summaryrefslogtreecommitdiff
path: root/include/google/protobuf/wire_format_lite.h
diff options
context:
space:
mode:
authorGeorge Hazan <ghazan@miranda.im>2022-09-14 07:12:15 -0700
committerGeorge Hazan <ghazan@miranda.im>2022-09-14 07:12:15 -0700
commit33ed2f727a3a37abf2a1e0e9735f71d4ea693f11 (patch)
treea53f4b12b0b9d202b63374a467e1eff4b12c37a3 /include/google/protobuf/wire_format_lite.h
parent5f3023faa7ae78f8577ca28c63c4f0dffd965e12 (diff)
protobuf headers & libs
Diffstat (limited to 'include/google/protobuf/wire_format_lite.h')
-rw-r--r--include/google/protobuf/wire_format_lite.h1899
1 files changed, 1899 insertions, 0 deletions
diff --git a/include/google/protobuf/wire_format_lite.h b/include/google/protobuf/wire_format_lite.h
new file mode 100644
index 0000000000..a7e64bf1e4
--- /dev/null
+++ b/include/google/protobuf/wire_format_lite.h
@@ -0,0 +1,1899 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+// atenasio@google.com (Chris Atenasio) (ZigZag transform)
+// wink@google.com (Wink Saville) (refactored from wire_format.h)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// This header is logically internal, but is made public because it is used
+// from protocol-compiler-generated code, which may reside in other components.
+
+#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
+#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
+
+
+#include <limits>
+#include <string>
+
+#include <google/protobuf/stubs/common.h>
+#include <google/protobuf/stubs/logging.h>
+#include <google/protobuf/io/coded_stream.h>
+#include <google/protobuf/port.h>
+#include <google/protobuf/stubs/casts.h>
+#include <google/protobuf/arenastring.h>
+#include <google/protobuf/message_lite.h>
+#include <google/protobuf/repeated_field.h>
+
+// Do UTF-8 validation on string type in Debug build only
+#ifndef NDEBUG
+#define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED
+#endif
+
+// Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL.
+//
+// If some one needs the macro TYPE_BOOL in a file that includes this header,
+// it's possible to bring it back using push/pop_macro as follows.
+//
+// #pragma push_macro("TYPE_BOOL")
+// #include this header and/or all headers that need the macro to be undefined.
+// #pragma pop_macro("TYPE_BOOL")
+#undef TYPE_BOOL
+
+
+// Must be included last.
+#include <google/protobuf/port_def.inc>
+
+namespace google {
+namespace protobuf {
+namespace internal {
+
+// This class is for internal use by the protocol buffer library and by
+// protocol-compiler-generated message classes. It must not be called
+// directly by clients.
+//
+// This class contains helpers for implementing the binary protocol buffer
+// wire format without the need for reflection. Use WireFormat when using
+// reflection.
+//
+// This class is really a namespace that contains only static methods.
+class PROTOBUF_EXPORT WireFormatLite {
+ public:
+ // -----------------------------------------------------------------
+ // Helper constants and functions related to the format. These are
+ // mostly meant for internal and generated code to use.
+
+ // The wire format is composed of a sequence of tag/value pairs, each
+ // of which contains the value of one field (or one element of a repeated
+ // field). Each tag is encoded as a varint. The lower bits of the tag
+ // identify its wire type, which specifies the format of the data to follow.
+ // The rest of the bits contain the field number. Each type of field (as
+ // declared by FieldDescriptor::Type, in descriptor.h) maps to one of
+ // these wire types. Immediately following each tag is the field's value,
+ // encoded in the format specified by the wire type. Because the tag
+ // identifies the encoding of this data, it is possible to skip
+ // unrecognized fields for forwards compatibility.
+
+ enum WireType {
+ WIRETYPE_VARINT = 0,
+ WIRETYPE_FIXED64 = 1,
+ WIRETYPE_LENGTH_DELIMITED = 2,
+ WIRETYPE_START_GROUP = 3,
+ WIRETYPE_END_GROUP = 4,
+ WIRETYPE_FIXED32 = 5,
+ };
+
+ // Lite alternative to FieldDescriptor::Type. Must be kept in sync.
+ enum FieldType {
+ TYPE_DOUBLE = 1,
+ TYPE_FLOAT = 2,
+ TYPE_INT64 = 3,
+ TYPE_UINT64 = 4,
+ TYPE_INT32 = 5,
+ TYPE_FIXED64 = 6,
+ TYPE_FIXED32 = 7,
+ TYPE_BOOL = 8,
+ TYPE_STRING = 9,
+ TYPE_GROUP = 10,
+ TYPE_MESSAGE = 11,
+ TYPE_BYTES = 12,
+ TYPE_UINT32 = 13,
+ TYPE_ENUM = 14,
+ TYPE_SFIXED32 = 15,
+ TYPE_SFIXED64 = 16,
+ TYPE_SINT32 = 17,
+ TYPE_SINT64 = 18,
+ MAX_FIELD_TYPE = 18,
+ };
+
+ // Lite alternative to FieldDescriptor::CppType. Must be kept in sync.
+ enum CppType {
+ CPPTYPE_INT32 = 1,
+ CPPTYPE_INT64 = 2,
+ CPPTYPE_UINT32 = 3,
+ CPPTYPE_UINT64 = 4,
+ CPPTYPE_DOUBLE = 5,
+ CPPTYPE_FLOAT = 6,
+ CPPTYPE_BOOL = 7,
+ CPPTYPE_ENUM = 8,
+ CPPTYPE_STRING = 9,
+ CPPTYPE_MESSAGE = 10,
+ MAX_CPPTYPE = 10,
+ };
+
+ // Helper method to get the CppType for a particular Type.
+ static CppType FieldTypeToCppType(FieldType type);
+
+ // Given a FieldDescriptor::Type return its WireType
+ static inline WireFormatLite::WireType WireTypeForFieldType(
+ WireFormatLite::FieldType type) {
+ return kWireTypeForFieldType[type];
+ }
+
+ // Number of bits in a tag which identify the wire type.
+ static constexpr int kTagTypeBits = 3;
+ // Mask for those bits.
+ static constexpr uint32_t kTagTypeMask = (1 << kTagTypeBits) - 1;
+
+ // Helper functions for encoding and decoding tags. (Inlined below and in
+ // _inl.h)
+ //
+ // This is different from MakeTag(field->number(), field->type()) in the
+ // case of packed repeated fields.
+ constexpr static uint32_t MakeTag(int field_number, WireType type);
+ static WireType GetTagWireType(uint32_t tag);
+ static int GetTagFieldNumber(uint32_t tag);
+
+ // Compute the byte size of a tag. For groups, this includes both the start
+ // and end tags.
+ static inline size_t TagSize(int field_number,
+ WireFormatLite::FieldType type);
+
+ // Skips a field value with the given tag. The input should start
+ // positioned immediately after the tag. Skipped values are simply
+ // discarded, not recorded anywhere. See WireFormat::SkipField() for a
+ // version that records to an UnknownFieldSet.
+ static bool SkipField(io::CodedInputStream* input, uint32_t tag);
+
+ // Skips a field value with the given tag. The input should start
+ // positioned immediately after the tag. Skipped values are recorded to a
+ // CodedOutputStream.
+ static bool SkipField(io::CodedInputStream* input, uint32_t tag,
+ io::CodedOutputStream* output);
+
+ // Reads and ignores a message from the input. Skipped values are simply
+ // discarded, not recorded anywhere. See WireFormat::SkipMessage() for a
+ // version that records to an UnknownFieldSet.
+ static bool SkipMessage(io::CodedInputStream* input);
+
+ // Reads and ignores a message from the input. Skipped values are recorded
+ // to a CodedOutputStream.
+ static bool SkipMessage(io::CodedInputStream* input,
+ io::CodedOutputStream* output);
+
+ // This macro does the same thing as WireFormatLite::MakeTag(), but the
+ // result is usable as a compile-time constant, which makes it usable
+ // as a switch case or a template input. WireFormatLite::MakeTag() is more
+ // type-safe, though, so prefer it if possible.
