui (tmpval, tmpval, 1);
mpi_sub (prime_p, value_x, tmpval);
/* Step 11.6: If p < 2^{L-1} skip the primality test. */
/* Step 11.7 and 11.8: Primality test. */
if (mpi_get_nbits (prime_p) >= pbits-1
&& check_prime (prime_p, val_2, 64, NULL, NULL) )
break; /* Yes, P is prime, continue with Step 15. */
/* Step 11.9: counter = counter + 1, offset = offset + n + 1.
If counter >= 4L goto Step 5. */
counter++;
if (counter >= 4*pbits)
goto restart;
}
/* Step 12: Save p, q, counter and seed. */
log_debug ("fips186-3 pbits p=%u q=%u counter=%d\n",
mpi_get_nbits (prime_p), mpi_get_nbits (prime_q), counter);
log_printhex("fips186-3 seed:", seed, seedlen);
log_mpidump ("fips186-3 prime p", prime_p);
log_mpidump ("fips186-3 prime q", prime_q);
if (r_q)
{
*r_q = prime_q;
prime_q = NULL;
}
if (r_p)
{
*r_p = prime_p;
prime_p = NULL;
}
if (r_counter)
*r_counter = counter;
if (r_seed && r_seedlen)
{
memcpy (seed_plus, seed, seedlen);
*r_seed = seed_plus;
seed_plus = NULL;
*r_seedlen = seedlen;
}
if (r_hashalgo)
*r_hashalgo = hashalgo;
leave:
gcry_mpi_release (tmpval);
gcry_mpi_release (value_x);
gcry_mpi_release (value_w);
gcry_mpi_release (prime_p);
gcry_mpi_release (prime_q);
gcry_free (seed_plus);
gcry_mpi_release (val_2);
return ec;
}
|