summaryrefslogtreecommitdiff
path: root/libs/liblua/src/lcode.c
diff options
context:
space:
mode:
authorGeorge Hazan <ghazan@miranda.im>2020-07-02 19:37:06 +0300
committerGeorge Hazan <ghazan@miranda.im>2020-07-02 19:37:06 +0300
commitd35fd87e643656a43e1ec19e18ead85839886679 (patch)
treed3c67be211c7e5ff89d339710ab65b82be9ce99f /libs/liblua/src/lcode.c
parentf10699e580b3eead1cb9c250822abbbc626eb3e3 (diff)
fixes #2472 (Update liblua to 5.4)
Diffstat (limited to 'libs/liblua/src/lcode.c')
-rw-r--r--libs/liblua/src/lcode.c1131
1 files changed, 871 insertions, 260 deletions
diff --git a/libs/liblua/src/lcode.c b/libs/liblua/src/lcode.c
index 12619f54a0..6f241c9476 100644
--- a/libs/liblua/src/lcode.c
+++ b/libs/liblua/src/lcode.c
@@ -1,5 +1,5 @@
/*
-** $Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp $
+** $Id: lcode.c $
** Code generator for Lua
** See Copyright Notice in lua.h
*/
@@ -10,6 +10,7 @@
#include "lprefix.h"
+#include <limits.h>
#include <math.h>
#include <stdlib.h>
@@ -36,11 +37,22 @@
#define hasjumps(e) ((e)->t != (e)->f)
+static int codesJ (FuncState *fs, OpCode o, int sj, int k);
+
+
+
+/* semantic error */
+l_noret luaK_semerror (LexState *ls, const char *msg) {
+ ls->t.token = 0; /* remove "near <token>" from final message */
+ luaX_syntaxerror(ls, msg);
+}
+
+
/*
** If expression is a numeric constant, fills 'v' with its value
** and returns 1. Otherwise, returns 0.
*/
-static int tonumeral(const expdesc *e, TValue *v) {
+static int tonumeral (const expdesc *e, TValue *v) {
if (hasjumps(e))
return 0; /* not a numeral */
switch (e->k) {
@@ -56,27 +68,78 @@ static int tonumeral(const expdesc *e, TValue *v) {
/*
+** Get the constant value from a constant expression
+*/
+static TValue *const2val (FuncState *fs, const expdesc *e) {
+ lua_assert(e->k == VCONST);
+ return &fs->ls->dyd->actvar.arr[e->u.info].k;
+}
+
+
+/*
+** If expression is a constant, fills 'v' with its value
+** and returns 1. Otherwise, returns 0.
+*/
+int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
+ if (hasjumps(e))
+ return 0; /* not a constant */
+ switch (e->k) {
+ case VFALSE:
+ setbfvalue(v);
+ return 1;
+ case VTRUE:
+ setbtvalue(v);
+ return 1;
+ case VNIL:
+ setnilvalue(v);
+ return 1;
+ case VKSTR: {
+ setsvalue(fs->ls->L, v, e->u.strval);
+ return 1;
+ }
+ case VCONST: {
+ setobj(fs->ls->L, v, const2val(fs, e));
+ return 1;
+ }
+ default: return tonumeral(e, v);
+ }
+}
+
+
+/*
+** Return the previous instruction of the current code. If there
+** may be a jump target between the current instruction and the
+** previous one, return an invalid instruction (to avoid wrong
+** optimizations).
+*/
+static Instruction *previousinstruction (FuncState *fs) {
+ static const Instruction invalidinstruction = ~(Instruction)0;
+ if (fs->pc > fs->lasttarget)
+ return &fs->f->code[fs->pc - 1]; /* previous instruction */
+ else
+ return cast(Instruction*, &invalidinstruction);