+#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \
+ static_cast<uint32_t>((static_cast<uint32_t>(FIELD_NUMBER) << 3) | (TYPE))
+
+ // These are the tags for the old MessageSet format, which was defined as:
+ // message MessageSet {
+ // repeated group Item = 1 {
+ // required int32 type_id = 2;
+ // required string message = 3;
+ // }
+ // }
+ static constexpr int kMessageSetItemNumber = 1;
+ static constexpr int kMessageSetTypeIdNumber = 2;
+ static constexpr int kMessageSetMessageNumber = 3;
+ static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
+ kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP);
+ static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
+ kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP);
+ static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
+ kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT);
+ static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
+ kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
+
+ // Byte size of all tags of a MessageSet::Item combined.
+ static const size_t kMessageSetItemTagsSize;
+
+ // Helper functions for converting between floats/doubles and IEEE-754
+ // uint32s/uint64s so that they can be written. (Assumes your platform
+ // uses IEEE-754 floats.)
+ static uint32_t EncodeFloat(float value);
+ static float DecodeFloat(uint32_t value);
+ static uint64_t EncodeDouble(double value);
+ static double DecodeDouble(uint64_t value);
+
+ // Helper functions for mapping signed integers to unsigned integers in
+ // such a way that numbers with small magnitudes will encode to smaller
+ // varints. If you simply static_cast a negative number to an unsigned
+ // number and varint-encode it, it will always take 10 bytes, defeating
+ // the purpose of varint. So, for the "sint32" and "sint64" field types,
+ // we ZigZag-encode the values.
+ static uint32_t ZigZagEncode32(int32_t n);
+ static int32_t ZigZagDecode32(uint32_t n);
+ static uint64_t ZigZagEncode64(int64_t n);
+ static int64_t ZigZagDecode64(uint64_t n);
+
+ // =================================================================
+ // Methods for reading/writing individual field.
+
+ // Read fields, not including tags. The assumption is that you already
+ // read the tag to determine what field to read.
+
+ // For primitive fields, we just use a templatized routine parameterized by
+ // the represented type and the FieldType. These are specialized with the
+ // appropriate definition for each declared type.
+ template <typename CType, enum FieldType DeclaredType>
+ PROTOBUF_NDEBUG_INLINE static bool ReadPrimitive(io::CodedInputStream* input,
+ CType* value);
+
+ // Reads repeated primitive values, with optimizations for repeats.
+ // tag_size and tag should both be compile-time constants provided by the
+ // protocol compiler.
+ template <typename CType, enum FieldType DeclaredType>
+ PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedPrimitive(
+ int tag_size, uint32_t tag, io::CodedInputStream* input,
+ RepeatedField<CType>* value);
+
+ // Identical to ReadRepeatedPrimitive, except will not inline the
+ // implementation.
+ template <typename CType, enum FieldType DeclaredType>
+ static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32_t tag,
+ io::CodedInputStream* input,
+ RepeatedField<CType>* value);
+
+ // Reads a primitive value directly from the provided buffer. It returns a
+ // pointer past the segment of data that was read.
+ //
+ // This is only implemented for the types with fixed wire size, e.g.
+ // float, double, and the (s)fixed* types.
+ template <typename CType, enum FieldType DeclaredType>
+ PROTOBUF_NDEBUG_INLINE static const uint8_t* ReadPrimitiveFromArray(
+ const uint8_t* buffer, CType* value);
+
+ // Reads a primitive packed field.
+ //
+ // This is only implemented for packable types.
+ template <typename CType, enum FieldType DeclaredType>
+ PROTOBUF_NDEBUG_INLINE static bool ReadPackedPrimitive(
+ io::CodedInputStream* input, RepeatedField<CType>* value);
+
+ // Identical to ReadPackedPrimitive, except will not inline the
+ // implementation.
+ template <typename CType, enum FieldType DeclaredType>
+ static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
+ RepeatedField<CType>* value);
+
+ // Read a packed enum field. If the is_valid function is not nullptr, values
+ // for which is_valid(value) returns false are silently dropped.
+ static bool ReadPackedEnumNoInline(io::CodedInputStream* input,
+ bool (*is_valid)(int),
+ RepeatedField<int>* values);
+
+ // Read a packed enum field. If the is_valid function is not nullptr, values
+ // for which is_valid(value) returns false are appended to
+ // unknown_fields_stream.
+ static bool ReadPackedEnumPreserveUnknowns(
+ io::CodedInputStream* input, int field_number, bool (*is_valid)(int),
+ io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values);
+
+ // Read a string. ReadString(..., std::string* value) requires an
+ // existing std::string.
+ static inline bool ReadString(io::CodedInputStream* input,
+ std::string* value);
+ // ReadString(..., std::string** p) is internal-only, and should only be
+ // called from generated code. It starts by setting *p to "new std::string" if
+ // *p == &GetEmptyStringAlreadyInited(). It then invokes
+ // ReadString(io::CodedInputStream* input, *p). This is useful for reducing
+ // code size.
+ static inline bool ReadString(io::CodedInputStream* input, std::string** p);
+ // Analogous to ReadString().
+ static bool ReadBytes(io::CodedInputStream* input, std::string* value);
+ static bool ReadBytes(io::CodedInputStream* input, std::string** p);
+
+ enum Operation {
+ PARSE = 0,
+ SERIALIZE = 1,
+ };
+
+ // Returns true if the data is valid UTF-8.
+ static bool VerifyUtf8String(const char* data, int size, Operation op,
+ const char* field_name);
+
+ template <typename MessageType>
+ static inline bool ReadGroup(int field_number, io::CodedInputStream* input,
+ MessageType* value);
+
+ template <typename MessageType>
+ static inline bool ReadMessage(io::CodedInputStream* input,
+ MessageType* value);
+
+ template <typename MessageType>
+ static inline bool ReadMessageNoVirtual(io::CodedInputStream* input,
+ MessageType* value) {
+ return ReadMessage(input, value);
+ }
+
+ // Write a tag. The Write*() functions typically include the tag, so
+ // normally there's no need to call this unless using the Write*NoTag()
+ // variants.
+ PROTOBUF_NDEBUG_INLINE static void WriteTag(int field_number, WireType type,
+ io::CodedOutputStream* output);
+
+ // Write fields, without tags.
+ PROTOBUF_NDEBUG_INLINE static void WriteInt32NoTag(
+ int32_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteInt64NoTag(
+ int64_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteUInt32NoTag(
+ uint32_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteUInt64NoTag(
+ uint64_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteSInt32NoTag(
+ int32_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteSInt64NoTag(
+ int64_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteFixed32NoTag(
+ uint32_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteFixed64NoTag(
+ uint64_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteSFixed32NoTag(
+ int32_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteSFixed64NoTag(
+ int64_t value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteFloatNoTag(
+ float value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteDoubleNoTag(
+ double value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteBoolNoTag(
+ bool value, io::CodedOutputStream* output);
+ PROTOBUF_NDEBUG_INLINE static void WriteEnumNoTag(
+ int value, io::CodedOutputStream* output);
+
+ // Write array of primitive fields, without tags
+ static void WriteFloatArray(const float* a, int n,
+ io::CodedOutputStream* output);
+ static void WriteDoubleArray(const double* a, int n,
+ io::CodedOutputStream* output);
+ static void WriteFixed32Array(const uint32_t* a, int n,
+ io::CodedOutputStream* output);
+ static void WriteFixed64Array(const uint64_t* a, int n,
+ io::CodedOutputStream* output);
+ static void WriteSFixed32Array(const int32_t* a, int n,
+ io::CodedOutputStream* output);
+ static void WriteSFixed64Array(const int64_t* a, int n,
+ io::CodedOutputStream* output);
+ static void WriteBoolArray(const bool* a, int n,
+ io::CodedOutputStream* output);
+
+ // Write fields, including tags.
