summaryrefslogtreecommitdiff
path: root/libs/Pcre16/docs/doc/html/pcrepattern.html
diff options
context:
space:
mode:
authordartraiden <wowemuh@gmail.com>2018-06-01 18:25:57 +0300
committerdartraiden <wowemuh@gmail.com>2018-06-01 18:26:31 +0300
commit0a55fa14f462169bbd8a8de623804f039854f95f (patch)
tree19fb2ef7ee1d7b6f3c80b3d83bc010733bc0f58f /libs/Pcre16/docs/doc/html/pcrepattern.html
parent25f2c798a74bf6f72f2d6ba40e37a89c662204ba (diff)
we only needs license, contributors and version info
Diffstat (limited to 'libs/Pcre16/docs/doc/html/pcrepattern.html')
-rw-r--r--libs/Pcre16/docs/doc/html/pcrepattern.html3276
1 files changed, 0 insertions, 3276 deletions
diff --git a/libs/Pcre16/docs/doc/html/pcrepattern.html b/libs/Pcre16/docs/doc/html/pcrepattern.html
deleted file mode 100644
index 96fc72986f..0000000000
--- a/libs/Pcre16/docs/doc/html/pcrepattern.html
+++ /dev/null
@@ -1,3276 +0,0 @@
-<html>
-<head>
-<title>pcrepattern specification</title>
-</head>
-<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
-<h1>pcrepattern man page</h1>
-<p>
-Return to the <a href="index.html">PCRE index page</a>.
-</p>
-<p>
-This page is part of the PCRE HTML documentation. It was generated automatically
-from the original man page. If there is any nonsense in it, please consult the
-man page, in case the conversion went wrong.
-<br>
-<ul>
-<li><a name="TOC1" href="#SEC1">PCRE REGULAR EXPRESSION DETAILS</a>
-<li><a name="TOC2" href="#SEC2">SPECIAL START-OF-PATTERN ITEMS</a>
-<li><a name="TOC3" href="#SEC3">EBCDIC CHARACTER CODES</a>
-<li><a name="TOC4" href="#SEC4">CHARACTERS AND METACHARACTERS</a>
-<li><a name="TOC5" href="#SEC5">BACKSLASH</a>
-<li><a name="TOC6" href="#SEC6">CIRCUMFLEX AND DOLLAR</a>
-<li><a name="TOC7" href="#SEC7">FULL STOP (PERIOD, DOT) AND \N</a>
-<li><a name="TOC8" href="#SEC8">MATCHING A SINGLE DATA UNIT</a>
-<li><a name="TOC9" href="#SEC9">SQUARE BRACKETS AND CHARACTER CLASSES</a>
-<li><a name="TOC10" href="#SEC10">POSIX CHARACTER CLASSES</a>
-<li><a name="TOC11" href="#SEC11">COMPATIBILITY FEATURE FOR WORD BOUNDARIES</a>
-<li><a name="TOC12" href="#SEC12">VERTICAL BAR</a>
-<li><a name="TOC13" href="#SEC13">INTERNAL OPTION SETTING</a>
-<li><a name="TOC14" href="#SEC14">SUBPATTERNS</a>
-<li><a name="TOC15" href="#SEC15">DUPLICATE SUBPATTERN NUMBERS</a>
-<li><a name="TOC16" href="#SEC16">NAMED SUBPATTERNS</a>
-<li><a name="TOC17" href="#SEC17">REPETITION</a>
-<li><a name="TOC18" href="#SEC18">ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS</a>
-<li><a name="TOC19" href="#SEC19">BACK REFERENCES</a>
-<li><a name="TOC20" href="#SEC20">ASSERTIONS</a>
-<li><a name="TOC21" href="#SEC21">CONDITIONAL SUBPATTERNS</a>
-<li><a name="TOC22" href="#SEC22">COMMENTS</a>
-<li><a name="TOC23" href="#SEC23">RECURSIVE PATTERNS</a>
-<li><a name="TOC24" href="#SEC24">SUBPATTERNS AS SUBROUTINES</a>
-<li><a name="TOC25" href="#SEC25">ONIGURUMA SUBROUTINE SYNTAX</a>
-<li><a name="TOC26" href="#SEC26">CALLOUTS</a>
-<li><a name="TOC27" href="#SEC27">BACKTRACKING CONTROL</a>
-<li><a name="TOC28" href="#SEC28">SEE ALSO</a>
-<li><a name="TOC29" href="#SEC29">AUTHOR</a>
-<li><a name="TOC30" href="#SEC30">REVISION</a>
-</ul>
-<br><a name="SEC1" href="#TOC1">PCRE REGULAR EXPRESSION DETAILS</a><br>
-<P>
-The syntax and semantics of the regular expressions that are supported by PCRE
-are described in detail below. There is a quick-reference syntax summary in the
-<a href="pcresyntax.html"><b>pcresyntax</b></a>
-page. PCRE tries to match Perl syntax and semantics as closely as it can. PCRE
-also supports some alternative regular expression syntax (which does not
-conflict with the Perl syntax) in order to provide some compatibility with
-regular expressions in Python, .NET, and Oniguruma.
-</P>
-<P>
-Perl's regular expressions are described in its own documentation, and
-regular expressions in general are covered in a number of books, some of which
-have copious examples. Jeffrey Friedl's "Mastering Regular Expressions",
-published by O'Reilly, covers regular expressions in great detail. This
-description of PCRE's regular expressions is intended as reference material.
-</P>
-<P>
-This document discusses the patterns that are supported by PCRE when one its
-main matching functions, <b>pcre_exec()</b> (8-bit) or <b>pcre[16|32]_exec()</b>
-(16- or 32-bit), is used. PCRE also has alternative matching functions,
-<b>pcre_dfa_exec()</b> and <b>pcre[16|32_dfa_exec()</b>, which match using a
-different algorithm that is not Perl-compatible. Some of the features discussed
-below are not available when DFA matching is used. The advantages and
-disadvantages of the alternative functions, and how they differ from the normal
-functions, are discussed in the
-<a href="pcrematching.html"><b>pcrematching</b></a>
-page.
-</P>
-<br><a name="SEC2" href="#TOC1">SPECIAL START-OF-PATTERN ITEMS</a><br>
-<P>
-A number of options that can be passed to <b>pcre_compile()</b> can also be set
-by special items at the start of a pattern. These are not Perl-compatible, but
-are provided to make these options accessible to pattern writers who are not
-able to change the program that processes the pattern. Any number of these
-items may appear, but they must all be together right at the start of the
-pattern string, and the letters must be in upper case.
-</P>
-<br><b>
-UTF support
-</b><br>
-<P>
-The original operation of PCRE was on strings of one-byte characters. However,
-there is now also support for UTF-8 strings in the original library, an
-extra library that supports 16-bit and UTF-16 character strings, and a
-third library that supports 32-bit and UTF-32 character strings. To use these
-features, PCRE must be built to include appropriate support. When using UTF
-strings you must either call the compiling function with the PCRE_UTF8,
-PCRE_UTF16, or PCRE_UTF32 option, or the pattern must start with one of
-these special sequences:
-<pre>
- (*UTF8)
- (*UTF16)
- (*UTF32)
- (*UTF)
-</pre>
-(*UTF) is a generic sequence that can be used with any of the libraries.
-Starting a pattern with such a sequence is equivalent to setting the relevant
-option. How setting a UTF mode affects pattern matching is mentioned in several
-places below. There is also a summary of features in the
-<a href="pcreunicode.html"><b>pcreunicode</b></a>
-page.
-</P>
-<P>
-Some applications that allow their users to supply patterns may wish to
-restrict them to non-UTF data for security reasons. If the PCRE_NEVER_UTF
-option is set at compile time, (*UTF) etc. are not allowed, and their
-appearance causes an error.
-</P>
-<br><b>
-Unicode property support
-</b><br>
-<P>
-Another special sequence that may appear at the start of a pattern is (*UCP).
-This has the same effect as setting the PCRE_UCP option: it causes sequences
-such as \d and \w to use Unicode properties to determine character types,
-instead of recognizing only characters with codes less than 128 via a lookup
-table.
-</P>
-<br><b>
-Disabling auto-possessification
-</b><br>
-<P>
-If a pattern starts with (*NO_AUTO_POSSESS), it has the same effect as setting
-the PCRE_NO_AUTO_POSSESS option at compile time. This stops PCRE from making
-quantifiers possessive when what follows cannot match the repeated item. For
-example, by default a+b is treated as a++b. For more details, see the
-<a href="pcreapi.html"><b>pcreapi</b></a>
-documentation.
-</P>
-<br><b>
-Disabling start-up optimizations
-</b><br>
-<P>
-If a pattern starts with (*NO_START_OPT), it has the same effect as setting the
-PCRE_NO_START_OPTIMIZE option either at compile or matching time. This disables
-several optimizations for quickly reaching "no match" results. For more
-details, see the
-<a href="pcreapi.html"><b>pcreapi</b></a>
-documentation.
-<a name="newlines"></a></P>
-<br><b>
-Newline conventions
-</b><br>
-<P>
-PCRE supports five different conventions for indicating line breaks in
-strings: a single CR (carriage return) character, a single LF (linefeed)
-character, the two-character sequence CRLF, any of the three preceding, or any
-Unicode newline sequence. The
-<a href="pcreapi.html"><b>pcreapi</b></a>
-page has
-<a href="pcreapi.html#newlines">further discussion</a>
-about newlines, and shows how to set the newline convention in the
-<i>options</i> arguments for the compiling and matching functions.
-</P>
-<P>
-It is also possible to specify a newline convention by starting a pattern
-string with one of the following five sequences:
-<pre>
- (*CR) carriage return
- (*LF) linefeed
- (*CRLF) carriage return, followed by linefeed
- (*ANYCRLF) any of the three above
- (*ANY) all Unicode newline sequences
-</pre>
-These override the default and the options given to the compiling function. For
-example, on a Unix system where LF is the default newline sequence, the pattern
-<pre>
- (*CR)a.b
-</pre>
-changes the convention to CR. That pattern matches "a\nb" because LF is no
-longer a newline. If more than one of these settings is present, the last one
-is used.
-</P>
-<P>
-The newline convention affects where the circumflex and dollar assertions are
-true. It also affects the interpretation of the dot metacharacter when
-PCRE_DOTALL is not set, and the behaviour of \N. However, it does not affect
-what the \R escape sequence matches. By default, this is any Unicode newline
-sequence, for Perl compatibility. However, this can be changed; see the
-description of \R in the section entitled
-<a href="#newlineseq">"Newline sequences"</a>
-below. A change of \R setting can be combined with a change of newline
-convention.
-</P>
-<br><b>
-Setting match and recursion limits
-</b><br>
-<P>
-The caller of <b>pcre_exec()</b> can set a limit on the number of times the
-internal <b>match()</b> function is called and on the maximum depth of
-recursive calls. These facilities are provided to catch runaway matches that
-are provoked by patterns with huge matching trees (a typical example is a
-pattern with nested unlimited repeats) and to avoid running out of system stack
-by too much recursion. When one of these limits is reached, <b>pcre_exec()</b>
-gives an error return. The limits can also be set by items at the start of the
-pattern of the form
-<pre>
- (*LIMIT_MATCH=d)
- (*LIMIT_RECURSION=d)
-</pre>
-where d is any number of decimal digits. However, the value of the setting must
-be less than the value set (or defaulted) by the caller of <b>pcre_exec()</b>
-for it to have any effect. In other words, the pattern writer can lower the
-limits set by the programmer, but not raise them. If there is more than one
-setting of one of these limits, the lower value is used.
-</P>
-<br><a name="SEC3" href="#TOC1">EBCDIC CHARACTER CODES</a><br>
-<P>
-PCRE can be compiled to run in an environment that uses EBCDIC as its character
-code rather than ASCII or Unicode (typically a mainframe system). In the
-sections below, character code values are ASCII or Unicode; in an EBCDIC
-environment these characters may have different code values, and there are no
-code points greater than 255.
-</P>
-<br><a name="SEC4" href="#TOC1">CHARACTERS AND METACHARACTERS</a><br>
-<P>
-A regular expression is a pattern that is matched against a subject string from
-left to right. Most characters stand for themselves in a pattern, and match the
-corresponding characters in the subject. As a trivial example, the pattern
-<pre>
- The quick brown fox
-</pre>
-matches a portion of a subject string that is identical to itself. When
-caseless matching is specified (the PCRE_CASELESS option), letters are matched
-independently of case. In a UTF mode, PCRE always understands the concept of
-case for characters whose values are less than 128, so caseless matching is
-always possible. For characters with higher values, the concept of case is
-supported if PCRE is compiled with Unicode property support, but not otherwise.
-If you want to use caseless matching for characters 128 and above, you must
-ensure that PCRE is compiled with Unicode property support as well as with
-UTF support.
-</P>
-<P>
-The power of regular expressions comes from the ability to include alternatives
-and repetitions in the pattern. These are encoded in the pattern by the use of
-<i>metacharacters</i>, which do not stand for themselves but instead are
-interpreted in some special way.
-</P>
-<P>
-There are two different sets of metacharacters: those that are recognized
-anywhere in the pattern except within square brackets, and those that are
-recognized within square brackets. Outside square brackets, the metacharacters
-are as follows:
-<pre>
- \ general escape character with several uses
- ^ assert start of string (or line, in multiline mode)
- $ assert end of string (or line, in multiline mode)
- . match any character except newline (by default)
- [ start character class definition
- | start of alternative branch
- ( start subpattern
- ) end subpattern
- ? extends the meaning of (
- also 0 or 1 quantifier
- also quantifier minimizer
- * 0 or more quantifier
- + 1 or more quantifier
- also "possessive quantifier"
- { start min/max quantifier
-</pre>
-Part of a pattern that is in square brackets is called a "character class". In
-a character class the only metacharacters are:
-<pre>
- \ general escape character
- ^ negate the class, but only if the first character
- - indicates character range
- [ POSIX character class (only if followed by POSIX syntax)
- ] terminates the character class
-</pre>
-The following sections describe the use of each of the metacharacters.
-</P>
-<br><a name="SEC5" href="#TOC1">BACKSLASH</a><br>
-<P>
-The backslash character has several uses. Firstly, if it is followed by a
-character that is not a number or a letter, it takes away any special meaning
-that character may have. This use of backslash as an escape character applies
-both inside and outside character classes.
-</P>
-<P>
-For example, if you want to match a * character, you write \* in the pattern.
-This escaping action applies whether or not the following character would
-otherwise be interpreted as a metacharacter, so it is always safe to precede a
-non-alphanumeric with backslash to specify that it stands for itself. In
-particular, if you want to match a backslash, you write \\.
-</P>
-<P>
-In a UTF mode, only ASCII numbers and letters have any special meaning after a
-backslash. All other characters (in particular, those whose codepoints are
-greater than 127) are treated as literals.
-</P>
-<P>
-If a pattern is compiled with the PCRE_EXTENDED option, most white space in the
-pattern (other than in a character class), and characters between a # outside a
-character class and the next newline, inclusive, are ignored. An escaping
-backslash can be used to include a white space or # character as part of the
-pattern.
-</P>
-<P>
-If you want to remove the special meaning from a sequence of characters, you
-can do so by putting them between \Q and \E. This is different from Perl in
-that $ and @ are handled as literals in \Q...\E sequences in PCRE, whereas in
-Perl, $ and @ cause variable interpolation. Note the following examples:
-<pre>
- Pattern PCRE matches Perl matches
-
- \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
- \Qabc\$xyz\E abc\$xyz abc\$xyz
- \Qabc\E\$\Qxyz\E abc$xyz abc$xyz
-</pre>
-The \Q...\E sequence is recognized both inside and outside character classes.
-An isolated \E that is not preceded by \Q is ignored. If \Q is not followed
-by \E later in the pattern, the literal interpretation continues to the end of
-the pattern (that is, \E is assumed at the end). If the isolated \Q is inside
-a character class, this causes an error, because the character class is not
-terminated.
-<a name="digitsafterbackslash"></a></P>
-<br><b>
-Non-printing characters
-</b><br>
-<P>
-A second use of backslash provides a way of encoding non-printing characters
-in patterns in a visible manner. There is no restriction on the appearance of
-non-printing characters, apart from the binary zero that terminates a pattern,
-but when a pattern is being prepared by text editing, it is often easier to use
-one of the following escape sequences than the binary character it represents.
-In an ASCII or Unicode environment, these escapes are as follows:
-<pre>
- \a alarm, that is, the BEL character (hex 07)
- \cx "control-x", where x is any ASCII character
- \e escape (hex 1B)
- \f form feed (hex 0C)
- \n linefeed (hex 0A)
- \r carriage return (hex 0D)
- \t tab (hex 09)
- \0dd character with octal code 0dd
- \ddd character with octal code ddd, or back reference
- \o{ddd..} character with octal code ddd..