+}
+
+
+/*
** Create a OP_LOADNIL instruction, but try to optimize: if the previous
** instruction is also OP_LOADNIL and ranges are compatible, adjust
** range of previous instruction instead of emitting a new one. (For
** instance, 'local a; local b' will generate a single opcode.)
*/
void luaK_nil (FuncState *fs, int from, int n) {
- Instruction *previous;
int l = from + n - 1; /* last register to set nil */
- if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
- previous = &fs->f->code[fs->pc-1];
- if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
- int pfrom = GETARG_A(*previous); /* get previous range */
- int pl = pfrom + GETARG_B(*previous);
- if ((pfrom <= from && from <= pl + 1) ||
- (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
- if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
- if (pl > l) l = pl; /* l = max(l, pl) */
- SETARG_A(*previous, from);
- SETARG_B(*previous, l - from);
- return;
- }
+ Instruction *previous = previousinstruction(fs);
+ if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
+ int pfrom = GETARG_A(*previous); /* get previous range */
+ int pl = pfrom + GETARG_B(*previous);
+ if ((pfrom <= from && from <= pl + 1) ||
+ (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
+ if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
+ if (pl > l) l = pl; /* l = max(l, pl) */
+ SETARG_A(*previous, from);
+ SETARG_B(*previous, l - from);
+ return;
} /* else go through */
}
luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
@@ -88,7 +151,7 @@ void luaK_nil (FuncState *fs, int from, int n) {
** a list of jumps.
*/
static int getjump (FuncState *fs, int pc) {
- int offset = GETARG_sBx(fs->f->code[pc]);
+ int offset = GETARG_sJ(fs->f->code[pc]);
if (offset == NO_JUMP) /* point to itself represents end of list */
return NO_JUMP; /* end of list */
else
@@ -104,9 +167,10 @@ static void fixjump (FuncState *fs, int pc, int dest) {
Instruction *jmp = &fs->f->code[pc];
int offset = dest - (pc + 1);
lua_assert(dest != NO_JUMP);
- if (abs(offset) > MAXARG_sBx)
+ if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
luaX_syntaxerror(fs->ls, "control structure too long");
- SETARG_sBx(*jmp, offset);
+ lua_assert(GET_OPCODE(*jmp) == OP_JMP);
+ SETARG_sJ(*jmp, offset);
}
@@ -129,17 +193,10 @@ void luaK_concat (FuncState *fs, int *l1, int l2) {
/*
** Create a jump instruction and return its position, so its destination
-** can be fixed later (with 'fixjump'). If there are jumps to
-** this position (kept in 'jpc'), link them all together so that
-** 'patchlistaux' will fix all them directly to the final destination.
+** can be fixed later (with 'fixjump').
*/
int luaK_jump (FuncState *fs) {
- int jpc = fs->jpc; /* save list of jumps to here */
- int j;
- fs->jpc = NO_JUMP; /* no more jumps to here */
- j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
- luaK_concat(fs, &j, jpc); /* keep them on hold */
- return j;
+ return codesJ(fs, OP_JMP, NO_JUMP, 0);
}
@@ -147,7 +204,13 @@ int luaK_jump (FuncState *fs) {
** Code a 'return' instruction
*/
void luaK_ret (FuncState *fs, int first, int nret) {
- luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
+ OpCode op;
+ switch (nret) {
+ case 0: op = OP_RETURN0; break;
+ case 1: op = OP_RETURN1; break;
+ default: op = OP_RETURN; break;
+ }
+ luaK_codeABC(fs, op, first, nret + 1, 0);
}
@@ -155,8 +218,8 @@ void luaK_ret (FuncState *fs, int first, int nret) {
** Code a "conditional jump", that is, a test or comparison opcode
** followed by a jump. Return jump position.
*/
-static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
- luaK_codeABC(fs, op, A, B, C);
+static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
+ luaK_codeABCk(fs, op, A, B, C, k);
return luaK_jump(fs);
}
@@ -201,7 +264,7 @@ static int patchtestreg (FuncState *fs, int node, int reg) {
else {
/* no register to put value or register already has the value;
change instruction to simple test */
- *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
+ *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
}
return 1;
}
@@ -235,73 +298,103 @@ static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
/*
-** Ensure all pending jumps to current position are fixed (jumping
-** to current position with no values) and reset list of pending
-** jumps
+** Path all jumps in 'list' to jump to 'target'.
+** (The assert means that we cannot fix a jump to a forward address
+** because we only know addresses once code is generated.)
*/
-static void dischargejpc (FuncState *fs) {
- patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
- fs->jpc = NO_JUMP;
+void luaK_patchlist (FuncState *fs, int list, int target) {
+ lua_assert(target <= fs->pc);
+ patchlistaux(fs, list, target, NO_REG, target);
}
-/*
-** Add elements in 'list' to list of pending jumps to "here"
-** (current position)
-*/
void luaK_patchtohere (FuncState *fs, int list) {
- luaK_getlabel(fs); /* mark "here" as a jump target */
- luaK_concat(fs, &fs->jpc, list);
+ int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
+ luaK_patchlist(fs, list, hr);
}
/*
-** Path all jumps in 'list' to jump to 'target'.