+ static void WriteInt32(int field_number, int32_t value,
+ io::CodedOutputStream* output);
+ static void WriteInt64(int field_number, int64_t value,
+ io::CodedOutputStream* output);
+ static void WriteUInt32(int field_number, uint32_t value,
+ io::CodedOutputStream* output);
+ static void WriteUInt64(int field_number, uint64_t value,
+ io::CodedOutputStream* output);
+ static void WriteSInt32(int field_number, int32_t value,
+ io::CodedOutputStream* output);
+ static void WriteSInt64(int field_number, int64_t value,
+ io::CodedOutputStream* output);
+ static void WriteFixed32(int field_number, uint32_t value,
+ io::CodedOutputStream* output);
+ static void WriteFixed64(int field_number, uint64_t value,
+ io::CodedOutputStream* output);
+ static void WriteSFixed32(int field_number, int32_t value,
+ io::CodedOutputStream* output);
+ static void WriteSFixed64(int field_number, int64_t value,
+ io::CodedOutputStream* output);
+ static void WriteFloat(int field_number, float value,
+ io::CodedOutputStream* output);
+ static void WriteDouble(int field_number, double value,
+ io::CodedOutputStream* output);
+ static void WriteBool(int field_number, bool value,
+ io::CodedOutputStream* output);
+ static void WriteEnum(int field_number, int value,
+ io::CodedOutputStream* output);
+
+ static void WriteString(int field_number, const std::string& value,
+ io::CodedOutputStream* output);
+ static void WriteBytes(int field_number, const std::string& value,
+ io::CodedOutputStream* output);
+ static void WriteStringMaybeAliased(int field_number,
+ const std::string& value,
+ io::CodedOutputStream* output);
+ static void WriteBytesMaybeAliased(int field_number, const std::string& value,
+ io::CodedOutputStream* output);
+
+ static void WriteGroup(int field_number, const MessageLite& value,
+ io::CodedOutputStream* output);
+ static void WriteMessage(int field_number, const MessageLite& value,
+ io::CodedOutputStream* output);
+ // Like above, but these will check if the output stream has enough
+ // space to write directly to a flat array.
+ static void WriteGroupMaybeToArray(int field_number, const MessageLite& value,
+ io::CodedOutputStream* output);
+ static void WriteMessageMaybeToArray(int field_number,
+ const MessageLite& value,
+ io::CodedOutputStream* output);
+
+ // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
+ // pointer must point at an instance of MessageType, *not* a subclass (or
+ // the subclass must not override SerializeWithCachedSizes()).
+ template <typename MessageType>
+ static inline void WriteGroupNoVirtual(int field_number,
+ const MessageType& value,
+ io::CodedOutputStream* output);
+ template <typename MessageType>
+ static inline void WriteMessageNoVirtual(int field_number,
+ const MessageType& value,
+ io::CodedOutputStream* output);
+
+ // Like above, but use only *ToArray methods of CodedOutputStream.
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteTagToArray(int field_number,
+ WireType type,
+ uint8_t* target);
+
+ // Write fields, without tags.
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray(
+ int32_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray(
+ int64_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray(
+ uint32_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray(
+ uint64_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray(
+ int32_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray(
+ int64_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray(
+ uint32_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray(
+ uint64_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray(
+ int32_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray(
+ int64_t value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray(
+ float value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray(
+ double value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(bool value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(int value,
+ uint8_t* target);
+
+ // Write fields, without tags. These require that value.size() > 0.
+ template <typename T>
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveNoTagToArray(
+ const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
+ uint8_t* target);
+ template <typename T>
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixedNoTagToArray(
+ const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
+ uint8_t* target);
+
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray(
+ const RepeatedField<int32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray(
+ const RepeatedField<int64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray(
+ const RepeatedField<uint32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray(
+ const RepeatedField<uint64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray(
+ const RepeatedField<int32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray(
+ const RepeatedField<int64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray(
+ const RepeatedField<uint32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray(
+ const RepeatedField<uint64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray(
+ const RepeatedField<int32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray(
+ const RepeatedField<int64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray(
+ const RepeatedField<float>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray(
+ const RepeatedField<double>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(
+ const RepeatedField<bool>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(
+ const RepeatedField<int>& value, uint8_t* output);
+
+ // Write fields, including tags.
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(int field_number,
+ int32_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(int field_number,
+ int64_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(int field_number,
+ uint32_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(int field_number,
+ uint64_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(int field_number,
+ int32_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(int field_number,
+ int64_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(int field_number,
+ uint32_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(int field_number,
+ uint64_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(int field_number,
+ int32_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(int field_number,
+ int64_t value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(int field_number,
+ float value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(int field_number,
+ double value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(int field_number,
+ bool value,
+ uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(int field_number,
+ int value,
+ uint8_t* target);
+
+ template <typename T>
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveToArray(
+ int field_number, const RepeatedField<T>& value,
+ uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target);
+
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(
+ int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(
+ int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(
+ int field_number, const RepeatedField<uint32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(
+ int field_number, const RepeatedField<uint64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(
+ int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(
+ int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(
+ int field_number, const RepeatedField<uint32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(
+ int field_number, const RepeatedField<uint64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(
+ int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(
+ int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(
+ int field_number, const RepeatedField<float>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(
+ int field_number, const RepeatedField<double>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(
+ int field_number, const RepeatedField<bool>& value, uint8_t* output);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(
+ int field_number, const RepeatedField<int>& value, uint8_t* output);
+
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteStringToArray(
+ int field_number, const std::string& value, uint8_t* target);
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBytesToArray(
+ int field_number, const std::string& value, uint8_t* target);
+
+ // Whether to serialize deterministically (e.g., map keys are
+ // sorted) is a property of a CodedOutputStream, and in the process
+ // of serialization, the "ToArray" variants may be invoked. But they don't
+ // have a CodedOutputStream available, so they get an additional parameter
+ // telling them whether to serialize deterministically.
+ static uint8_t* InternalWriteGroup(int field_number, const MessageLite& value,
+ uint8_t* target,
+ io::EpsCopyOutputStream* stream);
+ static uint8_t* InternalWriteMessage(int field_number,
+ const MessageLite& value,
+ int cached_size, uint8_t* target,
+ io::EpsCopyOutputStream* stream);
+
+ // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
+ // pointer must point at an instance of MessageType, *not* a subclass (or
+ // the subclass must not override SerializeWithCachedSizes()).
+ template <typename MessageType>
+ PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteGroupNoVirtualToArray(
+ int field_number, const MessageType& value, uint8_t* target);
+ template <typename MessageType>
+ PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteMessageNoVirtualToArray(
+ int field_number, const MessageType& value, uint8_t* target);
+
+ // For backward-compatibility, the last four methods also have versions
+ // that are non-deterministic always.
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteGroupToArray(
+ int field_number, const MessageLite& value, uint8_t* target) {
+ io::EpsCopyOutputStream stream(
+ target,
+ value.GetCachedSize() +
+ static_cast<int>(2 * io::CodedOutputStream::VarintSize32(
+ static_cast<uint32_t>(field_number) << 3)),
+ io::CodedOutputStream::IsDefaultSerializationDeterministic());
+ return InternalWriteGroup(field_number, value, target, &stream);
+ }
+ PROTOBUF_NDEBUG_INLINE static uint8_t* WriteMessageToArray(
+ int field_number, const MessageLite& value, uint8_t* target) {
+ int size = value.GetCachedSize();
+ io::EpsCopyOutputStream stream(
+ target,
+ size + static_cast<int>(io::CodedOutputStream::VarintSize32(
+ static_cast<uint32_t>(field_number) << 3) +
+ io::CodedOutputStream::VarintSize32(size)),
+ io::CodedOutputStream::IsDefaultSerializationDeterministic());
+ return InternalWriteMessage(field_number, value, value.GetCachedSize(),
+ target, &stream);
+ }
+
+ // Compute the byte size of a field. The XxSize() functions do NOT include
+ // the tag, so you must also call TagSize(). (This is because, for repeated
+ // fields, you should only call TagSize() once and multiply it by the element
+ // count, but you may have to call XxSize() for each individual element.)