- \xhh character with hex code hh
- \x{hhh..} character with hex code hhh.. (non-JavaScript mode)
- \uhhhh character with hex code hhhh (JavaScript mode only)
-</pre>
-The precise effect of \cx on ASCII characters is as follows: if x is a lower
-case letter, it is converted to upper case. Then bit 6 of the character (hex
-40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A (A is 41, Z is 5A),
-but \c{ becomes hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If the
-data item (byte or 16-bit value) following \c has a value greater than 127, a
-compile-time error occurs. This locks out non-ASCII characters in all modes.
-</P>
-<P>
-When PCRE is compiled in EBCDIC mode, \a, \e, \f, \n, \r, and \t
-generate the appropriate EBCDIC code values. The \c escape is processed
-as specified for Perl in the <b>perlebcdic</b> document. The only characters
-that are allowed after \c are A-Z, a-z, or one of @, [, \, ], ^, _, or ?. Any
-other character provokes a compile-time error. The sequence \c@ encodes
-character code 0; after \c the letters (in either case) encode characters 1-26
-(hex 01 to hex 1A); [, \, ], ^, and _ encode characters 27-31 (hex 1B to hex
-1F), and \c? becomes either 255 (hex FF) or 95 (hex 5F).
-</P>
-<P>
-Thus, apart from \c?, these escapes generate the same character code values as
-they do in an ASCII environment, though the meanings of the values mostly
-differ. For example, \cG always generates code value 7, which is BEL in ASCII
-but DEL in EBCDIC.
-</P>
-<P>
-The sequence \c? generates DEL (127, hex 7F) in an ASCII environment, but
-because 127 is not a control character in EBCDIC, Perl makes it generate the
-APC character. Unfortunately, there are several variants of EBCDIC. In most of
-them the APC character has the value 255 (hex FF), but in the one Perl calls
-POSIX-BC its value is 95 (hex 5F). If certain other characters have POSIX-BC
-values, PCRE makes \c? generate 95; otherwise it generates 255.
-</P>
-<P>
-After \0 up to two further octal digits are read. If there are fewer than two
-digits, just those that are present are used. Thus the sequence \0\x\015
-specifies two binary zeros followed by a CR character (code value 13). Make
-sure you supply two digits after the initial zero if the pattern character that
-follows is itself an octal digit.
-</P>
-<P>
-The escape \o must be followed by a sequence of octal digits, enclosed in
-braces. An error occurs if this is not the case. This escape is a recent
-addition to Perl; it provides way of specifying character code points as octal
-numbers greater than 0777, and it also allows octal numbers and back references
-to be unambiguously specified.
-</P>
-<P>
-For greater clarity and unambiguity, it is best to avoid following \ by a
-digit greater than zero. Instead, use \o{} or \x{} to specify character
-numbers, and \g{} to specify back references. The following paragraphs
-describe the old, ambiguous syntax.
-</P>
-<P>
-The handling of a backslash followed by a digit other than 0 is complicated,
-and Perl has changed in recent releases, causing PCRE also to change. Outside a
-character class, PCRE reads the digit and any following digits as a decimal
-number. If the number is less than 8, or if there have been at least that many
-previous capturing left parentheses in the expression, the entire sequence is
-taken as a <i>back reference</i>. A description of how this works is given
-<a href="#backreferences">later,</a>
-following the discussion of
-<a href="#subpattern">parenthesized subpatterns.</a>
-</P>
-<P>
-Inside a character class, or if the decimal number following \ is greater than
-7 and there have not been that many capturing subpatterns, PCRE handles \8 and
-\9 as the literal characters "8" and "9", and otherwise re-reads up to three
-octal digits following the backslash, using them to generate a data character.
-Any subsequent digits stand for themselves. For example:
-<pre>
- \040 is another way of writing an ASCII space
- \40 is the same, provided there are fewer than 40 previous capturing subpatterns
- \7 is always a back reference
- \11 might be a back reference, or another way of writing a tab
- \011 is always a tab
- \0113 is a tab followed by the character "3"
- \113 might be a back reference, otherwise the character with octal code 113
- \377 might be a back reference, otherwise the value 255 (decimal)
- \81 is either a back reference, or the two characters "8" and "1"
-</pre>
-Note that octal values of 100 or greater that are specified using this syntax
-must not be introduced by a leading zero, because no more than three octal
-digits are ever read.
-</P>
-<P>
-By default, after \x that is not followed by {, from zero to two hexadecimal
-digits are read (letters can be in upper or lower case). Any number of
-hexadecimal digits may appear between \x{ and }. If a character other than
-a hexadecimal digit appears between \x{ and }, or if there is no terminating
-}, an error occurs.
-</P>
-<P>
-If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation of \x is
-as just described only when it is followed by two hexadecimal digits.
-Otherwise, it matches a literal "x" character. In JavaScript mode, support for
-code points greater than 256 is provided by \u, which must be followed by
-four hexadecimal digits; otherwise it matches a literal "u" character.
-</P>
-<P>
-Characters whose value is less than 256 can be defined by either of the two
-syntaxes for \x (or by \u in JavaScript mode). There is no difference in the
-way they are handled. For example, \xdc is exactly the same as \x{dc} (or
-\u00dc in JavaScript mode).
-</P>
-<br><b>
-Constraints on character values
-</b><br>
-<P>
-Characters that are specified using octal or hexadecimal numbers are
-limited to certain values, as follows:
-<pre>
- 8-bit non-UTF mode less than 0x100
- 8-bit UTF-8 mode less than 0x10ffff and a valid codepoint
- 16-bit non-UTF mode less than 0x10000
- 16-bit UTF-16 mode less than 0x10ffff and a valid codepoint
- 32-bit non-UTF mode less than 0x100000000
- 32-bit UTF-32 mode less than 0x10ffff and a valid codepoint
-</pre>
-Invalid Unicode codepoints are the range 0xd800 to 0xdfff (the so-called
-"surrogate" codepoints), and 0xffef.
-</P>
-<br><b>
-Escape sequences in character classes
-</b><br>
-<P>
-All the sequences that define a single character value can be used both inside
-and outside character classes. In addition, inside a character class, \b is
-interpreted as the backspace character (hex 08).
-</P>
-<P>
-\N is not allowed in a character class. \B, \R, and \X are not special
-inside a character class. Like other unrecognized escape sequences, they are
-treated as the literal characters "B", "R", and "X" by default, but cause an
-error if the PCRE_EXTRA option is set. Outside a character class, these
-sequences have different meanings.
-</P>
-<br><b>
-Unsupported escape sequences
-</b><br>
-<P>
-In Perl, the sequences \l, \L, \u, and \U are recognized by its string
-handler and used to modify the case of following characters. By default, PCRE
-does not support these escape sequences. However, if the PCRE_JAVASCRIPT_COMPAT
-option is set, \U matches a "U" character, and \u can be used to define a
-character by code point, as described in the previous section.
-</P>
-<br><b>
-Absolute and relative back references
-</b><br>
-<P>
-The sequence \g followed by an unsigned or a negative number, optionally
-enclosed in braces, is an absolute or relative back reference. A named back
-reference can be coded as \g{name}. Back references are discussed
-<a href="#backreferences">later,</a>
-following the discussion of
-<a href="#subpattern">parenthesized subpatterns.</a>
-</P>
-<br><b>
-Absolute and relative subroutine calls
-</b><br>
-<P>
-For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
-a number enclosed either in angle brackets or single quotes, is an alternative
-syntax for referencing a subpattern as a "subroutine". Details are discussed
-<a href="#onigurumasubroutines">later.</a>
-Note that \g{...} (Perl syntax) and \g&#60;...&#62; (Oniguruma syntax) are <i>not</i>
-synonymous. The former is a back reference; the latter is a
-<a href="#subpatternsassubroutines">subroutine</a>
-call.
-<a name="genericchartypes"></a></P>
-<br><b>
-Generic character types
-</b><br>
-<P>
-Another use of backslash is for specifying generic character types:
-<pre>
- \d any decimal digit
- \D any character that is not a decimal digit
- \h any horizontal white space character
- \H any character that is not a horizontal white space character
- \s any white space character
- \S any character that is not a white space character
- \v any vertical white space character
- \V any character that is not a vertical white space character
- \w any "word" character
- \W any "non-word" character
-</pre>
-There is also the single sequence \N, which matches a non-newline character.
-This is the same as
-<a href="#fullstopdot">the "." metacharacter</a>
-when PCRE_DOTALL is not set. Perl also uses \N to match characters by name;
-PCRE does not support this.
-</P>
-<P>
-Each pair of lower and upper case escape sequences partitions the complete set
-of characters into two disjoint sets. Any given character matches one, and only
-one, of each pair. The sequences can appear both inside and outside character
-classes. They each match one character of the appropriate type. If the current
-matching point is at the end of the subject string, all of them fail, because
-there is no character to match.
-</P>
-<P>
-For compatibility with Perl, \s did not used to match the VT character (code
-11), which made it different from the the POSIX "space" class. However, Perl
-added VT at release 5.18, and PCRE followed suit at release 8.34. The default
-\s characters are now HT (9), LF (10), VT (11), FF (12), CR (13), and space
-(32), which are defined as white space in the "C" locale. This list may vary if
-locale-specific matching is taking place. For example, in some locales the
-"non-breaking space" character (\xA0) is recognized as white space, and in
-others the VT character is not.
-</P>
-<P>
-A "word" character is an underscore or any character that is a letter or digit.
-By default, the definition of letters and digits is controlled by PCRE's
-low-valued character tables, and may vary if locale-specific matching is taking
-place (see
-<a href="pcreapi.html#localesupport">"Locale support"</a>
-in the
-<a href="pcreapi.html"><b>pcreapi</b></a>
-page). For example, in a French locale such as "fr_FR" in Unix-like systems,
-or "french" in Windows, some character codes greater than 127 are used for
-accented letters, and these are then matched by \w. The use of locales with
-Unicode is discouraged.
-</P>
-<P>
-By default, characters whose code points are greater than 127 never match \d,
-\s, or \w, and always match \D, \S, and \W, although this may vary for
-characters in the range 128-255 when locale-specific matching is happening.
-These escape sequences retain their original meanings from before Unicode
-support was available, mainly for efficiency reasons. If PCRE is compiled with
-Unicode property support, and the PCRE_UCP option is set, the behaviour is
-changed so that Unicode properties are used to determine character types, as
-follows:
-<pre>
- \d any character that matches \p{Nd} (decimal digit)
- \s any character that matches \p{Z} or \h or \v
- \w any character that matches \p{L} or \p{N}, plus underscore
-</pre>
-The upper case escapes match the inverse sets of characters. Note that \d
-matches only decimal digits, whereas \w matches any Unicode digit, as well as
-any Unicode letter, and underscore. Note also that PCRE_UCP affects \b, and
-\B because they are defined in terms of \w and \W. Matching these sequences
-is noticeably slower when PCRE_UCP is set.
-</P>
-<P>
-The sequences \h, \H, \v, and \V are features that were added to Perl at
-release 5.10. In contrast to the other sequences, which match only ASCII
-characters by default, these always match certain high-valued code points,
-whether or not PCRE_UCP is set. The horizontal space characters are:
-<pre>
- U+0009 Horizontal tab (HT)
- U+0020 Space
- U+00A0 Non-break space
- U+1680 Ogham space mark
- U+180E Mongolian vowel separator
- U+2000 En quad
- U+2001 Em quad
- U+2002 En space
- U+2003 Em space
- U+2004 Three-per-em space
- U+2005 Four-per-em space
- U+2006 Six-per-em space
- U+2007 Figure space
- U+2008 Punctuation space
- U+2009 Thin space
- U+200A Hair space
- U+202F Narrow no-break space
- U+205F Medium mathematical space
- U+3000 Ideographic space
-</pre>
-The vertical space characters are:
-<pre>
- U+000A Linefeed (LF)
- U+000B Vertical tab (VT)
- U+000C Form feed (FF)
- U+000D Carriage return (CR)
- U+0085 Next line (NEL)
- U+2028 Line separator
- U+2029 Paragraph separator
-</pre>
-In 8-bit, non-UTF-8 mode, only the characters with codepoints less than 256 are
-relevant.
-<a name="newlineseq"></a></P>
-<br><b>
-Newline sequences
-</b><br>
-<P>
-Outside a character class, by default, the escape sequence \R matches any
-Unicode newline sequence. In 8-bit non-UTF-8 mode \R is equivalent to the
-following:
-<pre>
- (?&#62;\r\n|\n|\x0b|\f|\r|\x85)
-</pre>
-This is an example of an "atomic group", details of which are given
-<a href="#atomicgroup">below.</a>
-This particular group matches either the two-character sequence CR followed by
-LF, or one of the single characters LF (linefeed, U+000A), VT (vertical tab,
-U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL (next
-line, U+0085). The two-character sequence is treated as a single unit that
-cannot be split.
-</P>
-<P>
-In other modes, two additional characters whose codepoints are greater than 255
-are added: LS (line separator, U+2028) and PS (paragraph separator, U+2029).
-Unicode character property support is not needed for these characters to be
-recognized.
-</P>
-<P>
-It is possible to restrict \R to match only CR, LF, or CRLF (instead of the
-complete set of Unicode line endings) by setting the option PCRE_BSR_ANYCRLF
-either at compile time or when the pattern is matched. (BSR is an abbrevation
-for "backslash R".) This can be made the default when PCRE is built; if this is
-the case, the other behaviour can be requested via the PCRE_BSR_UNICODE option.
-It is also possible to specify these settings by starting a pattern string with
-one of the following sequences:
-<pre>
- (*BSR_ANYCRLF) CR, LF, or CRLF only
- (*BSR_UNICODE) any Unicode newline sequence
-</pre>
-These override the default and the options given to the compiling function, but
-they can themselves be overridden by options given to a matching function. Note
-that these special settings, which are not Perl-compatible, are recognized only
-at the very start of a pattern, and that they must be in upper case. If more
-than one of them is present, the last one is used. They can be combined with a
-change of newline convention; for example, a pattern can start with:
-<pre>
- (*ANY)(*BSR_ANYCRLF)
-</pre>
-They can also be combined with the (*UTF8), (*UTF16), (*UTF32), (*UTF) or
-(*UCP) special sequences. Inside a character class, \R is treated as an
-unrecognized escape sequence, and so matches the letter "R" by default, but
-causes an error if PCRE_EXTRA is set.
-<a name="uniextseq"></a></P>
-<br><b>
-Unicode character properties
-</b><br>
-<P>
-When PCRE is built with Unicode character property support, three additional
-escape sequences that match characters with specific properties are available.
-When in 8-bit non-UTF-8 mode, these sequences are of course limited to testing
-characters whose codepoints are less than 256, but they do work in this mode.
-The extra escape sequences are:
-<pre>
- \p{<i>xx</i>} a character with the <i>xx</i> property
- \P{<i>xx</i>} a character without the <i>xx</i> property
- \X a Unicode extended grapheme cluster
-</pre>
-The property names represented by <i>xx</i> above are limited to the Unicode
-script names, the general category properties, "Any", which matches any
-character (including newline), and some special PCRE properties (described
-in the
-<a href="#extraprops">next section).</a>
-Other Perl properties such as "InMusicalSymbols" are not currently supported by
-PCRE. Note that \P{Any} does not match any characters, so always causes a
-match failure.
-</P>
-<P>
-Sets of Unicode characters are defined as belonging to certain scripts. A
-character from one of these sets can be matched using a script name. For
-example:
-<pre>
- \p{Greek}
- \P{Han}
-</pre>
-Those that are not part of an identified script are lumped together as
-"Common". The current list of scripts is:
-</P>
-<P>
-Arabic,
-Armenian,
-Avestan,
-Balinese,
-Bamum,
-Bassa_Vah,
-Batak,
-Bengali,
-Bopomofo,
-Brahmi,
-Braille,
-Buginese,
-Buhid,
-Canadian_Aboriginal,
-Carian,
-Caucasian_Albanian,
-Chakma,
-Cham,
-Cherokee,
-Common,
-Coptic,
-Cuneiform,
-Cypriot,
-Cyrillic,
-Deseret,
-Devanagari,
-Duployan,
-Egyptian_Hieroglyphs,
-Elbasan,
-Ethiopic,
-Georgian,
-Glagolitic,
-Gothic,
-Grantha,
-Greek,
-Gujarati,
-Gurmukhi,
-Han,
-Hangul,
-Hanunoo,
-Hebrew,
-Hiragana,
-Imperial_Aramaic,
-Inherited,
-Inscriptional_Pahlavi,
-Inscriptional_Parthian,
-Javanese,
-Kaithi,
-Kannada,
-Katakana,
-Kayah_Li,
-Kharoshthi,
-Khmer,
-Khojki,
-Khudawadi,
-Lao,
-Latin,
-Lepcha,
-Limbu,
-Linear_A,
-Linear_B,
-Lisu,
-Lycian,
-Lydian,
-Mahajani,
-Malayalam,
-Mandaic,
-Manichaean,
-Meetei_Mayek,
-Mende_Kikakui,
-Meroitic_Cursive,
-Meroitic_Hieroglyphs,
-Miao,
-Modi,
-Mongolian,
-Mro,
-Myanmar,
-Nabataean,
-New_Tai_Lue,
-Nko,
-Ogham,
-Ol_Chiki,
-Old_Italic,
-Old_North_Arabian,
-Old_Permic,
-Old_Persian,
-Old_South_Arabian,
-Old_Turkic,
-Oriya,
-Osmanya,
-Pahawh_Hmong,
-Palmyrene,
-Pau_Cin_Hau,
-Phags_Pa,
-Phoenician,
-Psalter_Pahlavi,
-Rejang,
-Runic,
-Samaritan,
-Saurashtra,
-Sharada,
-Shavian,
-Siddham,
-Sinhala,
-Sora_Sompeng,
-Sundanese,
-Syloti_Nagri,
-Syriac,
-Tagalog,
-Tagbanwa,
-Tai_Le,
-Tai_Tham,
-Tai_Viet,
-Takri,
-Tamil,
-Telugu,
-Thaana,
-Thai,
-Tibetan,
-Tifinagh,
-Tirhuta,
-Ugaritic,
-Vai,
-Warang_Citi,
-Yi.