-** (The assert means that we cannot fix a jump to a forward address
-** because we only know addresses once code is generated.)
+** MAXimum number of successive Instructions WiTHout ABSolute line
+** information.
*/
-void luaK_patchlist (FuncState *fs, int list, int target) {
- if (target == fs->pc) /* 'target' is current position? */
- luaK_patchtohere(fs, list); /* add list to pending jumps */
- else {
- lua_assert(target < fs->pc);
- patchlistaux(fs, list, target, NO_REG, target);
+#if !defined(MAXIWTHABS)
+#define MAXIWTHABS 120
+#endif
+
+
+/* limit for difference between lines in relative line info. */
+#define LIMLINEDIFF 0x80
+
+
+/*
+** Save line info for a new instruction. If difference from last line
+** does not fit in a byte, of after that many instructions, save a new
+** absolute line info; (in that case, the special value 'ABSLINEINFO'
+** in 'lineinfo' signals the existence of this absolute information.)
+** Otherwise, store the difference from last line in 'lineinfo'.
+*/
+static void savelineinfo (FuncState *fs, Proto *f, int line) {
+ int linedif = line - fs->previousline;
+ int pc = fs->pc - 1; /* last instruction coded */
+ if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ > MAXIWTHABS) {
+ luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
+ f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
+ f->abslineinfo[fs->nabslineinfo].pc = pc;
+ f->abslineinfo[fs->nabslineinfo++].line = line;
+ linedif = ABSLINEINFO; /* signal that there is absolute information */
+ fs->iwthabs = 0; /* restart counter */
}
+ luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
+ MAX_INT, "opcodes");
+ f->lineinfo[pc] = linedif;
+ fs->previousline = line; /* last line saved */
}
/*
-** Path all jumps in 'list' to close upvalues up to given 'level'
-** (The assertion checks that jumps either were closing nothing
-** or were closing higher levels, from inner blocks.)
+** Remove line information from the last instruction.
+** If line information for that instruction is absolute, set 'iwthabs'
+** above its max to force the new (replacing) instruction to have
+** absolute line info, too.
*/
-void luaK_patchclose (FuncState *fs, int list, int level) {
- level++; /* argument is +1 to reserve 0 as non-op */
- for (; list != NO_JUMP; list = getjump(fs, list)) {
- lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
- (GETARG_A(fs->f->code[list]) == 0 ||
- GETARG_A(fs->f->code[list]) >= level));
- SETARG_A(fs->f->code[list], level);
+static void removelastlineinfo (FuncState *fs) {
+ Proto *f = fs->f;
+ int pc = fs->pc - 1; /* last instruction coded */
+ if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
+ fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
+ fs->iwthabs--; /* undo previous increment */
+ }
+ else { /* absolute line information */
+ lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
+ fs->nabslineinfo--; /* remove it */
+ fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
}
}
/*
+** Remove the last instruction created, correcting line information
+** accordingly.
+*/
+static void removelastinstruction (FuncState *fs) {
+ removelastlineinfo(fs);
+ fs->pc--;
+}
+
+
+/*
** Emit instruction 'i', checking for array sizes and saving also its
** line information. Return 'i' position.
*/
-static int luaK_code (FuncState *fs, Instruction i) {
+int luaK_code (FuncState *fs, Instruction i) {
Proto *f = fs->f;
- dischargejpc(fs); /* 'pc' will change */
/* put new instruction in code array */
luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
MAX_INT, "opcodes");
- f->code[fs->pc] = i;
- /* save corresponding line information */
- luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
- MAX_INT, "opcodes");
- f->lineinfo[fs->pc] = fs->ls->lastline;
- return fs->pc++;
+ f->code[fs->pc++] = i;
+ savelineinfo(fs, f, fs->ls->lastline);
+ return fs->pc - 1; /* index of new instruction */
}
@@ -309,12 +402,11 @@ static int luaK_code (FuncState *fs, Instruction i) {
** Format and emit an 'iABC' instruction. (Assertions check consistency
** of parameters versus opcode.)
*/
-int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
+int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
lua_assert(getOpMode(o) == iABC);
- lua_assert(getBMode(o) != OpArgN || b == 0);
- lua_assert(getCMode(o) != OpArgN || c == 0);
- lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
- return luaK_code(fs, CREATE_ABC(o, a, b, c));
+ lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
+ c <= MAXARG_C && (k & ~1) == 0);
+ return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
}
@@ -322,14 +414,35 @@ int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
** Format and emit an 'iABx' instruction.
*/
int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
- lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
- lua_assert(getCMode(o) == OpArgN);
+ lua_assert(getOpMode(o) == iABx);
lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
return luaK_code(fs, CREATE_ABx(o, a, bc));
}
/*
+** Format and emit an 'iAsBx' instruction.