+ static inline size_t Int32Size(int32_t value);
+ static inline size_t Int64Size(int64_t value);
+ static inline size_t UInt32Size(uint32_t value);
+ static inline size_t UInt64Size(uint64_t value);
+ static inline size_t SInt32Size(int32_t value);
+ static inline size_t SInt64Size(int64_t value);
+ static inline size_t EnumSize(int value);
+ static inline size_t Int32SizePlusOne(int32_t value);
+ static inline size_t Int64SizePlusOne(int64_t value);
+ static inline size_t UInt32SizePlusOne(uint32_t value);
+ static inline size_t UInt64SizePlusOne(uint64_t value);
+ static inline size_t SInt32SizePlusOne(int32_t value);
+ static inline size_t SInt64SizePlusOne(int64_t value);
+ static inline size_t EnumSizePlusOne(int value);
+
+ static size_t Int32Size(const RepeatedField<int32_t>& value);
+ static size_t Int64Size(const RepeatedField<int64_t>& value);
+ static size_t UInt32Size(const RepeatedField<uint32_t>& value);
+ static size_t UInt64Size(const RepeatedField<uint64_t>& value);
+ static size_t SInt32Size(const RepeatedField<int32_t>& value);
+ static size_t SInt64Size(const RepeatedField<int64_t>& value);
+ static size_t EnumSize(const RepeatedField<int>& value);
+
+ // These types always have the same size.
+ static constexpr size_t kFixed32Size = 4;
+ static constexpr size_t kFixed64Size = 8;
+ static constexpr size_t kSFixed32Size = 4;
+ static constexpr size_t kSFixed64Size = 8;
+ static constexpr size_t kFloatSize = 4;
+ static constexpr size_t kDoubleSize = 8;
+ static constexpr size_t kBoolSize = 1;
+
+ static inline size_t StringSize(const std::string& value);
+ static inline size_t BytesSize(const std::string& value);
+
+ template <typename MessageType>
+ static inline size_t GroupSize(const MessageType& value);
+ template <typename MessageType>
+ static inline size_t MessageSize(const MessageType& value);
+
+ // Like above, but de-virtualize the call to ByteSize(). The
+ // pointer must point at an instance of MessageType, *not* a subclass (or
+ // the subclass must not override ByteSize()).
+ template <typename MessageType>
+ static inline size_t GroupSizeNoVirtual(const MessageType& value);
+ template <typename MessageType>
+ static inline size_t MessageSizeNoVirtual(const MessageType& value);
+
+ // Given the length of data, calculate the byte size of the data on the
+ // wire if we encode the data as a length delimited field.
+ static inline size_t LengthDelimitedSize(size_t length);
+
+ private:
+ // A helper method for the repeated primitive reader. This method has
+ // optimizations for primitive types that have fixed size on the wire, and
+ // can be read using potentially faster paths.
+ template <typename CType, enum FieldType DeclaredType>
+ PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedFixedSizePrimitive(
+ int tag_size, uint32_t tag, io::CodedInputStream* input,
+ RepeatedField<CType>* value);
+
+ // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields.
+ template <typename CType, enum FieldType DeclaredType>
+ PROTOBUF_NDEBUG_INLINE static bool ReadPackedFixedSizePrimitive(
+ io::CodedInputStream* input, RepeatedField<CType>* value);
+
+ static const CppType kFieldTypeToCppTypeMap[];
+ static const WireFormatLite::WireType kWireTypeForFieldType[];
+ static void WriteSubMessageMaybeToArray(int size, const MessageLite& value,
+ io::CodedOutputStream* output);
+
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
+};
+
+// A class which deals with unknown values. The default implementation just
+// discards them. WireFormat defines a subclass which writes to an
+// UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since
+// ExtensionSet is part of the lite library but UnknownFieldSet is not.
+class PROTOBUF_EXPORT FieldSkipper {
+ public:
+ FieldSkipper() {}
+ virtual ~FieldSkipper() {}
+
+ // Skip a field whose tag has already been consumed.
+ virtual bool SkipField(io::CodedInputStream* input, uint32_t tag);
+
+ // Skip an entire message or group, up to an end-group tag (which is consumed)
+ // or end-of-stream.
+ virtual bool SkipMessage(io::CodedInputStream* input);
+
+ // Deal with an already-parsed unrecognized enum value. The default
+ // implementation does nothing, but the UnknownFieldSet-based implementation
+ // saves it as an unknown varint.
+ virtual void SkipUnknownEnum(int field_number, int value);
+};
+
+// Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream.
+
+class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper {
+ public:
+ explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields)
+ : unknown_fields_(unknown_fields) {}
+ ~CodedOutputStreamFieldSkipper() override {}
+
+ // implements FieldSkipper -----------------------------------------
+ bool SkipField(io::CodedInputStream* input, uint32_t tag) override;
+ bool SkipMessage(io::CodedInputStream* input) override;
+ void SkipUnknownEnum(int field_number, int value) override;
+
+ protected:
+ io::CodedOutputStream* unknown_fields_;
+};
+
+// inline methods ====================================================
+
+inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType(
+ FieldType type) {
+ return kFieldTypeToCppTypeMap[type];
+}
+
+constexpr inline uint32_t WireFormatLite::MakeTag(int field_number,
+ WireType type) {
+ return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
+}
+
+inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32_t tag) {
+ return static_cast<WireType>(tag & kTagTypeMask);
+}
+
+inline int WireFormatLite::GetTagFieldNumber(uint32_t tag) {
+ return static_cast<int>(tag >> kTagTypeBits);
+}
+
+inline size_t WireFormatLite::TagSize(int field_number,
+ WireFormatLite::FieldType type) {
+ size_t result = io::CodedOutputStream::VarintSize32(
+ static_cast<uint32_t>(field_number << kTagTypeBits));
+ if (type == TYPE_GROUP) {
+ // Groups have both a start and an end tag.
+ return result * 2;
+ } else {
+ return result;
+ }
+}
+
+inline uint32_t WireFormatLite::EncodeFloat(float value) {
+ return bit_cast<uint32_t>(value);
+}
+
+inline float WireFormatLite::DecodeFloat(uint32_t value) {
+ return bit_cast<float>(value);
+}
+
+inline uint64_t WireFormatLite::EncodeDouble(double value) {
+ return bit_cast<uint64_t>(value);
+}
+
+inline double WireFormatLite::DecodeDouble(uint64_t value) {
+ return bit_cast<double>(value);
+}
+
+// ZigZag Transform: Encodes signed integers so that they can be
+// effectively used with varint encoding.
+//
+// varint operates on unsigned integers, encoding smaller numbers into
+// fewer bytes. If you try to use it on a signed integer, it will treat
+// this number as a very large unsigned integer, which means that even
+// small signed numbers like -1 will take the maximum number of bytes
+// (10) to encode. ZigZagEncode() maps signed integers to unsigned
+// in such a way that those with a small absolute value will have smaller
+// encoded values, making them appropriate for encoding using varint.
+//
+// int32_t -> uint32_t
+// -------------------------
+// 0 -> 0
+// -1 -> 1
+// 1 -> 2
+// -2 -> 3
+// ... -> ...
+// 2147483647 -> 4294967294
+// -2147483648 -> 4294967295
+//
+// >> encode >>
+// << decode <<
+
+inline uint32_t WireFormatLite::ZigZagEncode32(int32_t n) {
+ // Note: the right-shift must be arithmetic
+ // Note: left shift must be unsigned because of overflow
+ return (static_cast<uint32_t>(n) << 1) ^ static_cast<uint32_t>(n >> 31);
+}
+
+inline int32_t WireFormatLite::ZigZagDecode32(uint32_t n) {
+ // Note: Using unsigned types prevent undefined behavior
+ return static_cast<int32_t>((n >> 1) ^ (~(n & 1) + 1));
+}
+
+inline uint64_t WireFormatLite::ZigZagEncode64(int64_t n) {
+ // Note: the right-shift must be arithmetic
+ // Note: left shift must be unsigned because of overflow
+ return (static_cast<uint64_t>(n) << 1) ^ static_cast<uint64_t>(n >> 63);
+}
+
+inline int64_t WireFormatLite::ZigZagDecode64(uint64_t n) {
+ // Note: Using unsigned types prevent undefined behavior
+ return static_cast<int64_t>((n >> 1) ^ (~(n & 1) + 1));
+}
+
+// String is for UTF-8 text only, but, even so, ReadString() can simply
+// call ReadBytes().