-</P>
-<P>
-Each character has exactly one Unicode general category property, specified by
-a two-letter abbreviation. For compatibility with Perl, negation can be
-specified by including a circumflex between the opening brace and the property
-name. For example, \p{^Lu} is the same as \P{Lu}.
-</P>
-<P>
-If only one letter is specified with \p or \P, it includes all the general
-category properties that start with that letter. In this case, in the absence
-of negation, the curly brackets in the escape sequence are optional; these two
-examples have the same effect:
-<pre>
- \p{L}
- \pL
-</pre>
-The following general category property codes are supported:
-<pre>
- C Other
- Cc Control
- Cf Format
- Cn Unassigned
- Co Private use
- Cs Surrogate
-
- L Letter
- Ll Lower case letter
- Lm Modifier letter
- Lo Other letter
- Lt Title case letter
- Lu Upper case letter
-
- M Mark
- Mc Spacing mark
- Me Enclosing mark
- Mn Non-spacing mark
-
- N Number
- Nd Decimal number
- Nl Letter number
- No Other number
-
- P Punctuation
- Pc Connector punctuation
- Pd Dash punctuation
- Pe Close punctuation
- Pf Final punctuation
- Pi Initial punctuation
- Po Other punctuation
- Ps Open punctuation
-
- S Symbol
- Sc Currency symbol
- Sk Modifier symbol
- Sm Mathematical symbol
- So Other symbol
-
- Z Separator
- Zl Line separator
- Zp Paragraph separator
- Zs Space separator
-</pre>
-The special property L& is also supported: it matches a character that has
-the Lu, Ll, or Lt property, in other words, a letter that is not classified as
-a modifier or "other".
-</P>
-<P>
-The Cs (Surrogate) property applies only to characters in the range U+D800 to
-U+DFFF. Such characters are not valid in Unicode strings and so
-cannot be tested by PCRE, unless UTF validity checking has been turned off
-(see the discussion of PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK and
-PCRE_NO_UTF32_CHECK in the
-<a href="pcreapi.html"><b>pcreapi</b></a>
-page). Perl does not support the Cs property.
-</P>
-<P>
-The long synonyms for property names that Perl supports (such as \p{Letter})
-are not supported by PCRE, nor is it permitted to prefix any of these
-properties with "Is".
-</P>
-<P>
-No character that is in the Unicode table has the Cn (unassigned) property.
-Instead, this property is assumed for any code point that is not in the
-Unicode table.
-</P>
-<P>
-Specifying caseless matching does not affect these escape sequences. For
-example, \p{Lu} always matches only upper case letters. This is different from
-the behaviour of current versions of Perl.
-</P>
-<P>
-Matching characters by Unicode property is not fast, because PCRE has to do a
-multistage table lookup in order to find a character's property. That is why
-the traditional escape sequences such as \d and \w do not use Unicode
-properties in PCRE by default, though you can make them do so by setting the
-PCRE_UCP option or by starting the pattern with (*UCP).
-</P>
-<br><b>
-Extended grapheme clusters
-</b><br>
-<P>
-The \X escape matches any number of Unicode characters that form an "extended
-grapheme cluster", and treats the sequence as an atomic group
-<a href="#atomicgroup">(see below).</a>
-Up to and including release 8.31, PCRE matched an earlier, simpler definition
-that was equivalent to
-<pre>
- (?&#62;\PM\pM*)
-</pre>
-That is, it matched a character without the "mark" property, followed by zero
-or more characters with the "mark" property. Characters with the "mark"
-property are typically non-spacing accents that affect the preceding character.
-</P>
-<P>
-This simple definition was extended in Unicode to include more complicated
-kinds of composite character by giving each character a grapheme breaking
-property, and creating rules that use these properties to define the boundaries
-of extended grapheme clusters. In releases of PCRE later than 8.31, \X matches
-one of these clusters.
-</P>
-<P>
-\X always matches at least one character. Then it decides whether to add
-additional characters according to the following rules for ending a cluster:
-</P>
-<P>
-1. End at the end of the subject string.
-</P>
-<P>
-2. Do not end between CR and LF; otherwise end after any control character.
-</P>
-<P>
-3. Do not break Hangul (a Korean script) syllable sequences. Hangul characters
-are of five types: L, V, T, LV, and LVT. An L character may be followed by an
-L, V, LV, or LVT character; an LV or V character may be followed by a V or T
-character; an LVT or T character may be follwed only by a T character.
-</P>
-<P>
-4. Do not end before extending characters or spacing marks. Characters with
-the "mark" property always have the "extend" grapheme breaking property.
-</P>
-<P>
-5. Do not end after prepend characters.
-</P>
-<P>
-6. Otherwise, end the cluster.
-<a name="extraprops"></a></P>
-<br><b>
-PCRE's additional properties
-</b><br>
-<P>
-As well as the standard Unicode properties described above, PCRE supports four
-more that make it possible to convert traditional escape sequences such as \w
-and \s to use Unicode properties. PCRE uses these non-standard, non-Perl
-properties internally when PCRE_UCP is set. However, they may also be used
-explicitly. These properties are:
-<pre>
- Xan Any alphanumeric character
- Xps Any POSIX space character
- Xsp Any Perl space character
- Xwd Any Perl "word" character
-</pre>
-Xan matches characters that have either the L (letter) or the N (number)
-property. Xps matches the characters tab, linefeed, vertical tab, form feed, or
-carriage return, and any other character that has the Z (separator) property.
-Xsp is the same as Xps; it used to exclude vertical tab, for Perl
-compatibility, but Perl changed, and so PCRE followed at release 8.34. Xwd
-matches the same characters as Xan, plus underscore.
-</P>
-<P>
-There is another non-standard property, Xuc, which matches any character that
-can be represented by a Universal Character Name in C++ and other programming
-languages. These are the characters $, @, ` (grave accent), and all characters
-with Unicode code points greater than or equal to U+00A0, except for the
-surrogates U+D800 to U+DFFF. Note that most base (ASCII) characters are
-excluded. (Universal Character Names are of the form \uHHHH or \UHHHHHHHH
-where H is a hexadecimal digit. Note that the Xuc property does not match these
-sequences but the characters that they represent.)
-<a name="resetmatchstart"></a></P>
-<br><b>
-Resetting the match start
-</b><br>
-<P>
-The escape sequence \K causes any previously matched characters not to be
-included in the final matched sequence. For example, the pattern:
-<pre>
- foo\Kbar
-</pre>
-matches "foobar", but reports that it has matched "bar". This feature is
-similar to a lookbehind assertion
-<a href="#lookbehind">(described below).</a>
-However, in this case, the part of the subject before the real match does not
-have to be of fixed length, as lookbehind assertions do. The use of \K does
-not interfere with the setting of
-<a href="#subpattern">captured substrings.</a>
-For example, when the pattern
-<pre>
- (foo)\Kbar
-</pre>
-matches "foobar", the first substring is still set to "foo".
-</P>
-<P>
-Perl documents that the use of \K within assertions is "not well defined". In
-PCRE, \K is acted upon when it occurs inside positive assertions, but is
-ignored in negative assertions. Note that when a pattern such as (?=ab\K)
-matches, the reported start of the match can be greater than the end of the
-match.
-<a name="smallassertions"></a></P>
-<br><b>
-Simple assertions
-</b><br>
-<P>
-The final use of backslash is for certain simple assertions. An assertion
-specifies a condition that has to be met at a particular point in a match,
-without consuming any characters from the subject string. The use of
-subpatterns for more complicated assertions is described
-<a href="#bigassertions">below.</a>
-The backslashed assertions are:
-<pre>
- \b matches at a word boundary
- \B matches when not at a word boundary
- \A matches at the start of the subject
- \Z matches at the end of the subject
- also matches before a newline at the end of the subject
- \z matches only at the end of the subject
- \G matches at the first matching position in the subject
-</pre>
-Inside a character class, \b has a different meaning; it matches the backspace
-character. If any other of these assertions appears in a character class, by
-default it matches the corresponding literal character (for example, \B
-matches the letter B). However, if the PCRE_EXTRA option is set, an "invalid
-escape sequence" error is generated instead.
-</P>
-<P>
-A word boundary is a position in the subject string where the current character
-and the previous character do not both match \w or \W (i.e. one matches
-\w and the other matches \W), or the start or end of the string if the
-first or last character matches \w, respectively. In a UTF mode, the meanings
-of \w and \W can be changed by setting the PCRE_UCP option. When this is
-done, it also affects \b and \B. Neither PCRE nor Perl has a separate "start
-of word" or "end of word" metasequence. However, whatever follows \b normally
-determines which it is. For example, the fragment \ba matches "a" at the start
-of a word.
-</P>
-<P>
-The \A, \Z, and \z assertions differ from the traditional circumflex and
-dollar (described in the next section) in that they only ever match at the very
-start and end of the subject string, whatever options are set. Thus, they are
-independent of multiline mode. These three assertions are not affected by the
-PCRE_NOTBOL or PCRE_NOTEOL options, which affect only the behaviour of the
-circumflex and dollar metacharacters. However, if the <i>startoffset</i>
-argument of <b>pcre_exec()</b> is non-zero, indicating that matching is to start
-at a point other than the beginning of the subject, \A can never match. The
-difference between \Z and \z is that \Z matches before a newline at the end
-of the string as well as at the very end, whereas \z matches only at the end.
-</P>
-<P>
-The \G assertion is true only when the current matching position is at the
-start point of the match, as specified by the <i>startoffset</i> argument of
-<b>pcre_exec()</b>. It differs from \A when the value of <i>startoffset</i> is
-non-zero. By calling <b>pcre_exec()</b> multiple times with appropriate
-arguments, you can mimic Perl's /g option, and it is in this kind of
-implementation where \G can be useful.
-</P>
-<P>
-Note, however, that PCRE's interpretation of \G, as the start of the current
-match, is subtly different from Perl's, which defines it as the end of the
-previous match. In Perl, these can be different when the previously matched
-string was empty. Because PCRE does just one match at a time, it cannot
-reproduce this behaviour.
-</P>
-<P>
-If all the alternatives of a pattern begin with \G, the expression is anchored
-to the starting match position, and the "anchored" flag is set in the compiled
-regular expression.
-</P>
-<br><a name="SEC6" href="#TOC1">CIRCUMFLEX AND DOLLAR</a><br>
-<P>
-The circumflex and dollar metacharacters are zero-width assertions. That is,
-they test for a particular condition being true without consuming any
-characters from the subject string.
-</P>
-<P>
-Outside a character class, in the default matching mode, the circumflex
-character is an assertion that is true only if the current matching point is at
-the start of the subject string. If the <i>startoffset</i> argument of
-<b>pcre_exec()</b> is non-zero, circumflex can never match if the PCRE_MULTILINE
-option is unset. Inside a character class, circumflex has an entirely different
-meaning
-<a href="#characterclass">(see below).</a>
-</P>
-<P>
-Circumflex need not be the first character of the pattern if a number of
-alternatives are involved, but it should be the first thing in each alternative
-in which it appears if the pattern is ever to match that branch. If all
-possible alternatives start with a circumflex, that is, if the pattern is
-constrained to match only at the start of the subject, it is said to be an
-"anchored" pattern. (There are also other constructs that can cause a pattern
-to be anchored.)
-</P>
-<P>
-The dollar character is an assertion that is true only if the current matching
-point is at the end of the subject string, or immediately before a newline at
-the end of the string (by default). Note, however, that it does not actually
-match the newline. Dollar need not be the last character of the pattern if a
-number of alternatives are involved, but it should be the last item in any
-branch in which it appears. Dollar has no special meaning in a character class.
-</P>
-<P>
-The meaning of dollar can be changed so that it matches only at the very end of
-the string, by setting the PCRE_DOLLAR_ENDONLY option at compile time. This
-does not affect the \Z assertion.
-</P>
-<P>
-The meanings of the circumflex and dollar characters are changed if the
-PCRE_MULTILINE option is set. When this is the case, a circumflex matches
-immediately after internal newlines as well as at the start of the subject
-string. It does not match after a newline that ends the string. A dollar
-matches before any newlines in the string, as well as at the very end, when
-PCRE_MULTILINE is set. When newline is specified as the two-character
-sequence CRLF, isolated CR and LF characters do not indicate newlines.
-</P>
-<P>
-For example, the pattern /^abc$/ matches the subject string "def\nabc" (where
-\n represents a newline) in multiline mode, but not otherwise. Consequently,
-patterns that are anchored in single line mode because all branches start with
-^ are not anchored in multiline mode, and a match for circumflex is possible
-when the <i>startoffset</i> argument of <b>pcre_exec()</b> is non-zero. The
-PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
-</P>
-<P>
-Note that the sequences \A, \Z, and \z can be used to match the start and
-end of the subject in both modes, and if all branches of a pattern start with
-\A it is always anchored, whether or not PCRE_MULTILINE is set.
-<a name="fullstopdot"></a></P>
-<br><a name="SEC7" href="#TOC1">FULL STOP (PERIOD, DOT) AND \N</a><br>
-<P>
-Outside a character class, a dot in the pattern matches any one character in
-the subject string except (by default) a character that signifies the end of a
-line.
-</P>
-<P>
-When a line ending is defined as a single character, dot never matches that
-character; when the two-character sequence CRLF is used, dot does not match CR
-if it is immediately followed by LF, but otherwise it matches all characters
-(including isolated CRs and LFs). When any Unicode line endings are being
-recognized, dot does not match CR or LF or any of the other line ending
-characters.
-</P>
-<P>
-The behaviour of dot with regard to newlines can be changed. If the PCRE_DOTALL
-option is set, a dot matches any one character, without exception. If the
-two-character sequence CRLF is present in the subject string, it takes two dots
-to match it.
-</P>
-<P>
-The handling of dot is entirely independent of the handling of circumflex and
-dollar, the only relationship being that they both involve newlines. Dot has no
-special meaning in a character class.
-</P>
-<P>
-The escape sequence \N behaves like a dot, except that it is not affected by
-the PCRE_DOTALL option. In other words, it matches any character except one
-that signifies the end of a line. Perl also uses \N to match characters by
-name; PCRE does not support this.
-</P>
-<br><a name="SEC8" href="#TOC1">MATCHING A SINGLE DATA UNIT</a><br>
-<P>
-Outside a character class, the escape sequence \C matches any one data unit,
-whether or not a UTF mode is set. In the 8-bit library, one data unit is one
-byte; in the 16-bit library it is a 16-bit unit; in the 32-bit library it is
-a 32-bit unit. Unlike a dot, \C always
-matches line-ending characters. The feature is provided in Perl in order to
-match individual bytes in UTF-8 mode, but it is unclear how it can usefully be
-used. Because \C breaks up characters into individual data units, matching one
-unit with \C in a UTF mode means that the rest of the string may start with a
-malformed UTF character. This has undefined results, because PCRE assumes that
-it is dealing with valid UTF strings (and by default it checks this at the
-start of processing unless the PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK or
-PCRE_NO_UTF32_CHECK option is used).
-</P>
-<P>
-PCRE does not allow \C to appear in lookbehind assertions
-<a href="#lookbehind">(described below)</a>
-in a UTF mode, because this would make it impossible to calculate the length of
-the lookbehind.