+*/
+int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
+ unsigned int b = bc + OFFSET_sBx;
+ lua_assert(getOpMode(o) == iAsBx);
+ lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
+ return luaK_code(fs, CREATE_ABx(o, a, b));
+}
+
+
+/*
+** Format and emit an 'isJ' instruction.
+*/
+static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
+ unsigned int j = sj + OFFSET_sJ;
+ lua_assert(getOpMode(o) == isJ);
+ lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
+ return luaK_code(fs, CREATE_sJ(o, j, k));
+}
+
+
+/*
** Emit an "extra argument" instruction (format 'iAx')
*/
static int codeextraarg (FuncState *fs, int a) {
@@ -343,7 +456,7 @@ static int codeextraarg (FuncState *fs, int a) {
** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
** instruction with "extra argument".
*/
-int luaK_codek (FuncState *fs, int reg, int k) {
+static int luaK_codek (FuncState *fs, int reg, int k) {
if (k <= MAXARG_Bx)
return luaK_codeABx(fs, OP_LOADK, reg, k);
else {
@@ -384,7 +497,7 @@ void luaK_reserveregs (FuncState *fs, int n) {
)
*/
static void freereg (FuncState *fs, int reg) {
- if (!ISK(reg) && reg >= fs->nactvar) {
+ if (reg >= luaY_nvarstack(fs)) {
fs->freereg--;
lua_assert(reg == fs->freereg);
}
@@ -392,6 +505,21 @@ static void freereg (FuncState *fs, int reg) {
/*
+** Free two registers in proper order
+*/
+static void freeregs (FuncState *fs, int r1, int r2) {
+ if (r1 > r2) {
+ freereg(fs, r1);
+ freereg(fs, r2);
+ }
+ else {
+ freereg(fs, r2);
+ freereg(fs, r1);
+ }
+}
+
+
+/*
** Free register used by expression 'e' (if any)
*/
static void freeexp (FuncState *fs, expdesc *e) {
@@ -407,14 +535,7 @@ static void freeexp (FuncState *fs, expdesc *e) {
static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
- if (r1 > r2) {
- freereg(fs, r1);
- freereg(fs, r2);
- }
- else {
- freereg(fs, r2);
- freereg(fs, r1);
- }
+ freeregs(fs, r1, r2);
}
@@ -433,7 +554,7 @@ static int addk (FuncState *fs, TValue *key, TValue *v) {
if (ttisinteger(idx)) { /* is there an index there? */
k = cast_int(ivalue(idx));
/* correct value? (warning: must distinguish floats from integers!) */
- if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
+ if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
luaV_rawequalobj(&f->k[k], v))
return k; /* reuse index */
}
@@ -455,7 +576,7 @@ static int addk (FuncState *fs, TValue *key, TValue *v) {
/*
** Add a string to list of constants and return its index.
*/
-int luaK_stringK (FuncState *fs, TString *s) {
+static int stringK (FuncState *fs, TString *s) {
TValue o;
setsvalue(fs->ls->L, &o, s);
return addk(fs, &o, &o); /* use string itself as key */
@@ -468,9 +589,9 @@ int luaK_stringK (FuncState *fs, TString *s) {
** same value; conversion to 'void*' is used only for hashing, so there
** are no "precision" problems.
*/
-int luaK_intK (FuncState *fs, lua_Integer n) {
+static int luaK_intK (FuncState *fs, lua_Integer n) {
TValue k, o;
- setpvalue(&k, cast(void*, cast(size_t, n)));
+ setpvalue(&k, cast_voidp(cast_sizet(n)));
setivalue(&o, n);
return addk(fs, &k, &o);
}
@@ -486,11 +607,21 @@ static int luaK_numberK (FuncState *fs, lua_Number r) {
/*
-** Add a boolean to list of constants and return its index.
+** Add a false to list of constants and return its index.
+*/
+static int boolF (FuncState *fs) {
+ TValue o;
+ setbfvalue(&o);
+ return addk(fs, &o, &o); /* use boolean itself as key */
+}
+
+
+/*
+** Add a true to list of constants and return its index.