+
+inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
+ std::string* value) {
+ return ReadBytes(input, value);
+}
+
+inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
+ std::string** p) {
+ return ReadBytes(input, p);
+}
+
+inline uint8_t* InternalSerializeUnknownMessageSetItemsToArray(
+ const std::string& unknown_fields, uint8_t* target,
+ io::EpsCopyOutputStream* stream) {
+ return stream->WriteRaw(unknown_fields.data(),
+ static_cast<int>(unknown_fields.size()), target);
+}
+
+inline size_t ComputeUnknownMessageSetItemsSize(
+ const std::string& unknown_fields) {
+ return unknown_fields.size();
+}
+
+// Implementation details of ReadPrimitive.
+
+template <>
+inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_INT32>(
+ io::CodedInputStream* input, int32_t* value) {
+ uint32_t temp;
+ if (!input->ReadVarint32(&temp)) return false;
+ *value = static_cast<int32_t>(temp);
+ return true;
+}
+template <>
+inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_INT64>(
+ io::CodedInputStream* input, int64_t* value) {
+ uint64_t temp;
+ if (!input->ReadVarint64(&temp)) return false;
+ *value = static_cast<int64_t>(temp);
+ return true;
+}
+template <>
+inline bool
+WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_UINT32>(
+ io::CodedInputStream* input, uint32_t* value) {
+ return input->ReadVarint32(value);
+}
+template <>
+inline bool
+WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_UINT64>(
+ io::CodedInputStream* input, uint64_t* value) {
+ return input->ReadVarint64(value);
+}
+template <>
+inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SINT32>(
+ io::CodedInputStream* input, int32_t* value) {
+ uint32_t temp;
+ if (!input->ReadVarint32(&temp)) return false;
+ *value = ZigZagDecode32(temp);
+ return true;
+}
+template <>
+inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SINT64>(
+ io::CodedInputStream* input, int64_t* value) {
+ uint64_t temp;
+ if (!input->ReadVarint64(&temp)) return false;
+ *value = ZigZagDecode64(temp);
+ return true;
+}
+template <>
+inline bool
+WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_FIXED32>(
+ io::CodedInputStream* input, uint32_t* value) {
+ return input->ReadLittleEndian32(value);
+}
+template <>
+inline bool
+WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_FIXED64>(
+ io::CodedInputStream* input, uint64_t* value) {
+ return input->ReadLittleEndian64(value);
+}
+template <>
+inline bool
+WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SFIXED32>(
+ io::CodedInputStream* input, int32_t* value) {
+ uint32_t temp;
+ if (!input->ReadLittleEndian32(&temp)) return false;
+ *value = static_cast<int32_t>(temp);
+ return true;
+}
+template <>
+inline bool
+WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SFIXED64>(
+ io::CodedInputStream* input, int64_t* value) {
+ uint64_t temp;
+ if (!input->ReadLittleEndian64(&temp)) return false;
+ *value = static_cast<int64_t>(temp);
+ return true;
+}
+template <>
+inline bool WireFormatLite::ReadPrimitive<float, WireFormatLite::TYPE_FLOAT>(
+ io::CodedInputStream* input, float* value) {
+ uint32_t temp;
+ if (!input->ReadLittleEndian32(&temp)) return false;
+ *value = DecodeFloat(temp);
+ return true;
+}
+template <>
+inline bool WireFormatLite::ReadPrimitive<double, WireFormatLite::TYPE_DOUBLE>(
+ io::CodedInputStream* input, double* value) {
+ uint64_t temp;
+ if (!input->ReadLittleEndian64(&temp)) return false;
+ *value = DecodeDouble(temp);
+ return true;
+}
+template <>
+inline bool WireFormatLite::ReadPrimitive<bool, WireFormatLite::TYPE_BOOL>(
+ io::CodedInputStream* input, bool* value) {
+ uint64_t temp;
+ if (!input->ReadVarint64(&temp)) return false;
+ *value = temp != 0;
+ return true;
+}
+template <>
+inline bool WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
+ io::CodedInputStream* input, int* value) {
+ uint32_t temp;
+ if (!input->ReadVarint32(&temp)) return false;
+ *value = static_cast<int>(temp);
+ return true;
+}
+
+template <>
+inline const uint8_t*
+WireFormatLite::ReadPrimitiveFromArray<uint32_t, WireFormatLite::TYPE_FIXED32>(
+ const uint8_t* buffer, uint32_t* value) {
+ return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value);
+}
+template <>
+inline const uint8_t*
+WireFormatLite::ReadPrimitiveFromArray<uint64_t, WireFormatLite::TYPE_FIXED64>(
+ const uint8_t* buffer, uint64_t* value) {
+ return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value);
+}
+template <>
+inline const uint8_t*
+WireFormatLite::ReadPrimitiveFromArray<int32_t, WireFormatLite::TYPE_SFIXED32>(
+ const uint8_t* buffer, int32_t* value) {
+ uint32_t temp;
+ buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
+ *value = static_cast<int32_t>(temp);
+ return buffer;
+}
+template <>
+inline const uint8_t*
+WireFormatLite::ReadPrimitiveFromArray<int64_t, WireFormatLite::TYPE_SFIXED64>(
+ const uint8_t* buffer, int64_t* value) {
+ uint64_t temp;
+ buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
+ *value = static_cast<int64_t>(temp);
+ return buffer;
+}
+template <>
+inline const uint8_t*
+WireFormatLite::ReadPrimitiveFromArray<float, WireFormatLite::TYPE_FLOAT>(
+ const uint8_t* buffer, float* value) {
+ uint32_t temp;
+ buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
+ *value = DecodeFloat(temp);
+ return buffer;
+}
+template <>
+inline const uint8_t*
+WireFormatLite::ReadPrimitiveFromArray<double, WireFormatLite::TYPE_DOUBLE>(
+ const uint8_t* buffer, double* value) {
+ uint64_t temp;
+ buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
+ *value = DecodeDouble(temp);
+ return buffer;
+}
+
+template <typename CType, enum WireFormatLite::FieldType DeclaredType>
+inline bool WireFormatLite::ReadRepeatedPrimitive(
+ int, // tag_size, unused.
+ uint32_t tag, io::CodedInputStream* input, RepeatedField<CType>* values) {
+ CType value;
+ if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
+ values->Add(value);
+ int elements_already_reserved = values->Capacity() - values->size();
+ while (elements_already_reserved > 0 && input->ExpectTag(tag)) {
+ if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
+ values->AddAlreadyReserved(value);
+ elements_already_reserved--;
+ }
+ return true;
+}
+
+template <typename CType, enum WireFormatLite::FieldType DeclaredType>
+inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive(
+ int tag_size, uint32_t tag, io::CodedInputStream* input,
+ RepeatedField<CType>* values) {
+ GOOGLE_DCHECK_EQ(UInt32Size(tag), static_cast<size_t>(tag_size));
+ CType value;
+ if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
+ values->Add(value);
+
+ // For fixed size values, repeated values can be read more quickly by
+ // reading directly from a raw array.
+ //
+ // We can get a tight loop by only reading as many elements as can be
+ // added to the RepeatedField without having to do any resizing. Additionally,
+ // we only try to read as many elements as are available from the current
+ // buffer space. Doing so avoids having to perform boundary checks when
+ // reading the value: the maximum number of elements that can be read is
+ // known outside of the loop.
+ const void* void_pointer;
+ int size;
+ input->GetDirectBufferPointerInline(&void_pointer, &size);
+ if (size > 0) {
+ const uint8_t* buffer = reinterpret_cast<const uint8_t*>(void_pointer);
+ // The number of bytes each type occupies on the wire.