-</P>
-<P>
-In general, the \C escape sequence is best avoided. However, one
-way of using it that avoids the problem of malformed UTF characters is to use a
-lookahead to check the length of the next character, as in this pattern, which
-could be used with a UTF-8 string (ignore white space and line breaks):
-<pre>
- (?| (?=[\x00-\x7f])(\C) |
- (?=[\x80-\x{7ff}])(\C)(\C) |
- (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
- (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))
-</pre>
-A group that starts with (?| resets the capturing parentheses numbers in each
-alternative (see
-<a href="#dupsubpatternnumber">"Duplicate Subpattern Numbers"</a>
-below). The assertions at the start of each branch check the next UTF-8
-character for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
-character's individual bytes are then captured by the appropriate number of
-groups.
-<a name="characterclass"></a></P>
-<br><a name="SEC9" href="#TOC1">SQUARE BRACKETS AND CHARACTER CLASSES</a><br>
-<P>
-An opening square bracket introduces a character class, terminated by a closing
-square bracket. A closing square bracket on its own is not special by default.
-However, if the PCRE_JAVASCRIPT_COMPAT option is set, a lone closing square
-bracket causes a compile-time error. If a closing square bracket is required as
-a member of the class, it should be the first data character in the class
-(after an initial circumflex, if present) or escaped with a backslash.
-</P>
-<P>
-A character class matches a single character in the subject. In a UTF mode, the
-character may be more than one data unit long. A matched character must be in
-the set of characters defined by the class, unless the first character in the
-class definition is a circumflex, in which case the subject character must not
-be in the set defined by the class. If a circumflex is actually required as a
-member of the class, ensure it is not the first character, or escape it with a
-backslash.
-</P>
-<P>
-For example, the character class [aeiou] matches any lower case vowel, while
-[^aeiou] matches any character that is not a lower case vowel. Note that a
-circumflex is just a convenient notation for specifying the characters that
-are in the class by enumerating those that are not. A class that starts with a
-circumflex is not an assertion; it still consumes a character from the subject
-string, and therefore it fails if the current pointer is at the end of the
-string.
-</P>
-<P>
-In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255 (0xffff)
-can be included in a class as a literal string of data units, or by using the
-\x{ escaping mechanism.
-</P>
-<P>
-When caseless matching is set, any letters in a class represent both their
-upper case and lower case versions, so for example, a caseless [aeiou] matches
-"A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a
-caseful version would. In a UTF mode, PCRE always understands the concept of
-case for characters whose values are less than 128, so caseless matching is
-always possible. For characters with higher values, the concept of case is
-supported if PCRE is compiled with Unicode property support, but not otherwise.
-If you want to use caseless matching in a UTF mode for characters 128 and
-above, you must ensure that PCRE is compiled with Unicode property support as
-well as with UTF support.
-</P>
-<P>
-Characters that might indicate line breaks are never treated in any special way
-when matching character classes, whatever line-ending sequence is in use, and
-whatever setting of the PCRE_DOTALL and PCRE_MULTILINE options is used. A class
-such as [^a] always matches one of these characters.
-</P>
-<P>
-The minus (hyphen) character can be used to specify a range of characters in a
-character class. For example, [d-m] matches any letter between d and m,
-inclusive. If a minus character is required in a class, it must be escaped with
-a backslash or appear in a position where it cannot be interpreted as
-indicating a range, typically as the first or last character in the class, or
-immediately after a range. For example, [b-d-z] matches letters in the range b
-to d, a hyphen character, or z.
-</P>
-<P>
-It is not possible to have the literal character "]" as the end character of a
-range. A pattern such as [W-]46] is interpreted as a class of two characters
-("W" and "-") followed by a literal string "46]", so it would match "W46]" or
-"-46]". However, if the "]" is escaped with a backslash it is interpreted as
-the end of range, so [W-\]46] is interpreted as a class containing a range
-followed by two other characters. The octal or hexadecimal representation of
-"]" can also be used to end a range.
-</P>
-<P>
-An error is generated if a POSIX character class (see below) or an escape
-sequence other than one that defines a single character appears at a point
-where a range ending character is expected. For example, [z-\xff] is valid,
-but [A-\d] and [A-[:digit:]] are not.
-</P>
-<P>
-Ranges operate in the collating sequence of character values. They can also be
-used for characters specified numerically, for example [\000-\037]. Ranges
-can include any characters that are valid for the current mode.
-</P>
-<P>
-If a range that includes letters is used when caseless matching is set, it
-matches the letters in either case. For example, [W-c] is equivalent to
-[][\\^_`wxyzabc], matched caselessly, and in a non-UTF mode, if character
-tables for a French locale are in use, [\xc8-\xcb] matches accented E
-characters in both cases. In UTF modes, PCRE supports the concept of case for
-characters with values greater than 128 only when it is compiled with Unicode
-property support.
-</P>
-<P>
-The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v,
-\V, \w, and \W may appear in a character class, and add the characters that
-they match to the class. For example, [\dABCDEF] matches any hexadecimal
-digit. In UTF modes, the PCRE_UCP option affects the meanings of \d, \s, \w
-and their upper case partners, just as it does when they appear outside a
-character class, as described in the section entitled
-<a href="#genericchartypes">"Generic character types"</a>
-above. The escape sequence \b has a different meaning inside a character
-class; it matches the backspace character. The sequences \B, \N, \R, and \X
-are not special inside a character class. Like any other unrecognized escape
-sequences, they are treated as the literal characters "B", "N", "R", and "X" by
-default, but cause an error if the PCRE_EXTRA option is set.
-</P>
-<P>
-A circumflex can conveniently be used with the upper case character types to
-specify a more restricted set of characters than the matching lower case type.
-For example, the class [^\W_] matches any letter or digit, but not underscore,
-whereas [\w] includes underscore. A positive character class should be read as
-"something OR something OR ..." and a negative class as "NOT something AND NOT
-something AND NOT ...".
-</P>
-<P>
-The only metacharacters that are recognized in character classes are backslash,
-hyphen (only where it can be interpreted as specifying a range), circumflex
-(only at the start), opening square bracket (only when it can be interpreted as
-introducing a POSIX class name, or for a special compatibility feature - see
-the next two sections), and the terminating closing square bracket. However,
-escaping other non-alphanumeric characters does no harm.
-</P>
-<br><a name="SEC10" href="#TOC1">POSIX CHARACTER CLASSES</a><br>
-<P>
-Perl supports the POSIX notation for character classes. This uses names
-enclosed by [: and :] within the enclosing square brackets. PCRE also supports
-this notation. For example,
-<pre>
- [01[:alpha:]%]
-</pre>
-matches "0", "1", any alphabetic character, or "%". The supported class names
-are:
-<pre>
- alnum letters and digits
- alpha letters
- ascii character codes 0 - 127
- blank space or tab only
- cntrl control characters
- digit decimal digits (same as \d)
- graph printing characters, excluding space
- lower lower case letters
- print printing characters, including space
- punct printing characters, excluding letters and digits and space
- space white space (the same as \s from PCRE 8.34)
- upper upper case letters
- word "word" characters (same as \w)
- xdigit hexadecimal digits
-</pre>
-The default "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
-and space (32). If locale-specific matching is taking place, the list of space
-characters may be different; there may be fewer or more of them. "Space" used
-to be different to \s, which did not include VT, for Perl compatibility.
-However, Perl changed at release 5.18, and PCRE followed at release 8.34.
-"Space" and \s now match the same set of characters.
-</P>
-<P>
-The name "word" is a Perl extension, and "blank" is a GNU extension from Perl
-5.8. Another Perl extension is negation, which is indicated by a ^ character
-after the colon. For example,
-<pre>
- [12[:^digit:]]
-</pre>
-matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX
-syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are not
-supported, and an error is given if they are encountered.
-</P>
-<P>
-By default, characters with values greater than 128 do not match any of the
-POSIX character classes. However, if the PCRE_UCP option is passed to
-<b>pcre_compile()</b>, some of the classes are changed so that Unicode character
-properties are used. This is achieved by replacing certain POSIX classes by
-other sequences, as follows:
-<pre>
- [:alnum:] becomes \p{Xan}
- [:alpha:] becomes \p{L}
- [:blank:] becomes \h
- [:digit:] becomes \p{Nd}
- [:lower:] becomes \p{Ll}
- [:space:] becomes \p{Xps}
- [:upper:] becomes \p{Lu}
- [:word:] becomes \p{Xwd}
-</pre>
-Negated versions, such as [:^alpha:] use \P instead of \p. Three other POSIX
-classes are handled specially in UCP mode:
-</P>
-<P>
-[:graph:]
-This matches characters that have glyphs that mark the page when printed. In
-Unicode property terms, it matches all characters with the L, M, N, P, S, or Cf
-properties, except for:
-<pre>
- U+061C Arabic Letter Mark
- U+180E Mongolian Vowel Separator
- U+2066 - U+2069 Various "isolate"s
-
-</PRE>
-</P>
-<P>
-[:print:]
-This matches the same characters as [:graph:] plus space characters that are
-not controls, that is, characters with the Zs property.
-</P>
-<P>
-[:punct:]
-This matches all characters that have the Unicode P (punctuation) property,
-plus those characters whose code points are less than 128 that have the S
-(Symbol) property.
-</P>
-<P>
-The other POSIX classes are unchanged, and match only characters with code
-points less than 128.
-</P>
-<br><a name="SEC11" href="#TOC1">COMPATIBILITY FEATURE FOR WORD BOUNDARIES</a><br>
-<P>
-In the POSIX.2 compliant library that was included in 4.4BSD Unix, the ugly
-syntax [[:&#60;:]] and [[:&#62;:]] is used for matching "start of word" and "end of
-word". PCRE treats these items as follows:
-<pre>
- [[:&#60;:]] is converted to \b(?=\w)
- [[:&#62;:]] is converted to \b(?&#60;=\w)
-</pre>
-Only these exact character sequences are recognized. A sequence such as
-[a[:&#60;:]b] provokes error for an unrecognized POSIX class name. This support is
-not compatible with Perl. It is provided to help migrations from other
-environments, and is best not used in any new patterns. Note that \b matches
-at the start and the end of a word (see
-<a href="#smallassertions">"Simple assertions"</a>
-above), and in a Perl-style pattern the preceding or following character
-normally shows which is wanted, without the need for the assertions that are
-used above in order to give exactly the POSIX behaviour.
-</P>
-<br><a name="SEC12" href="#TOC1">VERTICAL BAR</a><br>
-<P>
-Vertical bar characters are used to separate alternative patterns. For example,
-the pattern
-<pre>
- gilbert|sullivan
-</pre>
-matches either "gilbert" or "sullivan". Any number of alternatives may appear,
-and an empty alternative is permitted (matching the empty string). The matching
-process tries each alternative in turn, from left to right, and the first one
-that succeeds is used. If the alternatives are within a subpattern
-<a href="#subpattern">(defined below),</a>
-"succeeds" means matching the rest of the main pattern as well as the
-alternative in the subpattern.
-</P>
-<br><a name="SEC13" href="#TOC1">INTERNAL OPTION SETTING</a><br>
-<P>
-The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
-PCRE_EXTENDED options (which are Perl-compatible) can be changed from within
-the pattern by a sequence of Perl option letters enclosed between "(?" and ")".
-The option letters are
-<pre>
- i for PCRE_CASELESS
- m for PCRE_MULTILINE
- s for PCRE_DOTALL
- x for PCRE_EXTENDED
-</pre>
-For example, (?im) sets caseless, multiline matching. It is also possible to
-unset these options by preceding the letter with a hyphen, and a combined
-setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and
-PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also
-permitted. If a letter appears both before and after the hyphen, the option is
-unset.
-</P>
-<P>
-The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA can be
-changed in the same way as the Perl-compatible options by using the characters
-J, U and X respectively.
-</P>
-<P>
-When one of these option changes occurs at top level (that is, not inside
-subpattern parentheses), the change applies to the remainder of the pattern
-that follows. An option change within a subpattern (see below for a description
-of subpatterns) affects only that part of the subpattern that follows it, so
-<pre>
- (a(?i)b)c
-</pre>
-matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
-By this means, options can be made to have different settings in different
-parts of the pattern. Any changes made in one alternative do carry on
-into subsequent branches within the same subpattern. For example,
-<pre>
- (a(?i)b|c)
-</pre>
-matches "ab", "aB", "c", and "C", even though when matching "C" the first
-branch is abandoned before the option setting. This is because the effects of
-option settings happen at compile time. There would be some very weird
-behaviour otherwise.
-</P>
-<P>
-<b>Note:</b> There are other PCRE-specific options that can be set by the
-application when the compiling or matching functions are called. In some cases
-the pattern can contain special leading sequences such as (*CRLF) to override
-what the application has set or what has been defaulted. Details are given in
-the section entitled
-<a href="#newlineseq">"Newline sequences"</a>
-above. There are also the (*UTF8), (*UTF16),(*UTF32), and (*UCP) leading
-sequences that can be used to set UTF and Unicode property modes; they are
-equivalent to setting the PCRE_UTF8, PCRE_UTF16, PCRE_UTF32 and the PCRE_UCP
-options, respectively. The (*UTF) sequence is a generic version that can be
-used with any of the libraries. However, the application can set the
-PCRE_NEVER_UTF option, which locks out the use of the (*UTF) sequences.
-<a name="subpattern"></a></P>
-<br><a name="SEC14" href="#TOC1">SUBPATTERNS</a><br>
-<P>
-Subpatterns are delimited by parentheses (round brackets), which can be nested.
-Turning part of a pattern into a subpattern does two things:
-<br>
-<br>
-1. It localizes a set of alternatives. For example, the pattern
-<pre>
- cat(aract|erpillar|)
-</pre>
-matches "cataract", "caterpillar", or "cat". Without the parentheses, it would
-match "cataract", "erpillar" or an empty string.
-<br>
-<br>
-2. It sets up the subpattern as a capturing subpattern. This means that, when
-the whole pattern matches, that portion of the subject string that matched the
-subpattern is passed back to the caller via the <i>ovector</i> argument of the
-matching function. (This applies only to the traditional matching functions;
-the DFA matching functions do not support capturing.)
-</P>
-<P>
-Opening parentheses are counted from left to right (starting from 1) to obtain
-numbers for the capturing subpatterns. For example, if the string "the red
-king" is matched against the pattern
-<pre>
- the ((red|white) (king|queen))
-</pre>
-the captured substrings are "red king", "red", and "king", and are numbered 1,
-2, and 3, respectively.
-</P>
-<P>
-The fact that plain parentheses fulfil two functions is not always helpful.
-There are often times when a grouping subpattern is required without a
-capturing requirement. If an opening parenthesis is followed by a question mark
-and a colon, the subpattern does not do any capturing, and is not counted when
-computing the number of any subsequent capturing subpatterns. For example, if
-the string "the white queen" is matched against the pattern
-<pre>
- the ((?:red|white) (king|queen))
-</pre>
-the captured substrings are "white queen" and "queen", and are numbered 1 and
-2. The maximum number of capturing subpatterns is 65535.
-</P>
-<P>
-As a convenient shorthand, if any option settings are required at the start of
-a non-capturing subpattern, the option letters may appear between the "?" and
-the ":". Thus the two patterns
-<pre>
- (?i:saturday|sunday)
- (?:(?i)saturday|sunday)
-</pre>
-match exactly the same set of strings. Because alternative branches are tried
-from left to right, and options are not reset until the end of the subpattern
-is reached, an option setting in one branch does affect subsequent branches, so
-the above patterns match "SUNDAY" as well as "Saturday".
-<a name="dupsubpatternnumber"></a></P>
-<br><a name="SEC15" href="#TOC1">DUPLICATE SUBPATTERN NUMBERS</a><br>
-<P>
-Perl 5.10 introduced a feature whereby each alternative in a subpattern uses
-the same numbers for its capturing parentheses. Such a subpattern starts with
-(?| and is itself a non-capturing subpattern. For example, consider this
-pattern:
-<pre>
- (?|(Sat)ur|(Sun))day
-</pre>
-Because the two alternatives are inside a (?| group, both sets of capturing
-parentheses are numbered one. Thus, when the pattern matches, you can look
-at captured substring number one, whichever alternative matched. This construct
-is useful when you want to capture part, but not all, of one of a number of
-alternatives. Inside a (?| group, parentheses are numbered as usual, but the
-number is reset at the start of each branch. The numbers of any capturing
-parentheses that follow the subpattern start after the highest number used in
-any branch. The following example is taken from the Perl documentation. The
-numbers underneath show in which buffer the captured content will be stored.
-<pre>
- # before ---------------branch-reset----------- after
- / ( a ) (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
- # 1 2 2 3 2 3 4
-</pre>
-A back reference to a numbered subpattern uses the most recent value that is
-set for that number by any subpattern. The following pattern matches "abcabc"
-or "defdef":
-<pre>
- /(?|(abc)|(def))\1/
-</pre>
-In contrast, a subroutine call to a numbered subpattern always refers to the
-first one in the pattern with the given number. The following pattern matches
-"abcabc" or "defabc":
-<pre>
- /(?|(abc)|(def))(?1)/
-</pre>
-If a
-<a href="#conditions">condition test</a>
-for a subpattern's having matched refers to a non-unique number, the test is
-true if any of the subpatterns of that number have matched.