*/
-static int boolK (FuncState *fs, int b) {
+static int boolT (FuncState *fs) {
TValue o;
- setbvalue(&o, b);
+ setbtvalue(&o);
return addk(fs, &o, &o); /* use boolean itself as key */
}
@@ -508,21 +639,92 @@ static int nilK (FuncState *fs) {
/*
+** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
+** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
+** overflows in the hidden addition inside 'int2sC'.
+*/
+static int fitsC (lua_Integer i) {
+ return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
+}
+
+
+/*
+** Check whether 'i' can be stored in an 'sBx' operand.
+*/
+static int fitsBx (lua_Integer i) {
+ return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
+}
+
+
+void luaK_int (FuncState *fs, int reg, lua_Integer i) {
+ if (fitsBx(i))
+ luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
+ else
+ luaK_codek(fs, reg, luaK_intK(fs, i));
+}
+
+
+static void luaK_float (FuncState *fs, int reg, lua_Number f) {
+ lua_Integer fi;
+ if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
+ luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
+ else
+ luaK_codek(fs, reg, luaK_numberK(fs, f));
+}
+
+
+/*
+** Convert a constant in 'v' into an expression description 'e'
+*/
+static void const2exp (TValue *v, expdesc *e) {
+ switch (ttypetag(v)) {
+ case LUA_VNUMINT:
+ e->k = VKINT; e->u.ival = ivalue(v);
+ break;
+ case LUA_VNUMFLT:
+ e->k = VKFLT; e->u.nval = fltvalue(v);
+ break;
+ case LUA_VFALSE:
+ e->k = VFALSE;
+ break;
+ case LUA_VTRUE:
+ e->k = VTRUE;
+ break;
+ case LUA_VNIL:
+ e->k = VNIL;
+ break;
+ case LUA_VSHRSTR: case LUA_VLNGSTR:
+ e->k = VKSTR; e->u.strval = tsvalue(v);
+ break;
+ default: lua_assert(0);
+ }
+}
+
+
+/*
** Fix an expression to return the number of results 'nresults'.
-** Either 'e' is a multi-ret expression (function call or vararg)
-** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
+** 'e' must be a multi-ret expression (function call or vararg).
*/
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
- if (e->k == VCALL) { /* expression is an open function call? */
- SETARG_C(getinstruction(fs, e), nresults + 1);
- }
- else if (e->k == VVARARG) {
- Instruction *pc = &getinstruction(fs, e);
- SETARG_B(*pc, nresults + 1);
+ Instruction *pc = &getinstruction(fs, e);
+ if (e->k == VCALL) /* expression is an open function call? */
+ SETARG_C(*pc, nresults + 1);
+ else {
+ lua_assert(e->k == VVARARG);
+ SETARG_C(*pc, nresults + 1);
SETARG_A(*pc, fs->freereg);
luaK_reserveregs(fs, 1);
}
- else lua_assert(nresults == LUA_MULTRET);
+}
+
+
+/*
+** Convert a VKSTR to a VK
+*/
+static void str2K (FuncState *fs, expdesc *e) {
+ lua_assert(e->k == VKSTR);
+ e->u.info = stringK(fs, e->u.strval);
+ e->k = VK;
}
@@ -532,7 +734,7 @@ void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
** vararg), it already returns one result, so nothing needs to be done.
** Function calls become VNONRELOC expressions (as its result comes
** fixed in the base register of the call), while vararg expressions
-** become VRELOCABLE (as OP_VARARG puts its results where it wants).
+** become VRELOC (as OP_VARARG puts its results where it wants).
** (Calls are created returning one result, so that does not need
** to be fixed.)
*/
@@ -544,39 +746,53 @@ void luaK_setoneret (FuncState *fs, expdesc *e) {
e->u.info = GETARG_A(getinstruction(fs, e));
}
else if (e->k == VVARARG) {
- SETARG_B(getinstruction(fs, e), 2);
- e->k = VRELOCABLE; /* can relocate its simple result */
+ SETARG_C(getinstruction(fs, e), 2);
+ e->k = VRELOC; /* can relocate its simple result */
}
}
/*
-** Ensure that expression 'e' is not a variable.
+** Ensure that expression 'e' is not a variable (nor a constant).
+** (Expression still may have jump lists.)