+ const int per_value_size = tag_size + static_cast<int>(sizeof(value));
+
+ // parentheses around (std::min) prevents macro expansion of min(...)
+ int elements_available =
+ (std::min)(values->Capacity() - values->size(), size / per_value_size);
+ int num_read = 0;
+ while (num_read < elements_available &&
+ (buffer = io::CodedInputStream::ExpectTagFromArray(buffer, tag)) !=
+ nullptr) {
+ buffer = ReadPrimitiveFromArray<CType, DeclaredType>(buffer, &value);
+ values->AddAlreadyReserved(value);
+ ++num_read;
+ }
+ const int read_bytes = num_read * per_value_size;
+ if (read_bytes > 0) {
+ input->Skip(read_bytes);
+ }
+ }
+ return true;
+}
+
+// Specializations of ReadRepeatedPrimitive for the fixed size types, which use
+// the optimized code path.
+#define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \
+ template <> \
+ inline bool WireFormatLite::ReadRepeatedPrimitive< \
+ CPPTYPE, WireFormatLite::DECLARED_TYPE>( \
+ int tag_size, uint32_t tag, io::CodedInputStream* input, \
+ RepeatedField<CPPTYPE>* values) { \
+ return ReadRepeatedFixedSizePrimitive<CPPTYPE, \
+ WireFormatLite::DECLARED_TYPE>( \
+ tag_size, tag, input, values); \
+ }
+
+READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32)
+READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64)
+READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32)
+READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64)
+READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
+READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)
+
+#undef READ_REPEATED_FIXED_SIZE_PRIMITIVE
+
+template <typename CType, enum WireFormatLite::FieldType DeclaredType>
+bool WireFormatLite::ReadRepeatedPrimitiveNoInline(
+ int tag_size, uint32_t tag, io::CodedInputStream* input,
+ RepeatedField<CType>* value) {
+ return ReadRepeatedPrimitive<CType, DeclaredType>(tag_size, tag, input,
+ value);
+}
+
+template <typename CType, enum WireFormatLite::FieldType DeclaredType>
+inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input,
+ RepeatedField<CType>* values) {
+ int length;
+ if (!input->ReadVarintSizeAsInt(&length)) return false;
+ io::CodedInputStream::Limit limit = input->PushLimit(length);
+ while (input->BytesUntilLimit() > 0) {
+ CType value;
+ if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
+ values->Add(value);
+ }
+ input->PopLimit(limit);
+ return true;
+}
+
+template <typename CType, enum WireFormatLite::FieldType DeclaredType>
+inline bool WireFormatLite::ReadPackedFixedSizePrimitive(
+ io::CodedInputStream* input, RepeatedField<CType>* values) {
+ int length;
+ if (!input->ReadVarintSizeAsInt(&length)) return false;
+ const int old_entries = values->size();
+ const int new_entries = length / static_cast<int>(sizeof(CType));
+ const int new_bytes = new_entries * static_cast<int>(sizeof(CType));
+ if (new_bytes != length) return false;
+ // We would *like* to pre-allocate the buffer to write into (for
+ // speed), but *must* avoid performing a very large allocation due
+ // to a malicious user-supplied "length" above. So we have a fast
+ // path that pre-allocates when the "length" is less than a bound.
+ // We determine the bound by calling BytesUntilTotalBytesLimit() and
+ // BytesUntilLimit(). These return -1 to mean "no limit set".
+ // There are four cases:
+ // TotalBytesLimit Limit
+ // -1 -1 Use slow path.
+ // -1 >= 0 Use fast path if length <= Limit.
+ // >= 0 -1 Use slow path.
+ // >= 0 >= 0 Use fast path if length <= min(both limits).
+ int64_t bytes_limit = input->BytesUntilTotalBytesLimit();
+ if (bytes_limit == -1) {
+ bytes_limit = input->BytesUntilLimit();
+ } else {
+ // parentheses around (std::min) prevents macro expansion of min(...)
+ bytes_limit =
+ (std::min)(bytes_limit, static_cast<int64_t>(input->BytesUntilLimit()));
+ }
+ if (bytes_limit >= new_bytes) {
+ // Fast-path that pre-allocates *values to the final size.
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+ values->Resize(old_entries + new_entries, 0);
+ // values->mutable_data() may change after Resize(), so do this after:
+ void* dest = reinterpret_cast<void*>(values->mutable_data() + old_entries);
+ if (!input->ReadRaw(dest, new_bytes)) {
+ values->Truncate(old_entries);
+ return false;
+ }
+#else
+ values->Reserve(old_entries + new_entries);
+ CType value;
+ for (int i = 0; i < new_entries; ++i) {
+ if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
+ values->AddAlreadyReserved(value);
+ }
+#endif
+ } else {
+ // This is the slow-path case where "length" may be too large to
+ // safely allocate. We read as much as we can into *values
+ // without pre-allocating "length" bytes.
+ CType value;
+ for (int i = 0; i < new_entries; ++i) {
+ if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
+ values->Add(value);
+ }
+ }
+ return true;
+}
+
+// Specializations of ReadPackedPrimitive for the fixed size types, which use
+// an optimized code path.
+#define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \
+ template <> \
+ inline bool \
+ WireFormatLite::ReadPackedPrimitive<CPPTYPE, WireFormatLite::DECLARED_TYPE>( \
+ io::CodedInputStream * input, RepeatedField<CPPTYPE> * values) { \
+ return ReadPackedFixedSizePrimitive<CPPTYPE, \
+ WireFormatLite::DECLARED_TYPE>( \
+ input, values); \
+ }
+
+READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32)
+READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64)
+READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32)
+READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64)
+READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
+READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)
+
+#undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE
+
+template <typename CType, enum WireFormatLite::FieldType DeclaredType>
+bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
+ RepeatedField<CType>* values) {
+ return ReadPackedPrimitive<CType, DeclaredType>(input, values);
+}
+
+
+template <typename MessageType>
+inline bool WireFormatLite::ReadGroup(int field_number,
+ io::CodedInputStream* input,
+ MessageType* value) {
+ if (!input->IncrementRecursionDepth()) return false;
+ if (!value->MergePartialFromCodedStream(input)) return false;
+ input->UnsafeDecrementRecursionDepth();
+ // Make sure the last thing read was an end tag for this group.
+ if (!input->LastTagWas(MakeTag(field_number, WIRETYPE_END_GROUP))) {
+ return false;
+ }
+ return true;
+}
+template <typename MessageType>
+inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input,
+ MessageType* value) {
+ int length;
+ if (!input->ReadVarintSizeAsInt(&length)) return false;
+ std::pair<io::CodedInputStream::Limit, int> p =
+ input->IncrementRecursionDepthAndPushLimit(length);
+ if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false;
+ // Make sure that parsing stopped when the limit was hit, not at an endgroup
+ // tag.
+ return input->DecrementRecursionDepthAndPopLimit(p.first);
+}
+
+// ===================================================================
+
+inline void WireFormatLite::WriteTag(int field_number, WireType type,
+ io::CodedOutputStream* output) {
+ output->WriteTag(MakeTag(field_number, type));
+}
+
+inline void WireFormatLite::WriteInt32NoTag(int32_t value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint32SignExtended(value);
+}
+inline void WireFormatLite::WriteInt64NoTag(int64_t value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint64(static_cast<uint64_t>(value));
+}
+inline void WireFormatLite::WriteUInt32NoTag(uint32_t value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint32(value);
+}
+inline void WireFormatLite::WriteUInt64NoTag(uint64_t value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint64(value);
+}
+inline void WireFormatLite::WriteSInt32NoTag(int32_t value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint32(ZigZagEncode32(value));
+}
+inline void WireFormatLite::WriteSInt64NoTag(int64_t value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint64(ZigZagEncode64(value));
+}
+inline void WireFormatLite::WriteFixed32NoTag(uint32_t value,
+ io::CodedOutputStream* output) {
+ output->WriteLittleEndian32(value);
+}
+inline void WireFormatLite::WriteFixed64NoTag(uint64_t value,
+ io::CodedOutputStream* output) {
+ output->WriteLittleEndian64(value);
+}
+inline void WireFormatLite::WriteSFixed32NoTag(int32_t value,
+ io::CodedOutputStream* output) {
+ output->WriteLittleEndian32(static_cast<uint32_t>(value));
+}
+inline void WireFormatLite::WriteSFixed64NoTag(int64_t value,
+ io::CodedOutputStream* output) {
+ output->WriteLittleEndian64(static_cast<uint64_t>(value));
+}
+inline void WireFormatLite::WriteFloatNoTag(float value,
+ io::CodedOutputStream* output) {
+ output->WriteLittleEndian32(EncodeFloat(value));
+}
+inline void WireFormatLite::WriteDoubleNoTag(double value,
+ io::CodedOutputStream* output) {
+ output->WriteLittleEndian64(EncodeDouble(value));
+}
+inline void WireFormatLite::WriteBoolNoTag(bool value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint32(value ? 1 : 0);
+}
+inline void WireFormatLite::WriteEnumNoTag(int value,
+ io::CodedOutputStream* output) {
+ output->WriteVarint32SignExtended(value);
+}
+
+// See comment on ReadGroupNoVirtual to understand the need for this template
+// parameter name.