-</P>
-<P>
-An alternative approach to using this "branch reset" feature is to use
-duplicate named subpatterns, as described in the next section.
-</P>
-<br><a name="SEC16" href="#TOC1">NAMED SUBPATTERNS</a><br>
-<P>
-Identifying capturing parentheses by number is simple, but it can be very hard
-to keep track of the numbers in complicated regular expressions. Furthermore,
-if an expression is modified, the numbers may change. To help with this
-difficulty, PCRE supports the naming of subpatterns. This feature was not
-added to Perl until release 5.10. Python had the feature earlier, and PCRE
-introduced it at release 4.0, using the Python syntax. PCRE now supports both
-the Perl and the Python syntax. Perl allows identically numbered subpatterns to
-have different names, but PCRE does not.
-</P>
-<P>
-In PCRE, a subpattern can be named in one of three ways: (?&#60;name&#62;...) or
-(?'name'...) as in Perl, or (?P&#60;name&#62;...) as in Python. References to capturing
-parentheses from other parts of the pattern, such as
-<a href="#backreferences">back references,</a>
-<a href="#recursion">recursion,</a>
-and
-<a href="#conditions">conditions,</a>
-can be made by name as well as by number.
-</P>
-<P>
-Names consist of up to 32 alphanumeric characters and underscores, but must
-start with a non-digit. Named capturing parentheses are still allocated numbers
-as well as names, exactly as if the names were not present. The PCRE API
-provides function calls for extracting the name-to-number translation table
-from a compiled pattern. There is also a convenience function for extracting a
-captured substring by name.
-</P>
-<P>
-By default, a name must be unique within a pattern, but it is possible to relax
-this constraint by setting the PCRE_DUPNAMES option at compile time. (Duplicate
-names are also always permitted for subpatterns with the same number, set up as
-described in the previous section.) Duplicate names can be useful for patterns
-where only one instance of the named parentheses can match. Suppose you want to
-match the name of a weekday, either as a 3-letter abbreviation or as the full
-name, and in both cases you want to extract the abbreviation. This pattern
-(ignoring the line breaks) does the job:
-<pre>
- (?&#60;DN&#62;Mon|Fri|Sun)(?:day)?|
- (?&#60;DN&#62;Tue)(?:sday)?|
- (?&#60;DN&#62;Wed)(?:nesday)?|
- (?&#60;DN&#62;Thu)(?:rsday)?|
- (?&#60;DN&#62;Sat)(?:urday)?
-</pre>
-There are five capturing substrings, but only one is ever set after a match.
-(An alternative way of solving this problem is to use a "branch reset"
-subpattern, as described in the previous section.)
-</P>
-<P>
-The convenience function for extracting the data by name returns the substring
-for the first (and in this example, the only) subpattern of that name that
-matched. This saves searching to find which numbered subpattern it was.
-</P>
-<P>
-If you make a back reference to a non-unique named subpattern from elsewhere in
-the pattern, the subpatterns to which the name refers are checked in the order
-in which they appear in the overall pattern. The first one that is set is used
-for the reference. For example, this pattern matches both "foofoo" and
-"barbar" but not "foobar" or "barfoo":
-<pre>
- (?:(?&#60;n&#62;foo)|(?&#60;n&#62;bar))\k&#60;n&#62;
-
-</PRE>
-</P>
-<P>
-If you make a subroutine call to a non-unique named subpattern, the one that
-corresponds to the first occurrence of the name is used. In the absence of
-duplicate numbers (see the previous section) this is the one with the lowest
-number.
-</P>
-<P>
-If you use a named reference in a condition
-test (see the
-<a href="#conditions">section about conditions</a>
-below), either to check whether a subpattern has matched, or to check for
-recursion, all subpatterns with the same name are tested. If the condition is
-true for any one of them, the overall condition is true. This is the same
-behaviour as testing by number. For further details of the interfaces for
-handling named subpatterns, see the
-<a href="pcreapi.html"><b>pcreapi</b></a>
-documentation.
-</P>
-<P>
-<b>Warning:</b> You cannot use different names to distinguish between two
-subpatterns with the same number because PCRE uses only the numbers when
-matching. For this reason, an error is given at compile time if different names
-are given to subpatterns with the same number. However, you can always give the
-same name to subpatterns with the same number, even when PCRE_DUPNAMES is not
-set.
-</P>
-<br><a name="SEC17" href="#TOC1">REPETITION</a><br>
-<P>
-Repetition is specified by quantifiers, which can follow any of the following
-items:
-<pre>
- a literal data character
- the dot metacharacter
- the \C escape sequence
- the \X escape sequence
- the \R escape sequence
- an escape such as \d or \pL that matches a single character
- a character class
- a back reference (see next section)
- a parenthesized subpattern (including assertions)
- a subroutine call to a subpattern (recursive or otherwise)
-</pre>
-The general repetition quantifier specifies a minimum and maximum number of
-permitted matches, by giving the two numbers in curly brackets (braces),
-separated by a comma. The numbers must be less than 65536, and the first must
-be less than or equal to the second. For example:
-<pre>
- z{2,4}
-</pre>
-matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special
-character. If the second number is omitted, but the comma is present, there is
-no upper limit; if the second number and the comma are both omitted, the
-quantifier specifies an exact number of required matches. Thus
-<pre>
- [aeiou]{3,}
-</pre>
-matches at least 3 successive vowels, but may match many more, while
-<pre>
- \d{8}
-</pre>
-matches exactly 8 digits. An opening curly bracket that appears in a position
-where a quantifier is not allowed, or one that does not match the syntax of a
-quantifier, is taken as a literal character. For example, {,6} is not a
-quantifier, but a literal string of four characters.
-</P>
-<P>
-In UTF modes, quantifiers apply to characters rather than to individual data
-units. Thus, for example, \x{100}{2} matches two characters, each of
-which is represented by a two-byte sequence in a UTF-8 string. Similarly,
-\X{3} matches three Unicode extended grapheme clusters, each of which may be
-several data units long (and they may be of different lengths).
-</P>
-<P>
-The quantifier {0} is permitted, causing the expression to behave as if the
-previous item and the quantifier were not present. This may be useful for
-subpatterns that are referenced as
-<a href="#subpatternsassubroutines">subroutines</a>
-from elsewhere in the pattern (but see also the section entitled
-<a href="#subdefine">"Defining subpatterns for use by reference only"</a>
-below). Items other than subpatterns that have a {0} quantifier are omitted
-from the compiled pattern.
-</P>
-<P>
-For convenience, the three most common quantifiers have single-character
-abbreviations:
-<pre>
- * is equivalent to {0,}
- + is equivalent to {1,}
- ? is equivalent to {0,1}
-</pre>
-It is possible to construct infinite loops by following a subpattern that can
-match no characters with a quantifier that has no upper limit, for example:
-<pre>
- (a?)*
-</pre>
-Earlier versions of Perl and PCRE used to give an error at compile time for
-such patterns. However, because there are cases where this can be useful, such
-patterns are now accepted, but if any repetition of the subpattern does in fact
-match no characters, the loop is forcibly broken.
-</P>
-<P>
-By default, the quantifiers are "greedy", that is, they match as much as
-possible (up to the maximum number of permitted times), without causing the
-rest of the pattern to fail. The classic example of where this gives problems
-is in trying to match comments in C programs. These appear between /* and */
-and within the comment, individual * and / characters may appear. An attempt to
-match C comments by applying the pattern
-<pre>
- /\*.*\*/
-</pre>
-to the string
-<pre>
- /* first comment */ not comment /* second comment */
-</pre>
-fails, because it matches the entire string owing to the greediness of the .*
-item.
-</P>
-<P>
-However, if a quantifier is followed by a question mark, it ceases to be
-greedy, and instead matches the minimum number of times possible, so the
-pattern
-<pre>
- /\*.*?\*/
-</pre>
-does the right thing with the C comments. The meaning of the various
-quantifiers is not otherwise changed, just the preferred number of matches.
-Do not confuse this use of question mark with its use as a quantifier in its
-own right. Because it has two uses, it can sometimes appear doubled, as in
-<pre>
- \d??\d
-</pre>
-which matches one digit by preference, but can match two if that is the only
-way the rest of the pattern matches.
-</P>
-<P>
-If the PCRE_UNGREEDY option is set (an option that is not available in Perl),
-the quantifiers are not greedy by default, but individual ones can be made
-greedy by following them with a question mark. In other words, it inverts the
-default behaviour.
-</P>
-<P>
-When a parenthesized subpattern is quantified with a minimum repeat count that
-is greater than 1 or with a limited maximum, more memory is required for the
-compiled pattern, in proportion to the size of the minimum or maximum.
-</P>
-<P>
-If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent
-to Perl's /s) is set, thus allowing the dot to match newlines, the pattern is
-implicitly anchored, because whatever follows will be tried against every
-character position in the subject string, so there is no point in retrying the
-overall match at any position after the first. PCRE normally treats such a
-pattern as though it were preceded by \A.
-</P>
-<P>
-In cases where it is known that the subject string contains no newlines, it is
-worth setting PCRE_DOTALL in order to obtain this optimization, or
-alternatively using ^ to indicate anchoring explicitly.
-</P>
-<P>
-However, there are some cases where the optimization cannot be used. When .*
-is inside capturing parentheses that are the subject of a back reference
-elsewhere in the pattern, a match at the start may fail where a later one
-succeeds. Consider, for example:
-<pre>
- (.*)abc\1
-</pre>
-If the subject is "xyz123abc123" the match point is the fourth character. For
-this reason, such a pattern is not implicitly anchored.
-</P>
-<P>
-Another case where implicit anchoring is not applied is when the leading .* is
-inside an atomic group. Once again, a match at the start may fail where a later
-one succeeds. Consider this pattern:
-<pre>
- (?&#62;.*?a)b
-</pre>
-It matches "ab" in the subject "aab". The use of the backtracking control verbs
-(*PRUNE) and (*SKIP) also disable this optimization.
-</P>
-<P>
-When a capturing subpattern is repeated, the value captured is the substring
-that matched the final iteration. For example, after
-<pre>
- (tweedle[dume]{3}\s*)+
-</pre>
-has matched "tweedledum tweedledee" the value of the captured substring is
-"tweedledee". However, if there are nested capturing subpatterns, the
-corresponding captured values may have been set in previous iterations. For
-example, after
-<pre>
- /(a|(b))+/
-</pre>
-matches "aba" the value of the second captured substring is "b".
-<a name="atomicgroup"></a></P>
-<br><a name="SEC18" href="#TOC1">ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS</a><br>
-<P>
-With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
-repetition, failure of what follows normally causes the repeated item to be
-re-evaluated to see if a different number of repeats allows the rest of the
-pattern to match. Sometimes it is useful to prevent this, either to change the
-nature of the match, or to cause it fail earlier than it otherwise might, when
-the author of the pattern knows there is no point in carrying on.
-</P>
-<P>
-Consider, for example, the pattern \d+foo when applied to the subject line
-<pre>
- 123456bar
-</pre>
-After matching all 6 digits and then failing to match "foo", the normal
-action of the matcher is to try again with only 5 digits matching the \d+
-item, and then with 4, and so on, before ultimately failing. "Atomic grouping"
-(a term taken from Jeffrey Friedl's book) provides the means for specifying
-that once a subpattern has matched, it is not to be re-evaluated in this way.
-</P>
-<P>
-If we use atomic grouping for the previous example, the matcher gives up
-immediately on failing to match "foo" the first time. The notation is a kind of
-special parenthesis, starting with (?&#62; as in this example:
-<pre>
- (?&#62;\d+)foo
-</pre>
-This kind of parenthesis "locks up" the part of the pattern it contains once
-it has matched, and a failure further into the pattern is prevented from
-backtracking into it. Backtracking past it to previous items, however, works as
-normal.
-</P>
-<P>
-An alternative description is that a subpattern of this type matches the string
-of characters that an identical standalone pattern would match, if anchored at
-the current point in the subject string.
-</P>
-<P>
-Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as
-the above example can be thought of as a maximizing repeat that must swallow
-everything it can. So, while both \d+ and \d+? are prepared to adjust the
-number of digits they match in order to make the rest of the pattern match,
-(?&#62;\d+) can only match an entire sequence of digits.
-</P>
-<P>
-Atomic groups in general can of course contain arbitrarily complicated
-subpatterns, and can be nested. However, when the subpattern for an atomic
-group is just a single repeated item, as in the example above, a simpler
-notation, called a "possessive quantifier" can be used. This consists of an
-additional + character following a quantifier. Using this notation, the
-previous example can be rewritten as
-<pre>
- \d++foo
-</pre>
-Note that a possessive quantifier can be used with an entire group, for
-example:
-<pre>
- (abc|xyz){2,3}+
-</pre>
-Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY
-option is ignored. They are a convenient notation for the simpler forms of
-atomic group. However, there is no difference in the meaning of a possessive
-quantifier and the equivalent atomic group, though there may be a performance
-difference; possessive quantifiers should be slightly faster.
-</P>
-<P>
-The possessive quantifier syntax is an extension to the Perl 5.8 syntax.
-Jeffrey Friedl originated the idea (and the name) in the first edition of his
-book. Mike McCloskey liked it, so implemented it when he built Sun's Java
-package, and PCRE copied it from there. It ultimately found its way into Perl
-at release 5.10.
-</P>
-<P>
-PCRE has an optimization that automatically "possessifies" certain simple
-pattern constructs. For example, the sequence A+B is treated as A++B because
-there is no point in backtracking into a sequence of A's when B must follow.
-</P>
-<P>
-When a pattern contains an unlimited repeat inside a subpattern that can itself
-be repeated an unlimited number of times, the use of an atomic group is the
-only way to avoid some failing matches taking a very long time indeed. The
-pattern
-<pre>
- (\D+|&#60;\d+&#62;)*[!?]
-</pre>
-matches an unlimited number of substrings that either consist of non-digits, or
-digits enclosed in &#60;&#62;, followed by either ! or ?. When it matches, it runs
-quickly. However, if it is applied to
-<pre>
- aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
-</pre>
-it takes a long time before reporting failure. This is because the string can
-be divided between the internal \D+ repeat and the external * repeat in a
-large number of ways, and all have to be tried. (The example uses [!?] rather
-than a single character at the end, because both PCRE and Perl have an
-optimization that allows for fast failure when a single character is used. They
-remember the last single character that is required for a match, and fail early
-if it is not present in the string.) If the pattern is changed so that it uses
-an atomic group, like this:
-<pre>
- ((?&#62;\D+)|&#60;\d+&#62;)*[!?]
-</pre>
-sequences of non-digits cannot be broken, and failure happens quickly.
-<a name="backreferences"></a></P>
-<br><a name="SEC19" href="#TOC1">BACK REFERENCES</a><br>
-<P>
-Outside a character class, a backslash followed by a digit greater than 0 (and
-possibly further digits) is a back reference to a capturing subpattern earlier
-(that is, to its left) in the pattern, provided there have been that many
-previous capturing left parentheses.
-</P>
-<P>
-However, if the decimal number following the backslash is less than 10, it is
-always taken as a back reference, and causes an error only if there are not
-that many capturing left parentheses in the entire pattern. In other words, the
-parentheses that are referenced need not be to the left of the reference for
-numbers less than 10. A "forward back reference" of this type can make sense
-when a repetition is involved and the subpattern to the right has participated
-in an earlier iteration.
-</P>
-<P>
-It is not possible to have a numerical "forward back reference" to a subpattern
-whose number is 10 or more using this syntax because a sequence such as \50 is
-interpreted as a character defined in octal. See the subsection entitled
-"Non-printing characters"
-<a href="#digitsafterbackslash">above</a>
-for further details of the handling of digits following a backslash. There is
-no such problem when named parentheses are used. A back reference to any
-subpattern is possible using named parentheses (see below).
-</P>
-<P>
-Another way of avoiding the ambiguity inherent in the use of digits following a
-backslash is to use the \g escape sequence. This escape must be followed by an
-unsigned number or a negative number, optionally enclosed in braces. These
-examples are all identical:
-<pre>
- (ring), \1
- (ring), \g1
- (ring), \g{1}
-</pre>
-An unsigned number specifies an absolute reference without the ambiguity that
-is present in the older syntax. It is also useful when literal digits follow
-the reference. A negative number is a relative reference. Consider this
-example:
-<pre>
- (abc(def)ghi)\g{-1}
-</pre>
-The sequence \g{-1} is a reference to the most recently started capturing
-subpattern before \g, that is, is it equivalent to \2 in this example.