+template <typename MessageType_WorkAroundCppLookupDefect>
+inline void WireFormatLite::WriteGroupNoVirtual(
+ int field_number, const MessageType_WorkAroundCppLookupDefect& value,
+ io::CodedOutputStream* output) {
+ WriteTag(field_number, WIRETYPE_START_GROUP, output);
+ value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
+ WriteTag(field_number, WIRETYPE_END_GROUP, output);
+}
+template <typename MessageType_WorkAroundCppLookupDefect>
+inline void WireFormatLite::WriteMessageNoVirtual(
+ int field_number, const MessageType_WorkAroundCppLookupDefect& value,
+ io::CodedOutputStream* output) {
+ WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
+ output->WriteVarint32(
+ value.MessageType_WorkAroundCppLookupDefect::GetCachedSize());
+ value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
+}
+
+// ===================================================================
+
+inline uint8_t* WireFormatLite::WriteTagToArray(int field_number, WireType type,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteTagToArray(MakeTag(field_number, type),
+ target);
+}
+
+inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(int32_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(int64_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint64ToArray(
+ static_cast<uint64_t>(value), target);
+}
+inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(uint32_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint32ToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(uint64_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint64ToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(int32_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint32ToArray(ZigZagEncode32(value),
+ target);
+}
+inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(int64_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint64ToArray(ZigZagEncode64(value),
+ target);
+}
+inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(uint32_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(uint64_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(int32_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteLittleEndian32ToArray(
+ static_cast<uint32_t>(value), target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(int64_t value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteLittleEndian64ToArray(
+ static_cast<uint64_t>(value), target);
+}
+inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(float value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteLittleEndian32ToArray(EncodeFloat(value),
+ target);
+}
+inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(double value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteLittleEndian64ToArray(EncodeDouble(value),
+ target);
+}
+inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(bool value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint32ToArray(value ? 1 : 0, target);
+}
+inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(int value,
+ uint8_t* target) {
+ return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
+}
+
+template <typename T>
+inline uint8_t* WireFormatLite::WritePrimitiveNoTagToArray(
+ const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
+ uint8_t* target) {
+ const int n = value.size();
+ GOOGLE_DCHECK_GT(n, 0);
+
+ const T* ii = value.data();
+ int i = 0;
+ do {
+ target = Writer(ii[i], target);
+ } while (++i < n);
+
+ return target;
+}
+
+template <typename T>
+inline uint8_t* WireFormatLite::WriteFixedNoTagToArray(
+ const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
+ uint8_t* target) {
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+ (void)Writer;
+
+ const int n = value.size();
+ GOOGLE_DCHECK_GT(n, 0);
+
+ const T* ii = value.data();
+ const int bytes = n * static_cast<int>(sizeof(ii[0]));
+ memcpy(target, ii, static_cast<size_t>(bytes));
+ return target + bytes;
+#else
+ return WritePrimitiveNoTagToArray(value, Writer, target);
+#endif
+}
+
+inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(
+ const RepeatedField<int32_t>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteInt32NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(
+ const RepeatedField<int64_t>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteInt64NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(
+ const RepeatedField<uint32_t>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteUInt32NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(
+ const RepeatedField<uint64_t>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteUInt64NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(
+ const RepeatedField<int32_t>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteSInt32NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(
+ const RepeatedField<int64_t>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteSInt64NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(
+ const RepeatedField<uint32_t>& value, uint8_t* target) {
+ return WriteFixedNoTagToArray(value, WriteFixed32NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(
+ const RepeatedField<uint64_t>& value, uint8_t* target) {
+ return WriteFixedNoTagToArray(value, WriteFixed64NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(
+ const RepeatedField<int32_t>& value, uint8_t* target) {
+ return WriteFixedNoTagToArray(value, WriteSFixed32NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(
+ const RepeatedField<int64_t>& value, uint8_t* target) {
+ return WriteFixedNoTagToArray(value, WriteSFixed64NoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(
+ const RepeatedField<float>& value, uint8_t* target) {
+ return WriteFixedNoTagToArray(value, WriteFloatNoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(
+ const RepeatedField<double>& value, uint8_t* target) {
+ return WriteFixedNoTagToArray(value, WriteDoubleNoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(
+ const RepeatedField<bool>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteBoolNoTagToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(
+ const RepeatedField<int>& value, uint8_t* target) {
+ return WritePrimitiveNoTagToArray(value, WriteEnumNoTagToArray, target);
+}
+
+inline uint8_t* WireFormatLite::WriteInt32ToArray(int field_number,
+ int32_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteInt32NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteInt64ToArray(int field_number,
+ int64_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteInt64NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteUInt32ToArray(int field_number,
+ uint32_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteUInt32NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteUInt64ToArray(int field_number,
+ uint64_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteUInt64NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteSInt32ToArray(int field_number,
+ int32_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteSInt32NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteSInt64ToArray(int field_number,
+ int64_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteSInt64NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteFixed32ToArray(int field_number,
+ uint32_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
+ return WriteFixed32NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteFixed64ToArray(int field_number,
+ uint64_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
+ return WriteFixed64NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed32ToArray(int field_number,
+ int32_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
+ return WriteSFixed32NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed64ToArray(int field_number,
+ int64_t value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
+ return WriteSFixed64NoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteFloatToArray(int field_number, float value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
+ return WriteFloatNoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteDoubleToArray(int field_number,
+ double value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
+ return WriteDoubleNoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteBoolToArray(int field_number, bool value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteBoolNoTagToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteEnumToArray(int field_number, int value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
+ return WriteEnumNoTagToArray(value, target);
+}
+
+template <typename T>
+inline uint8_t* WireFormatLite::WritePrimitiveToArray(
+ int field_number, const RepeatedField<T>& value,
+ uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target) {
+ const int n = value.size();
+ if (n == 0) {
+ return target;
+ }
+
+ const T* ii = value.data();
+ int i = 0;
+ do {
+ target = Writer(field_number, ii[i], target);
+ } while (++i < n);
+
+ return target;
+}
+
+inline uint8_t* WireFormatLite::WriteInt32ToArray(
+ int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteInt32ToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteInt64ToArray(
+ int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteInt64ToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteUInt32ToArray(
+ int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteUInt32ToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteUInt64ToArray(
+ int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteUInt64ToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteSInt32ToArray(
+ int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteSInt32ToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteSInt64ToArray(
+ int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteSInt64ToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteFixed32ToArray(
+ int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteFixed32ToArray,
+ target);
+}
+inline uint8_t* WireFormatLite::WriteFixed64ToArray(
+ int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteFixed64ToArray,
+ target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed32ToArray(
+ int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteSFixed32ToArray,
+ target);
+}
+inline uint8_t* WireFormatLite::WriteSFixed64ToArray(
+ int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteSFixed64ToArray,
+ target);
+}
+inline uint8_t* WireFormatLite::WriteFloatToArray(
+ int field_number, const RepeatedField<float>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteFloatToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteDoubleToArray(
+ int field_number, const RepeatedField<double>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteDoubleToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteBoolToArray(
+ int field_number, const RepeatedField<bool>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteBoolToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteEnumToArray(
+ int field_number, const RepeatedField<int>& value, uint8_t* target) {
+ return WritePrimitiveToArray(field_number, value, WriteEnumToArray, target);
+}
+inline uint8_t* WireFormatLite::WriteStringToArray(int field_number,
+ const std::string& value,
+ uint8_t* target) {
+ // String is for UTF-8 text only
+ // WARNING: In wire_format.cc, both strings and bytes are handled by
+ // WriteString() to avoid code duplication. If the implementations become
+ // different, you will need to update that usage.