-Similarly, \g{-2} would be equivalent to \1. The use of relative references
-can be helpful in long patterns, and also in patterns that are created by
-joining together fragments that contain references within themselves.
-</P>
-<P>
-A back reference matches whatever actually matched the capturing subpattern in
-the current subject string, rather than anything matching the subpattern
-itself (see
-<a href="#subpatternsassubroutines">"Subpatterns as subroutines"</a>
-below for a way of doing that). So the pattern
-<pre>
- (sens|respons)e and \1ibility
-</pre>
-matches "sense and sensibility" and "response and responsibility", but not
-"sense and responsibility". If caseful matching is in force at the time of the
-back reference, the case of letters is relevant. For example,
-<pre>
- ((?i)rah)\s+\1
-</pre>
-matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
-capturing subpattern is matched caselessly.
-</P>
-<P>
-There are several different ways of writing back references to named
-subpatterns. The .NET syntax \k{name} and the Perl syntax \k&#60;name&#62; or
-\k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's unified
-back reference syntax, in which \g can be used for both numeric and named
-references, is also supported. We could rewrite the above example in any of
-the following ways:
-<pre>
- (?&#60;p1&#62;(?i)rah)\s+\k&#60;p1&#62;
- (?'p1'(?i)rah)\s+\k{p1}
- (?P&#60;p1&#62;(?i)rah)\s+(?P=p1)
- (?&#60;p1&#62;(?i)rah)\s+\g{p1}
-</pre>
-A subpattern that is referenced by name may appear in the pattern before or
-after the reference.
-</P>
-<P>
-There may be more than one back reference to the same subpattern. If a
-subpattern has not actually been used in a particular match, any back
-references to it always fail by default. For example, the pattern
-<pre>
- (a|(bc))\2
-</pre>
-always fails if it starts to match "a" rather than "bc". However, if the
-PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back reference to an
-unset value matches an empty string.
-</P>
-<P>
-Because there may be many capturing parentheses in a pattern, all digits
-following a backslash are taken as part of a potential back reference number.
-If the pattern continues with a digit character, some delimiter must be used to
-terminate the back reference. If the PCRE_EXTENDED option is set, this can be
-white space. Otherwise, the \g{ syntax or an empty comment (see
-<a href="#comments">"Comments"</a>
-below) can be used.
-</P>
-<br><b>
-Recursive back references
-</b><br>
-<P>
-A back reference that occurs inside the parentheses to which it refers fails
-when the subpattern is first used, so, for example, (a\1) never matches.
-However, such references can be useful inside repeated subpatterns. For
-example, the pattern
-<pre>
- (a|b\1)+
-</pre>
-matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of
-the subpattern, the back reference matches the character string corresponding
-to the previous iteration. In order for this to work, the pattern must be such
-that the first iteration does not need to match the back reference. This can be
-done using alternation, as in the example above, or by a quantifier with a
-minimum of zero.
-</P>
-<P>
-Back references of this type cause the group that they reference to be treated
-as an
-<a href="#atomicgroup">atomic group.</a>
-Once the whole group has been matched, a subsequent matching failure cannot
-cause backtracking into the middle of the group.
-<a name="bigassertions"></a></P>
-<br><a name="SEC20" href="#TOC1">ASSERTIONS</a><br>
-<P>
-An assertion is a test on the characters following or preceding the current
-matching point that does not actually consume any characters. The simple
-assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are described
-<a href="#smallassertions">above.</a>
-</P>
-<P>
-More complicated assertions are coded as subpatterns. There are two kinds:
-those that look ahead of the current position in the subject string, and those
-that look behind it. An assertion subpattern is matched in the normal way,
-except that it does not cause the current matching position to be changed.
-</P>
-<P>
-Assertion subpatterns are not capturing subpatterns. If such an assertion
-contains capturing subpatterns within it, these are counted for the purposes of
-numbering the capturing subpatterns in the whole pattern. However, substring
-capturing is carried out only for positive assertions. (Perl sometimes, but not
-always, does do capturing in negative assertions.)
-</P>
-<P>
-WARNING: If a positive assertion containing one or more capturing subpatterns
-succeeds, but failure to match later in the pattern causes backtracking over
-this assertion, the captures within the assertion are reset only if no higher
-numbered captures are already set. This is, unfortunately, a fundamental
-limitation of the current implementation, and as PCRE1 is now in
-maintenance-only status, it is unlikely ever to change.
-</P>
-<P>
-For compatibility with Perl, assertion subpatterns may be repeated; though
-it makes no sense to assert the same thing several times, the side effect of
-capturing parentheses may occasionally be useful. In practice, there only three
-cases:
-<br>
-<br>
-(1) If the quantifier is {0}, the assertion is never obeyed during matching.
-However, it may contain internal capturing parenthesized groups that are called
-from elsewhere via the
-<a href="#subpatternsassubroutines">subroutine mechanism.</a>
-<br>
-<br>
-(2) If quantifier is {0,n} where n is greater than zero, it is treated as if it
-were {0,1}. At run time, the rest of the pattern match is tried with and
-without the assertion, the order depending on the greediness of the quantifier.
-<br>
-<br>
-(3) If the minimum repetition is greater than zero, the quantifier is ignored.
-The assertion is obeyed just once when encountered during matching.
-</P>
-<br><b>
-Lookahead assertions
-</b><br>
-<P>
-Lookahead assertions start with (?= for positive assertions and (?! for
-negative assertions. For example,
-<pre>
- \w+(?=;)
-</pre>
-matches a word followed by a semicolon, but does not include the semicolon in
-the match, and
-<pre>
- foo(?!bar)
-</pre>
-matches any occurrence of "foo" that is not followed by "bar". Note that the
-apparently similar pattern
-<pre>
- (?!foo)bar
-</pre>
-does not find an occurrence of "bar" that is preceded by something other than
-"foo"; it finds any occurrence of "bar" whatsoever, because the assertion
-(?!foo) is always true when the next three characters are "bar". A
-lookbehind assertion is needed to achieve the other effect.
-</P>
-<P>
-If you want to force a matching failure at some point in a pattern, the most
-convenient way to do it is with (?!) because an empty string always matches, so
-an assertion that requires there not to be an empty string must always fail.
-The backtracking control verb (*FAIL) or (*F) is a synonym for (?!).
-<a name="lookbehind"></a></P>
-<br><b>
-Lookbehind assertions
-</b><br>
-<P>
-Lookbehind assertions start with (?&#60;= for positive assertions and (?&#60;! for
-negative assertions. For example,
-<pre>
- (?&#60;!foo)bar
-</pre>
-does find an occurrence of "bar" that is not preceded by "foo". The contents of
-a lookbehind assertion are restricted such that all the strings it matches must
-have a fixed length. However, if there are several top-level alternatives, they
-do not all have to have the same fixed length. Thus
-<pre>
- (?&#60;=bullock|donkey)
-</pre>
-is permitted, but
-<pre>
- (?&#60;!dogs?|cats?)
-</pre>
-causes an error at compile time. Branches that match different length strings
-are permitted only at the top level of a lookbehind assertion. This is an
-extension compared with Perl, which requires all branches to match the same
-length of string. An assertion such as
-<pre>
- (?&#60;=ab(c|de))
-</pre>
-is not permitted, because its single top-level branch can match two different
-lengths, but it is acceptable to PCRE if rewritten to use two top-level
-branches:
-<pre>
- (?&#60;=abc|abde)
-</pre>
-In some cases, the escape sequence \K
-<a href="#resetmatchstart">(see above)</a>
-can be used instead of a lookbehind assertion to get round the fixed-length
-restriction.
-</P>
-<P>
-The implementation of lookbehind assertions is, for each alternative, to
-temporarily move the current position back by the fixed length and then try to
-match. If there are insufficient characters before the current position, the
-assertion fails.
-</P>
-<P>
-In a UTF mode, PCRE does not allow the \C escape (which matches a single data
-unit even in a UTF mode) to appear in lookbehind assertions, because it makes
-it impossible to calculate the length of the lookbehind. The \X and \R
-escapes, which can match different numbers of data units, are also not
-permitted.
-</P>
-<P>
-<a href="#subpatternsassubroutines">"Subroutine"</a>
-calls (see below) such as (?2) or (?&X) are permitted in lookbehinds, as long
-as the subpattern matches a fixed-length string.
-<a href="#recursion">Recursion,</a>
-however, is not supported.
-</P>
-<P>
-Possessive quantifiers can be used in conjunction with lookbehind assertions to
-specify efficient matching of fixed-length strings at the end of subject
-strings. Consider a simple pattern such as
-<pre>
- abcd$
-</pre>
-when applied to a long string that does not match. Because matching proceeds
-from left to right, PCRE will look for each "a" in the subject and then see if
-what follows matches the rest of the pattern. If the pattern is specified as
-<pre>
- ^.*abcd$
-</pre>
-the initial .* matches the entire string at first, but when this fails (because
-there is no following "a"), it backtracks to match all but the last character,
-then all but the last two characters, and so on. Once again the search for "a"
-covers the entire string, from right to left, so we are no better off. However,
-if the pattern is written as
-<pre>
- ^.*+(?&#60;=abcd)
-</pre>
-there can be no backtracking for the .*+ item; it can match only the entire
-string. The subsequent lookbehind assertion does a single test on the last four
-characters. If it fails, the match fails immediately. For long strings, this
-approach makes a significant difference to the processing time.
-</P>
-<br><b>
-Using multiple assertions
-</b><br>
-<P>
-Several assertions (of any sort) may occur in succession. For example,
-<pre>
- (?&#60;=\d{3})(?&#60;!999)foo
-</pre>
-matches "foo" preceded by three digits that are not "999". Notice that each of
-the assertions is applied independently at the same point in the subject
-string. First there is a check that the previous three characters are all
-digits, and then there is a check that the same three characters are not "999".
-This pattern does <i>not</i> match "foo" preceded by six characters, the first
-of which are digits and the last three of which are not "999". For example, it
-doesn't match "123abcfoo". A pattern to do that is
-<pre>
- (?&#60;=\d{3}...)(?&#60;!999)foo
-</pre>
-This time the first assertion looks at the preceding six characters, checking
-that the first three are digits, and then the second assertion checks that the
-preceding three characters are not "999".
-</P>
-<P>
-Assertions can be nested in any combination. For example,
-<pre>
- (?&#60;=(?&#60;!foo)bar)baz
-</pre>
-matches an occurrence of "baz" that is preceded by "bar" which in turn is not
-preceded by "foo", while
-<pre>
- (?&#60;=\d{3}(?!999)...)foo
-</pre>
-is another pattern that matches "foo" preceded by three digits and any three
-characters that are not "999".
-<a name="conditions"></a></P>
-<br><a name="SEC21" href="#TOC1">CONDITIONAL SUBPATTERNS</a><br>
-<P>
-It is possible to cause the matching process to obey a subpattern
-conditionally or to choose between two alternative subpatterns, depending on
-the result of an assertion, or whether a specific capturing subpattern has
-already been matched. The two possible forms of conditional subpattern are:
-<pre>
- (?(condition)yes-pattern)
- (?(condition)yes-pattern|no-pattern)
-</pre>
-If the condition is satisfied, the yes-pattern is used; otherwise the
-no-pattern (if present) is used. If there are more than two alternatives in the
-subpattern, a compile-time error occurs. Each of the two alternatives may
-itself contain nested subpatterns of any form, including conditional
-subpatterns; the restriction to two alternatives applies only at the level of
-the condition. This pattern fragment is an example where the alternatives are
-complex:
-<pre>
- (?(1) (A|B|C) | (D | (?(2)E|F) | E) )
-
-</PRE>
-</P>
-<P>
-There are four kinds of condition: references to subpatterns, references to
-recursion, a pseudo-condition called DEFINE, and assertions.
-</P>
-<br><b>
-Checking for a used subpattern by number
-</b><br>
-<P>
-If the text between the parentheses consists of a sequence of digits, the
-condition is true if a capturing subpattern of that number has previously
-matched. If there is more than one capturing subpattern with the same number
-(see the earlier
-<a href="#recursion">section about duplicate subpattern numbers),</a>
-the condition is true if any of them have matched. An alternative notation is
-to precede the digits with a plus or minus sign. In this case, the subpattern
-number is relative rather than absolute. The most recently opened parentheses
-can be referenced by (?(-1), the next most recent by (?(-2), and so on. Inside
-loops it can also make sense to refer to subsequent groups. The next
-parentheses to be opened can be referenced as (?(+1), and so on. (The value
-zero in any of these forms is not used; it provokes a compile-time error.)
-</P>
-<P>
-Consider the following pattern, which contains non-significant white space to
-make it more readable (assume the PCRE_EXTENDED option) and to divide it into
-three parts for ease of discussion:
-<pre>
- ( \( )? [^()]+ (?(1) \) )
-</pre>
-The first part matches an optional opening parenthesis, and if that
-character is present, sets it as the first captured substring. The second part
-matches one or more characters that are not parentheses. The third part is a
-conditional subpattern that tests whether or not the first set of parentheses
-matched. If they did, that is, if subject started with an opening parenthesis,
-the condition is true, and so the yes-pattern is executed and a closing
-parenthesis is required. Otherwise, since no-pattern is not present, the
-subpattern matches nothing. In other words, this pattern matches a sequence of
-non-parentheses, optionally enclosed in parentheses.
-</P>
-<P>
-If you were embedding this pattern in a larger one, you could use a relative
-reference:
-<pre>
- ...other stuff... ( \( )? [^()]+ (?(-1) \) ) ...
-</pre>
-This makes the fragment independent of the parentheses in the larger pattern.
-</P>
-<br><b>
-Checking for a used subpattern by name
-</b><br>
-<P>
-Perl uses the syntax (?(&#60;name&#62;)...) or (?('name')...) to test for a used
-subpattern by name. For compatibility with earlier versions of PCRE, which had
-this facility before Perl, the syntax (?(name)...) is also recognized.
-</P>
-<P>
-Rewriting the above example to use a named subpattern gives this:
-<pre>
- (?&#60;OPEN&#62; \( )? [^()]+ (?(&#60;OPEN&#62;) \) )
-</pre>
-If the name used in a condition of this kind is a duplicate, the test is
-applied to all subpatterns of the same name, and is true if any one of them has
-matched.
-</P>
-<br><b>
-Checking for pattern recursion
-</b><br>
-<P>
-If the condition is the string (R), and there is no subpattern with the name R,
-the condition is true if a recursive call to the whole pattern or any
-subpattern has been made. If digits or a name preceded by ampersand follow the
-letter R, for example:
-<pre>
- (?(R3)...) or (?(R&name)...)
-</pre>
-the condition is true if the most recent recursion is into a subpattern whose
-number or name is given. This condition does not check the entire recursion
-stack. If the name used in a condition of this kind is a duplicate, the test is
-applied to all subpatterns of the same name, and is true if any one of them is
-the most recent recursion.
-</P>
-<P>
-At "top level", all these recursion test conditions are false.
-<a href="#recursion">The syntax for recursive patterns</a>
-is described below.
-<a name="subdefine"></a></P>
-<br><b>
-Defining subpatterns for use by reference only
-</b><br>
-<P>
-If the condition is the string (DEFINE), and there is no subpattern with the
-name DEFINE, the condition is always false. In this case, there may be only one
-alternative in the subpattern. It is always skipped if control reaches this
-point in the pattern; the idea of DEFINE is that it can be used to define
-subroutines that can be referenced from elsewhere. (The use of
-<a href="#subpatternsassubroutines">subroutines</a>
-is described below.) For example, a pattern to match an IPv4 address such as
-"192.168.23.245" could be written like this (ignore white space and line
-breaks):
-<pre>
- (?(DEFINE) (?&#60;byte&#62; 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
- \b (?&byte) (\.(?&byte)){3} \b
-</pre>
-The first part of the pattern is a DEFINE group inside which a another group
-named "byte" is defined. This matches an individual component of an IPv4
-address (a number less than 256). When matching takes place, this part of the
-pattern is skipped because DEFINE acts like a false condition. The rest of the
-pattern uses references to the named group to match the four dot-separated
-components of an IPv4 address, insisting on a word boundary at each end.
-</P>
-<br><b>
-Assertion conditions
-</b><br>
-<P>
-If the condition is not in any of the above formats, it must be an assertion.
-This may be a positive or negative lookahead or lookbehind assertion. Consider
-this pattern, again containing non-significant white space, and with the two
-alternatives on the second line:
-<pre>
- (?(?=[^a-z]*[a-z])
- \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2} )
-</pre>
-The condition is a positive lookahead assertion that matches an optional
-sequence of non-letters followed by a letter. In other words, it tests for the
-presence of at least one letter in the subject. If a letter is found, the
-subject is matched against the first alternative; otherwise it is matched
-against the second. This pattern matches strings in one of the two forms
-dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.