+ target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
+ return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
+}
+inline uint8_t* WireFormatLite::WriteBytesToArray(int field_number,
+ const std::string& value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
+ return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
+}
+
+
+// See comment on ReadGroupNoVirtual to understand the need for this template
+// parameter name.
+template <typename MessageType_WorkAroundCppLookupDefect>
+inline uint8_t* WireFormatLite::InternalWriteGroupNoVirtualToArray(
+ int field_number, const MessageType_WorkAroundCppLookupDefect& value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target);
+ target = value.MessageType_WorkAroundCppLookupDefect::
+ SerializeWithCachedSizesToArray(target);
+ return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target);
+}
+template <typename MessageType_WorkAroundCppLookupDefect>
+inline uint8_t* WireFormatLite::InternalWriteMessageNoVirtualToArray(
+ int field_number, const MessageType_WorkAroundCppLookupDefect& value,
+ uint8_t* target) {
+ target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
+ target = io::CodedOutputStream::WriteVarint32ToArray(
+ static_cast<uint32_t>(
+ value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()),
+ target);
+ return value
+ .MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray(
+ target);
+}
+
+// ===================================================================
+
+inline size_t WireFormatLite::Int32Size(int32_t value) {
+ return io::CodedOutputStream::VarintSize32SignExtended(value);
+}
+inline size_t WireFormatLite::Int64Size(int64_t value) {
+ return io::CodedOutputStream::VarintSize64(static_cast<uint64_t>(value));
+}
+inline size_t WireFormatLite::UInt32Size(uint32_t value) {
+ return io::CodedOutputStream::VarintSize32(value);
+}
+inline size_t WireFormatLite::UInt64Size(uint64_t value) {
+ return io::CodedOutputStream::VarintSize64(value);
+}
+inline size_t WireFormatLite::SInt32Size(int32_t value) {
+ return io::CodedOutputStream::VarintSize32(ZigZagEncode32(value));
+}
+inline size_t WireFormatLite::SInt64Size(int64_t value) {
+ return io::CodedOutputStream::VarintSize64(ZigZagEncode64(value));
+}
+inline size_t WireFormatLite::EnumSize(int value) {
+ return io::CodedOutputStream::VarintSize32SignExtended(value);
+}
+inline size_t WireFormatLite::Int32SizePlusOne(int32_t value) {
+ return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value);
+}
+inline size_t WireFormatLite::Int64SizePlusOne(int64_t value) {
+ return io::CodedOutputStream::VarintSize64PlusOne(
+ static_cast<uint64_t>(value));
+}
+inline size_t WireFormatLite::UInt32SizePlusOne(uint32_t value) {
+ return io::CodedOutputStream::VarintSize32PlusOne(value);
+}
+inline size_t WireFormatLite::UInt64SizePlusOne(uint64_t value) {
+ return io::CodedOutputStream::VarintSize64PlusOne(value);
+}
+inline size_t WireFormatLite::SInt32SizePlusOne(int32_t value) {
+ return io::CodedOutputStream::VarintSize32PlusOne(ZigZagEncode32(value));
+}
+inline size_t WireFormatLite::SInt64SizePlusOne(int64_t value) {
+ return io::CodedOutputStream::VarintSize64PlusOne(ZigZagEncode64(value));
+}
+inline size_t WireFormatLite::EnumSizePlusOne(int value) {
+ return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value);
+}
+
+inline size_t WireFormatLite::StringSize(const std::string& value) {
+ return LengthDelimitedSize(value.size());
+}
+inline size_t WireFormatLite::BytesSize(const std::string& value) {
+ return LengthDelimitedSize(value.size());
+}
+
+
+template <typename MessageType>
+inline size_t WireFormatLite::GroupSize(const MessageType& value) {
+ return value.ByteSizeLong();
+}
+template <typename MessageType>
+inline size_t WireFormatLite::MessageSize(const MessageType& value) {
+ return LengthDelimitedSize(value.ByteSizeLong());
+}
+
+// See comment on ReadGroupNoVirtual to understand the need for this template
+// parameter name.
+template <typename MessageType_WorkAroundCppLookupDefect>
+inline size_t WireFormatLite::GroupSizeNoVirtual(
+ const MessageType_WorkAroundCppLookupDefect& value) {
+ return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong();
+}
+template <typename MessageType_WorkAroundCppLookupDefect>
+inline size_t WireFormatLite::MessageSizeNoVirtual(
+ const MessageType_WorkAroundCppLookupDefect& value) {
+ return LengthDelimitedSize(
+ value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong());
+}
+
+inline size_t WireFormatLite::LengthDelimitedSize(size_t length) {
+ // The static_cast here prevents an error in certain compiler configurations
+ // but is not technically correct--if length is too large to fit in a uint32_t
+ // then it will be silently truncated. We will need to fix this if we ever
+ // decide to start supporting serialized messages greater than 2 GiB in size.
+ return length +
+ io::CodedOutputStream::VarintSize32(static_cast<uint32_t>(length));
+}
+
+template <typename MS>
+bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) {
+ // This method parses a group which should contain two fields:
+ // required int32 type_id = 2;
+ // required data message = 3;
+
+ uint32_t last_type_id = 0;
+
+ // If we see message data before the type_id, we'll append it to this so
+ // we can parse it later.
+ std::string message_data;
+
+ while (true) {
+ const uint32_t tag = input->ReadTagNoLastTag();
+ if (tag == 0) return false;
+
+ switch (tag) {
+ case WireFormatLite::kMessageSetTypeIdTag: {
+ uint32_t type_id;
+ if (!input->ReadVarint32(&type_id)) return false;
+ last_type_id = type_id;
+
+ if (!message_data.empty()) {
+ // We saw some message data before the type_id. Have to parse it
+ // now.
+ io::CodedInputStream sub_input(
+ reinterpret_cast<const uint8_t*>(message_data.data()),
+ static_cast<int>(message_data.size()));
+ sub_input.SetRecursionLimit(input->RecursionBudget());
+ if (!ms.ParseField(last_type_id, &sub_input)) {
+ return false;
+ }
+ message_data.clear();
+ }
+
+ break;
+ }
+
+ case WireFormatLite::kMessageSetMessageTag: {
+ if (last_type_id == 0) {
+ // We haven't seen a type_id yet. Append this data to message_data.
+ uint32_t length;
+ if (!input->ReadVarint32(&length)) return false;
+ if (static_cast<int32_t>(length) < 0) return false;
+ uint32_t size = static_cast<uint32_t>(
+ length + io::CodedOutputStream::VarintSize32(length));
+ message_data.resize(size);
+ auto ptr = reinterpret_cast<uint8_t*>(&message_data[0]);
+ ptr = io::CodedOutputStream::WriteVarint32ToArray(length, ptr);
+ if (!input->ReadRaw(ptr, length)) return false;
+ } else {
+ // Already saw type_id, so we can parse this directly.
+ if (!ms.ParseField(last_type_id, input)) {
+ return false;
+ }
+ }
+
+ break;
+ }
+
+ case WireFormatLite::kMessageSetItemEndTag: {
+ return true;
+ }
+
+ default: {
+ if (!ms.SkipField(tag, input)) return false;
+ }
+ }
+ }
+}
+
+} // namespace internal
+} // namespace protobuf
+} // namespace google
+
+#include <google/protobuf/port_undef.inc>
+
+#endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__