-<a name="comments"></a></P>
-<br><a name="SEC22" href="#TOC1">COMMENTS</a><br>
-<P>
-There are two ways of including comments in patterns that are processed by
-PCRE. In both cases, the start of the comment must not be in a character class,
-nor in the middle of any other sequence of related characters such as (?: or a
-subpattern name or number. The characters that make up a comment play no part
-in the pattern matching.
-</P>
-<P>
-The sequence (?# marks the start of a comment that continues up to the next
-closing parenthesis. Nested parentheses are not permitted. If the PCRE_EXTENDED
-option is set, an unescaped # character also introduces a comment, which in
-this case continues to immediately after the next newline character or
-character sequence in the pattern. Which characters are interpreted as newlines
-is controlled by the options passed to a compiling function or by a special
-sequence at the start of the pattern, as described in the section entitled
-<a href="#newlines">"Newline conventions"</a>
-above. Note that the end of this type of comment is a literal newline sequence
-in the pattern; escape sequences that happen to represent a newline do not
-count. For example, consider this pattern when PCRE_EXTENDED is set, and the
-default newline convention is in force:
-<pre>
- abc #comment \n still comment
-</pre>
-On encountering the # character, <b>pcre_compile()</b> skips along, looking for
-a newline in the pattern. The sequence \n is still literal at this stage, so
-it does not terminate the comment. Only an actual character with the code value
-0x0a (the default newline) does so.
-<a name="recursion"></a></P>
-<br><a name="SEC23" href="#TOC1">RECURSIVE PATTERNS</a><br>
-<P>
-Consider the problem of matching a string in parentheses, allowing for
-unlimited nested parentheses. Without the use of recursion, the best that can
-be done is to use a pattern that matches up to some fixed depth of nesting. It
-is not possible to handle an arbitrary nesting depth.
-</P>
-<P>
-For some time, Perl has provided a facility that allows regular expressions to
-recurse (amongst other things). It does this by interpolating Perl code in the
-expression at run time, and the code can refer to the expression itself. A Perl
-pattern using code interpolation to solve the parentheses problem can be
-created like this:
-<pre>
- $re = qr{\( (?: (?&#62;[^()]+) | (?p{$re}) )* \)}x;
-</pre>
-The (?p{...}) item interpolates Perl code at run time, and in this case refers
-recursively to the pattern in which it appears.
-</P>
-<P>
-Obviously, PCRE cannot support the interpolation of Perl code. Instead, it
-supports special syntax for recursion of the entire pattern, and also for
-individual subpattern recursion. After its introduction in PCRE and Python,
-this kind of recursion was subsequently introduced into Perl at release 5.10.
-</P>
-<P>
-A special item that consists of (? followed by a number greater than zero and a
-closing parenthesis is a recursive subroutine call of the subpattern of the
-given number, provided that it occurs inside that subpattern. (If not, it is a
-<a href="#subpatternsassubroutines">non-recursive subroutine</a>
-call, which is described in the next section.) The special item (?R) or (?0) is
-a recursive call of the entire regular expression.
-</P>
-<P>
-This PCRE pattern solves the nested parentheses problem (assume the
-PCRE_EXTENDED option is set so that white space is ignored):
-<pre>
- \( ( [^()]++ | (?R) )* \)
-</pre>
-First it matches an opening parenthesis. Then it matches any number of
-substrings which can either be a sequence of non-parentheses, or a recursive
-match of the pattern itself (that is, a correctly parenthesized substring).
-Finally there is a closing parenthesis. Note the use of a possessive quantifier
-to avoid backtracking into sequences of non-parentheses.
-</P>
-<P>
-If this were part of a larger pattern, you would not want to recurse the entire
-pattern, so instead you could use this:
-<pre>
- ( \( ( [^()]++ | (?1) )* \) )
-</pre>
-We have put the pattern into parentheses, and caused the recursion to refer to
-them instead of the whole pattern.
-</P>
-<P>
-In a larger pattern, keeping track of parenthesis numbers can be tricky. This
-is made easier by the use of relative references. Instead of (?1) in the
-pattern above you can write (?-2) to refer to the second most recently opened
-parentheses preceding the recursion. In other words, a negative number counts
-capturing parentheses leftwards from the point at which it is encountered.
-</P>
-<P>
-It is also possible to refer to subsequently opened parentheses, by writing
-references such as (?+2). However, these cannot be recursive because the
-reference is not inside the parentheses that are referenced. They are always
-<a href="#subpatternsassubroutines">non-recursive subroutine</a>
-calls, as described in the next section.
-</P>
-<P>
-An alternative approach is to use named parentheses instead. The Perl syntax
-for this is (?&name); PCRE's earlier syntax (?P&#62;name) is also supported. We
-could rewrite the above example as follows:
-<pre>
- (?&#60;pn&#62; \( ( [^()]++ | (?&pn) )* \) )
-</pre>
-If there is more than one subpattern with the same name, the earliest one is
-used.
-</P>
-<P>
-This particular example pattern that we have been looking at contains nested
-unlimited repeats, and so the use of a possessive quantifier for matching
-strings of non-parentheses is important when applying the pattern to strings
-that do not match. For example, when this pattern is applied to
-<pre>
- (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
-</pre>
-it yields "no match" quickly. However, if a possessive quantifier is not used,
-the match runs for a very long time indeed because there are so many different
-ways the + and * repeats can carve up the subject, and all have to be tested
-before failure can be reported.
-</P>
-<P>
-At the end of a match, the values of capturing parentheses are those from
-the outermost level. If you want to obtain intermediate values, a callout
-function can be used (see below and the
-<a href="pcrecallout.html"><b>pcrecallout</b></a>
-documentation). If the pattern above is matched against
-<pre>
- (ab(cd)ef)
-</pre>
-the value for the inner capturing parentheses (numbered 2) is "ef", which is
-the last value taken on at the top level. If a capturing subpattern is not
-matched at the top level, its final captured value is unset, even if it was
-(temporarily) set at a deeper level during the matching process.
-</P>
-<P>
-If there are more than 15 capturing parentheses in a pattern, PCRE has to
-obtain extra memory to store data during a recursion, which it does by using
-<b>pcre_malloc</b>, freeing it via <b>pcre_free</b> afterwards. If no memory can
-be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.
-</P>
-<P>
-Do not confuse the (?R) item with the condition (R), which tests for recursion.
-Consider this pattern, which matches text in angle brackets, allowing for
-arbitrary nesting. Only digits are allowed in nested brackets (that is, when
-recursing), whereas any characters are permitted at the outer level.
-<pre>
- &#60; (?: (?(R) \d++ | [^&#60;&#62;]*+) | (?R)) * &#62;
-</pre>
-In this pattern, (?(R) is the start of a conditional subpattern, with two
-different alternatives for the recursive and non-recursive cases. The (?R) item
-is the actual recursive call.
-<a name="recursiondifference"></a></P>
-<br><b>
-Differences in recursion processing between PCRE and Perl
-</b><br>
-<P>
-Recursion processing in PCRE differs from Perl in two important ways. In PCRE
-(like Python, but unlike Perl), a recursive subpattern call is always treated
-as an atomic group. That is, once it has matched some of the subject string, it
-is never re-entered, even if it contains untried alternatives and there is a
-subsequent matching failure. This can be illustrated by the following pattern,
-which purports to match a palindromic string that contains an odd number of
-characters (for example, "a", "aba", "abcba", "abcdcba"):
-<pre>
- ^(.|(.)(?1)\2)$
-</pre>
-The idea is that it either matches a single character, or two identical
-characters surrounding a sub-palindrome. In Perl, this pattern works; in PCRE
-it does not if the pattern is longer than three characters. Consider the
-subject string "abcba":
-</P>
-<P>
-At the top level, the first character is matched, but as it is not at the end
-of the string, the first alternative fails; the second alternative is taken
-and the recursion kicks in. The recursive call to subpattern 1 successfully
-matches the next character ("b"). (Note that the beginning and end of line
-tests are not part of the recursion).
-</P>
-<P>
-Back at the top level, the next character ("c") is compared with what
-subpattern 2 matched, which was "a". This fails. Because the recursion is
-treated as an atomic group, there are now no backtracking points, and so the
-entire match fails. (Perl is able, at this point, to re-enter the recursion and
-try the second alternative.) However, if the pattern is written with the
-alternatives in the other order, things are different:
-<pre>
- ^((.)(?1)\2|.)$
-</pre>
-This time, the recursing alternative is tried first, and continues to recurse
-until it runs out of characters, at which point the recursion fails. But this
-time we do have another alternative to try at the higher level. That is the big
-difference: in the previous case the remaining alternative is at a deeper
-recursion level, which PCRE cannot use.
-</P>
-<P>
-To change the pattern so that it matches all palindromic strings, not just
-those with an odd number of characters, it is tempting to change the pattern to
-this:
-<pre>
- ^((.)(?1)\2|.?)$
-</pre>
-Again, this works in Perl, but not in PCRE, and for the same reason. When a
-deeper recursion has matched a single character, it cannot be entered again in
-order to match an empty string. The solution is to separate the two cases, and
-write out the odd and even cases as alternatives at the higher level:
-<pre>
- ^(?:((.)(?1)\2|)|((.)(?3)\4|.))
-</pre>
-If you want to match typical palindromic phrases, the pattern has to ignore all
-non-word characters, which can be done like this:
-<pre>
- ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$
-</pre>
-If run with the PCRE_CASELESS option, this pattern matches phrases such as "A
-man, a plan, a canal: Panama!" and it works well in both PCRE and Perl. Note
-the use of the possessive quantifier *+ to avoid backtracking into sequences of
-non-word characters. Without this, PCRE takes a great deal longer (ten times or
-more) to match typical phrases, and Perl takes so long that you think it has
-gone into a loop.
-</P>
-<P>
-<b>WARNING</b>: The palindrome-matching patterns above work only if the subject
-string does not start with a palindrome that is shorter than the entire string.
-For example, although "abcba" is correctly matched, if the subject is "ababa",
-PCRE finds the palindrome "aba" at the start, then fails at top level because
-the end of the string does not follow. Once again, it cannot jump back into the
-recursion to try other alternatives, so the entire match fails.
-</P>
-<P>
-The second way in which PCRE and Perl differ in their recursion processing is
-in the handling of captured values. In Perl, when a subpattern is called
-recursively or as a subpattern (see the next section), it has no access to any
-values that were captured outside the recursion, whereas in PCRE these values
-can be referenced. Consider this pattern:
-<pre>
- ^(.)(\1|a(?2))
-</pre>
-In PCRE, this pattern matches "bab". The first capturing parentheses match "b",
-then in the second group, when the back reference \1 fails to match "b", the
-second alternative matches "a" and then recurses. In the recursion, \1 does
-now match "b" and so the whole match succeeds. In Perl, the pattern fails to
-match because inside the recursive call \1 cannot access the externally set
-value.
-<a name="subpatternsassubroutines"></a></P>
-<br><a name="SEC24" href="#TOC1">SUBPATTERNS AS SUBROUTINES</a><br>
-<P>
-If the syntax for a recursive subpattern call (either by number or by
-name) is used outside the parentheses to which it refers, it operates like a
-subroutine in a programming language. The called subpattern may be defined
-before or after the reference. A numbered reference can be absolute or
-relative, as in these examples:
-<pre>
- (...(absolute)...)...(?2)...
- (...(relative)...)...(?-1)...
- (...(?+1)...(relative)...
-</pre>
-An earlier example pointed out that the pattern
-<pre>
- (sens|respons)e and \1ibility
-</pre>
-matches "sense and sensibility" and "response and responsibility", but not
-"sense and responsibility". If instead the pattern
-<pre>
- (sens|respons)e and (?1)ibility
-</pre>
-is used, it does match "sense and responsibility" as well as the other two
-strings. Another example is given in the discussion of DEFINE above.
-</P>
-<P>
-All subroutine calls, whether recursive or not, are always treated as atomic
-groups. That is, once a subroutine has matched some of the subject string, it
-is never re-entered, even if it contains untried alternatives and there is a
-subsequent matching failure. Any capturing parentheses that are set during the
-subroutine call revert to their previous values afterwards.
-</P>
-<P>
-Processing options such as case-independence are fixed when a subpattern is
-defined, so if it is used as a subroutine, such options cannot be changed for
-different calls. For example, consider this pattern:
-<pre>
- (abc)(?i:(?-1))
-</pre>
-It matches "abcabc". It does not match "abcABC" because the change of
-processing option does not affect the called subpattern.
-<a name="onigurumasubroutines"></a></P>
-<br><a name="SEC25" href="#TOC1">ONIGURUMA SUBROUTINE SYNTAX</a><br>
-<P>
-For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
-a number enclosed either in angle brackets or single quotes, is an alternative
-syntax for referencing a subpattern as a subroutine, possibly recursively. Here
-are two of the examples used above, rewritten using this syntax:
-<pre>
- (?&#60;pn&#62; \( ( (?&#62;[^()]+) | \g&#60;pn&#62; )* \) )
- (sens|respons)e and \g'1'ibility
-</pre>
-PCRE supports an extension to Oniguruma: if a number is preceded by a
-plus or a minus sign it is taken as a relative reference. For example:
-<pre>
- (abc)(?i:\g&#60;-1&#62;)
-</pre>
-Note that \g{...} (Perl syntax) and \g&#60;...&#62; (Oniguruma syntax) are <i>not</i>
-synonymous. The former is a back reference; the latter is a subroutine call.
-</P>
-<br><a name="SEC26" href="#TOC1">CALLOUTS</a><br>
-<P>
-Perl has a feature whereby using the sequence (?{...}) causes arbitrary Perl
-code to be obeyed in the middle of matching a regular expression. This makes it
-possible, amongst other things, to extract different substrings that match the
-same pair of parentheses when there is a repetition.
-</P>
-<P>
-PCRE provides a similar feature, but of course it cannot obey arbitrary Perl
-code. The feature is called "callout". The caller of PCRE provides an external
-function by putting its entry point in the global variable <i>pcre_callout</i>
-(8-bit library) or <i>pcre[16|32]_callout</i> (16-bit or 32-bit library).
-By default, this variable contains NULL, which disables all calling out.
-</P>
-<P>
-Within a regular expression, (?C) indicates the points at which the external
-function is to be called. If you want to identify different callout points, you
-can put a number less than 256 after the letter C. The default value is zero.
-For example, this pattern has two callout points:
-<pre>
- (?C1)abc(?C2)def
-</pre>
-If the PCRE_AUTO_CALLOUT flag is passed to a compiling function, callouts are
-automatically installed before each item in the pattern. They are all numbered
-255. If there is a conditional group in the pattern whose condition is an
-assertion, an additional callout is inserted just before the condition. An
-explicit callout may also be set at this position, as in this example:
-<pre>
- (?(?C9)(?=a)abc|def)
-</pre>
-Note that this applies only to assertion conditions, not to other types of
-condition.
-</P>
-<P>
-During matching, when PCRE reaches a callout point, the external function is
-called. It is provided with the number of the callout, the position in the
-pattern, and, optionally, one item of data originally supplied by the caller of
-the matching function. The callout function may cause matching to proceed, to
-backtrack, or to fail altogether.
-</P>
-<P>
-By default, PCRE implements a number of optimizations at compile time and
-matching time, and one side-effect is that sometimes callouts are skipped. If
-you need all possible callouts to happen, you need to set options that disable
-the relevant optimizations. More details, and a complete description of the
-interface to the callout function, are given in the
-<a href="pcrecallout.html"><b>pcrecallout</b></a>
-documentation.
-<a name="backtrackcontrol"></a></P>
-<br><a name="SEC27" href="#TOC1">BACKTRACKING CONTROL</a><br>
-<P>
-Perl 5.10 introduced a number of "Special Backtracking Control Verbs", which
-are still described in the Perl documentation as "experimental and subject to
-change or removal in a future version of Perl". It goes on to say: "Their usage
-in production code should be noted to avoid problems during upgrades." The same
-remarks apply to the PCRE features described in this section.
-</P>
-<P>
-The new verbs make use of what was previously invalid syntax: an opening
-parenthesis followed by an asterisk. They are generally of the form
-(*VERB) or (*VERB:NAME). Some may take either form, possibly behaving
-differently depending on whether or not a name is present. A name is any
-sequence of characters that does not include a closing parenthesis. The maximum
-length of name is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit
-libraries. If the name is empty, that is, if the closing parenthesis
-immediately follows the colon, the effect is as if the colon were not there.
-Any number of these verbs may occur in a pattern.
-</P>
-<P>
-Since these verbs are specifically related to backtracking, most of them can be
-used only when the pattern is to be matched using one of the traditional
-matching functions, because these use a backtracking algorithm. With the
-exception of (*FAIL), which behaves like a failing negative assertion, the
-backtracking control verbs cause an error if encountered by a DFA matching
-function.
-</P>
-<P>
-The behaviour of these verbs in
-<a href="#btrepeat">repeated groups,</a>
-<a href="#btassert">assertions,</a>
-and in
-<a href="#btsub">subpatterns called as subroutines</a>
-(whether or not recursively) is documented below.
-<a name="nooptimize"></a></P>
-<br><b>
-Optimizations that affect backtracking verbs
-</b><br>
-<P>
-PCRE contains some optimizations that are used to speed up matching by running
-some checks at the start of each match attempt. For example, it may know the
-minimum length of matching subject, or that a particular character must be
-present. When one of these optimizations bypasses the running of a match, any
-included backtracking verbs will not, of course, be processed. You can suppress
-the start-of-match optimizations by setting the PCRE_NO_START_OPTIMIZE option
-when calling <b>pcre_compile()</b> or <b>pcre_exec()</b>, or by starting the
-pattern with (*NO_START_OPT). There is more discussion of this option in the
-section entitled
-<a href="pcreapi.html#execoptions">"Option bits for <b>pcre_exec()</b>"</a>
-in the
-<a href="pcreapi.html"><b>pcreapi</b></a>
-documentation.
-</P>
-<P>
-Experiments with Perl suggest that it too has similar optimizations, sometimes
-leading to anomalous results.
-</P>
-<br><b>
-Verbs that act immediately
-</b><br>
-<P>
-The following verbs act as soon as they are encountered. They may not be
-followed by a name.
-<pre>
- (*ACCEPT)
-</pre>
-This verb causes the match to end successfully, skipping the remainder of the
-pattern. However, when it is inside a subpattern that is called as a
-subroutine, only that subpattern is ended successfully. Matching then continues
-at the outer level. If (*ACCEPT) in triggered in a positive assertion, the
-assertion succeeds; in a negative assertion, the assertion fails.
-</P>
-<P>
-If (*ACCEPT) is inside capturing parentheses, the data so far is captured. For
-example:
-<pre>
- A((?:A|B(*ACCEPT)|C)D)
-</pre>
-This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is captured by
-the outer parentheses.
-<pre>
- (*FAIL) or (*F)
-</pre>
-This verb causes a matching failure, forcing backtracking to occur. It is
-equivalent to (?!) but easier to read. The Perl documentation notes that it is
-probably useful only when combined with (?{}) or (??{}). Those are, of course,
-Perl features that are not present in PCRE. The nearest equivalent is the
-callout feature, as for example in this pattern:
-<pre>
- a+(?C)(*FAIL)
-</pre>
-A match with the string "aaaa" always fails, but the callout is taken before
-each backtrack happens (in this example, 10 times).
-</P>
-<br><b>
-Recording which path was taken
-</b><br>
-<P>
-There is one verb whose main purpose is to track how a match was arrived at,
-though it also has a secondary use in conjunction with advancing the match
-starting point (see (*SKIP) below).
-<pre>
- (*MARK:NAME) or (*:NAME)
-</pre>
-A name is always required with this verb. There may be as many instances of
-(*MARK) as you like in a pattern, and their names do not have to be unique.
-</P>
-<P>
-When a match succeeds, the name of the last-encountered (*MARK:NAME),
-(*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed back to the
-caller as described in the section entitled
-<a href="pcreapi.html#extradata">"Extra data for <b>pcre_exec()</b>"</a>
-in the
-<a href="pcreapi.html"><b>pcreapi</b></a>
-documentation. Here is an example of <b>pcretest</b> output, where the /K
-modifier requests the retrieval and outputting of (*MARK) data:
-<pre>
- re&#62; /X(*MARK:A)Y|X(*MARK:B)Z/K
- data&#62; XY
- 0: XY
- MK: A
- XZ
- 0: XZ
- MK: B
-</pre>
-The (*MARK) name is tagged with "MK:" in this output, and in this example it
-indicates which of the two alternatives matched. This is a more efficient way
-of obtaining this information than putting each alternative in its own
-capturing parentheses.
-</P>
-<P>
-If a verb with a name is encountered in a positive assertion that is true, the
-name is recorded and passed back if it is the last-encountered. This does not
-happen for negative assertions or failing positive assertions.
-</P>
-<P>
-After a partial match or a failed match, the last encountered name in the
-entire match process is returned. For example:
-<pre>
- re&#62; /X(*MARK:A)Y|X(*MARK:B)Z/K
- data&#62; XP
- No match, mark = B
-</pre>
-Note that in this unanchored example the mark is retained from the match
-attempt that started at the letter "X" in the subject. Subsequent match
-attempts starting at "P" and then with an empty string do not get as far as the
-(*MARK) item, but nevertheless do not reset it.
-</P>
-<P>
-If you are interested in (*MARK) values after failed matches, you should
-probably set the PCRE_NO_START_OPTIMIZE option
-<a href="#nooptimize">(see above)</a>
-to ensure that the match is always attempted.
-</P>
-<br><b>
-Verbs that act after backtracking
-</b><br>
-<P>
-The following verbs do nothing when they are encountered. Matching continues
-with what follows, but if there is no subsequent match, causing a backtrack to
-the verb, a failure is forced. That is, backtracking cannot pass to the left of
-the verb. However, when one of these verbs appears inside an atomic group or an
-assertion that is true, its effect is confined to that group, because once the
-group has been matched, there is never any backtracking into it. In this
-situation, backtracking can "jump back" to the left of the entire atomic group
-or assertion. (Remember also, as stated above, that this localization also
-applies in subroutine calls.)
-</P>
-<P>
-These verbs differ in exactly what kind of failure occurs when backtracking
-reaches them. The behaviour described below is what happens when the verb is
-not in a subroutine or an assertion. Subsequent sections cover these special
-cases.
-<pre>
- (*COMMIT)
-</pre>
-This verb, which may not be followed by a name, causes the whole match to fail
-outright if there is a later matching failure that causes backtracking to reach
-it. Even if the pattern is unanchored, no further attempts to find a match by
-advancing the starting point take place. If (*COMMIT) is the only backtracking
-verb that is encountered, once it has been passed <b>pcre_exec()</b> is
-committed to finding a match at the current starting point, or not at all. For
-example:
-<pre>
- a+(*COMMIT)b
-</pre>
-This matches "xxaab" but not "aacaab". It can be thought of as a kind of
-dynamic anchor, or "I've started, so I must finish." The name of the most
-recently passed (*MARK) in the path is passed back when (*COMMIT) forces a
-match failure.
-</P>
-<P>
-If there is more than one backtracking verb in a pattern, a different one that
-follows (*COMMIT) may be triggered first, so merely passing (*COMMIT) during a
-match does not always guarantee that a match must be at this starting point.
-</P>
-<P>
-Note that (*COMMIT) at the start of a pattern is not the same as an anchor,
-unless PCRE's start-of-match optimizations are turned off, as shown in this
-output from <b>pcretest</b>:
-<pre>
- re&#62; /(*COMMIT)abc/
- data&#62; xyzabc
- 0: abc
- data&#62; xyzabc\Y
- No match
-</pre>
-For this pattern, PCRE knows that any match must start with "a", so the
-optimization skips along the subject to "a" before applying the pattern to the
-first set of data. The match attempt then succeeds. In the second set of data,
-the escape sequence \Y is interpreted by the <b>pcretest</b> program. It causes
-the PCRE_NO_START_OPTIMIZE option to be set when <b>pcre_exec()</b> is called.
-This disables the optimization that skips along to the first character. The
-pattern is now applied starting at "x", and so the (*COMMIT) causes the match
-to fail without trying any other starting points.
-<pre>
- (*PRUNE) or (*PRUNE:NAME)
-</pre>
-This verb causes the match to fail at the current starting position in the
-subject if there is a later matching failure that causes backtracking to reach
-it. If the pattern is unanchored, the normal "bumpalong" advance to the next
-starting character then happens. Backtracking can occur as usual to the left of
-(*PRUNE), before it is reached, or when matching to the right of (*PRUNE), but
-if there is no match to the right, backtracking cannot cross (*PRUNE). In
-simple cases, the use of (*PRUNE) is just an alternative to an atomic group or
-possessive quantifier, but there are some uses of (*PRUNE) that cannot be
-expressed in any other way. In an anchored pattern (*PRUNE) has the same effect
-as (*COMMIT).
-</P>
-<P>
-The behaviour of (*PRUNE:NAME) is the not the same as (*MARK:NAME)(*PRUNE).
-It is like (*MARK:NAME) in that the name is remembered for passing back to the
-caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
-<pre>
- (*SKIP)
-</pre>
-This verb, when given without a name, is like (*PRUNE), except that if the
-pattern is unanchored, the "bumpalong" advance is not to the next character,
-but to the position in the subject where (*SKIP) was encountered. (*SKIP)
-signifies that whatever text was matched leading up to it cannot be part of a
-successful match. Consider:
-<pre>
- a+(*SKIP)b
-</pre>
-If the subject is "aaaac...", after the first match attempt fails (starting at
-the first character in the string), the starting point skips on to start the
-next attempt at "c". Note that a possessive quantifer does not have the same
-effect as this example; although it would suppress backtracking during the
-first match attempt, the second attempt would start at the second character
-instead of skipping on to "c".
-<pre>
- (*SKIP:NAME)
-</pre>
-When (*SKIP) has an associated name, its behaviour is modified. When it is
-triggered, the previous path through the pattern is searched for the most
-recent (*MARK) that has the same name. If one is found, the "bumpalong" advance
-is to the subject position that corresponds to that (*MARK) instead of to where
-(*SKIP) was encountered. If no (*MARK) with a matching name is found, the
-(*SKIP) is ignored.
-</P>
-<P>
-Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It ignores
-names that are set by (*PRUNE:NAME) or (*THEN:NAME).
-<pre>
- (*THEN) or (*THEN:NAME)
-</pre>
-This verb causes a skip to the next innermost alternative when backtracking
-reaches it. That is, it cancels any further backtracking within the current
-alternative. Its name comes from the observation that it can be used for a
-pattern-based if-then-else block:
-<pre>
- ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...
-</pre>
-If the COND1 pattern matches, FOO is tried (and possibly further items after
-the end of the group if FOO succeeds); on failure, the matcher skips to the
-second alternative and tries COND2, without backtracking into COND1. If that
-succeeds and BAR fails, COND3 is tried. If subsequently BAZ fails, there are no
-more alternatives, so there is a backtrack to whatever came before the entire
-group. If (*THEN) is not inside an alternation, it acts like (*PRUNE).
-</P>
-<P>
-The behaviour of (*THEN:NAME) is the not the same as (*MARK:NAME)(*THEN).
-It is like (*MARK:NAME) in that the name is remembered for passing back to the
-caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
-</P>
-<P>
-A subpattern that does not contain a | character is just a part of the
-enclosing alternative; it is not a nested alternation with only one
-alternative. The effect of (*THEN) extends beyond such a subpattern to the
-enclosing alternative. Consider this pattern, where A, B, etc. are complex
-pattern fragments that do not contain any | characters at this level:
-<pre>
- A (B(*THEN)C) | D
-</pre>
-If A and B are matched, but there is a failure in C, matching does not
-backtrack into A; instead it moves to the next alternative, that is, D.
-However, if the subpattern containing (*THEN) is given an alternative, it
-behaves differently:
-<pre>
- A (B(*THEN)C | (*FAIL)) | D
-</pre>
-The effect of (*THEN) is now confined to the inner subpattern. After a failure
-in C, matching moves to (*FAIL), which causes the whole subpattern to fail
-because there are no more alternatives to try. In this case, matching does now
-backtrack into A.
-</P>
-<P>
-Note that a conditional subpattern is not considered as having two
-alternatives, because only one is ever used. In other words, the | character in
-a conditional subpattern has a different meaning. Ignoring white space,
-consider:
-<pre>
- ^.*? (?(?=a) a | b(*THEN)c )
-</pre>
-If the subject is "ba", this pattern does not match. Because .*? is ungreedy,
-it initially matches zero characters. The condition (?=a) then fails, the
-character "b" is matched, but "c" is not. At this point, matching does not
-backtrack to .*? as might perhaps be expected from the presence of the |
-character. The conditional subpattern is part of the single alternative that
-comprises the whole pattern, and so the match fails. (If there was a backtrack
-into .*?, allowing it to match "b", the match would succeed.)
-</P>
-<P>
-The verbs just described provide four different "strengths" of control when
-subsequent matching fails. (*THEN) is the weakest, carrying on the match at the
-next alternative. (*PRUNE) comes next, failing the match at the current
-starting position, but allowing an advance to the next character (for an
-unanchored pattern). (*SKIP) is similar, except that the advance may be more
-than one character. (*COMMIT) is the strongest, causing the entire match to
-fail.
-</P>
-<br><b>
-More than one backtracking verb
-</b><br>
-<P>
-If more than one backtracking verb is present in a pattern, the one that is
-backtracked onto first acts. For example, consider this pattern, where A, B,
-etc. are complex pattern fragments:
-<pre>
- (A(*COMMIT)B(*THEN)C|ABD)
-</pre>
-If A matches but B fails, the backtrack to (*COMMIT) causes the entire match to
-fail. However, if A and B match, but C fails, the backtrack to (*THEN) causes
-the next alternative (ABD) to be tried. This behaviour is consistent, but is
-not always the same as Perl's. It means that if two or more backtracking verbs
-appear in succession, all the the last of them has no effect. Consider this
-example:
-<pre>
- ...(*COMMIT)(*PRUNE)...
-</pre>
-If there is a matching failure to the right, backtracking onto (*PRUNE) causes
-it to be triggered, and its action is taken. There can never be a backtrack
-onto (*COMMIT).
-<a name="btrepeat"></a></P>
-<br><b>
-Backtracking verbs in repeated groups
-</b><br>
-<P>
-PCRE differs from Perl in its handling of backtracking verbs in repeated
-groups. For example, consider:
-<pre>
- /(a(*COMMIT)b)+ac/
-</pre>
-If the subject is "abac", Perl matches, but PCRE fails because the (*COMMIT) in
-the second repeat of the group acts.
-<a name="btassert"></a></P>
-<br><b>
-Backtracking verbs in assertions
-</b><br>
-<P>
-(*FAIL) in an assertion has its normal effect: it forces an immediate backtrack.
-</P>
-<P>
-(*ACCEPT) in a positive assertion causes the assertion to succeed without any
-further processing. In a negative assertion, (*ACCEPT) causes the assertion to
-fail without any further processing.
-</P>
-<P>
-The other backtracking verbs are not treated specially if they appear in a
-positive assertion. In particular, (*THEN) skips to the next alternative in the
-innermost enclosing group that has alternations, whether or not this is within
-the assertion.
-</P>
-<P>
-Negative assertions are, however, different, in order to ensure that changing a
-positive assertion into a negative assertion changes its result. Backtracking
-into (*COMMIT), (*SKIP), or (*PRUNE) causes a negative assertion to be true,
-without considering any further alternative branches in the assertion.
-Backtracking into (*THEN) causes it to skip to the next enclosing alternative
-within the assertion (the normal behaviour), but if the assertion does not have
-such an alternative, (*THEN) behaves like (*PRUNE).
-<a name="btsub"></a></P>
-<br><b>
-Backtracking verbs in subroutines
-</b><br>
-<P>
-These behaviours occur whether or not the subpattern is called recursively.
-Perl's treatment of subroutines is different in some cases.
-</P>
-<P>
-(*FAIL) in a subpattern called as a subroutine has its normal effect: it forces
-an immediate backtrack.
-</P>
-<P>
-(*ACCEPT) in a subpattern called as a subroutine causes the subroutine match to
-succeed without any further processing. Matching then continues after the
-subroutine call.
-</P>
-<P>
-(*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine cause
-the subroutine match to fail.
-</P>
-<P>
-(*THEN) skips to the next alternative in the innermost enclosing group within
-the subpattern that has alternatives. If there is no such group within the
-subpattern, (*THEN) causes the subroutine match to fail.
-</P>
-<br><a name="SEC28" href="#TOC1">SEE ALSO</a><br>
-<P>
-<b>pcreapi</b>(3), <b>pcrecallout</b>(3), <b>pcrematching</b>(3),
-<b>pcresyntax</b>(3), <b>pcre</b>(3), <b>pcre16(3)</b>, <b>pcre32(3)</b>.
-</P>
-<br><a name="SEC29" href="#TOC1">AUTHOR</a><br>
-<P>
-Philip Hazel
-<br>
-University Computing Service
-<br>
-Cambridge CB2 3QH, England.
-<br>
-</P>
-<br><a name="SEC30" href="#TOC1">REVISION</a><br>
-<P>
-Last updated: 23 October 2016
-<br>
-Copyright &copy; 1997-2016 University of Cambridge.
-<br>
-<p>
-Return to the <a href="index.html">PCRE index page</a>.
-</p>