*/
void luaK_dischargevars (FuncState *fs, expdesc *e) {
switch (e->k) {
+ case VCONST: {
+ const2exp(const2val(fs, e), e);
+ break;
+ }
case VLOCAL: { /* already in a register */
+ e->u.info = e->u.var.sidx;
e->k = VNONRELOC; /* becomes a non-relocatable value */
break;
}
case VUPVAL: { /* move value to some (pending) register */
e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
- e->k = VRELOCABLE;
+ e->k = VRELOC;
+ break;
+ }
+ case VINDEXUP: {
+ e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
+ e->k = VRELOC;
+ break;
+ }
+ case VINDEXI: {
+ freereg(fs, e->u.ind.t);
+ e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
+ e->k = VRELOC;
+ break;
+ }
+ case VINDEXSTR: {
+ freereg(fs, e->u.ind.t);
+ e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
+ e->k = VRELOC;
break;
}
case VINDEXED: {
- OpCode op;
- freereg(fs, e->u.ind.idx);
- if (e->u.ind.vt == VLOCAL) { /* is 't' in a register? */
- freereg(fs, e->u.ind.t);
- op = OP_GETTABLE;
- }
- else {
- lua_assert(e->u.ind.vt == VUPVAL);
- op = OP_GETTABUP; /* 't' is in an upvalue */
- }
- e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
- e->k = VRELOCABLE;
+ freeregs(fs, e->u.ind.t, e->u.ind.idx);
+ e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
+ e->k = VRELOC;
break;
}
case VVARARG: case VCALL: {
@@ -591,6 +807,7 @@ void luaK_dischargevars (FuncState *fs, expdesc *e) {
/*
** Ensures expression value is in register 'reg' (and therefore
** 'e' will become a non-relocatable expression).
+** (Expression still may have jump lists.)
*/
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
luaK_dischargevars(fs, e);
@@ -599,23 +816,30 @@ static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
luaK_nil(fs, reg, 1);
break;
}
- case VFALSE: case VTRUE: {
- luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
+ case VFALSE: {
+ luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
break;
}
+ case VTRUE: {
+ luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
+ break;
+ }
+ case VKSTR: {
+ str2K(fs, e);
+ } /* FALLTHROUGH */
case VK: {
luaK_codek(fs, reg, e->u.info);
break;
}
case VKFLT: {
- luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
+ luaK_float(fs, reg, e->u.nval);
break;
}
case VKINT: {
- luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
+ luaK_int(fs, reg, e->u.ival);
break;
}
- case VRELOCABLE: {
+ case VRELOC: {
Instruction *pc = &getinstruction(fs, e);
SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
break;
@@ -637,6 +861,7 @@ static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
/*
** Ensures expression value is in any register.
+** (Expression still may have jump lists.)
*/
static void discharge2anyreg (FuncState *fs, expdesc *e) {
if (e->k != VNONRELOC) { /* no fixed register yet? */
@@ -646,9 +871,9 @@ static void discharge2anyreg (FuncState *fs, expdesc *e) {
}
-static int code_loadbool (FuncState *fs, int A, int b, int jump) {
+static int code_loadbool (FuncState *fs, int A, OpCode op) {
luaK_getlabel(fs); /* those instructions may be jump targets */
- return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
+ return luaK_codeABC(fs, op, A, 0, 0);
}
@@ -666,8 +891,8 @@ static int need_value (FuncState *fs, int list) {
/*
-** Ensures final expression result (including results from its jump
-** lists) is in register 'reg'.
+** Ensures final expression result (which includes results from its
+** jump lists) is in register 'reg'.
** If expression has jumps, need to patch these jumps either to
** its final position or to "load" instructions (for those tests
** that do not produce values).
@@ -682,8 +907,9 @@ static void exp2reg (FuncState *fs, expdesc *e, int reg) {
int p_t = NO_JUMP; /* position of an eventual LOAD true */
if (need_value(fs, e->t) || need_value(fs, e->f)) {
int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
- p_f = code_loadbool(fs, reg, 0, 1);
- p_t = code_loadbool(fs, reg, 1, 0);
+ p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
+ p_t = code_loadbool(fs, reg, OP_LOADTRUE);
+ /* jump around these booleans if 'e' is not a test */
luaK_patchtohere(fs, fj);
}
final = luaK_getlabel(fs);
@@ -697,8 +923,7 @@ static void exp2reg (FuncState *fs, expdesc *e, int reg) {
/*
-** Ensures final expression result (including results from its jump
-** lists) is in next available register.
+** Ensures final expression result is in next available register.
*/
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
luaK_dischargevars(fs, e);
@@ -709,15 +934,15 @@ void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
/*
-** Ensures final expression result (including results from its jump
-** lists) is in some (any) register and return that register.
+** Ensures final expression result is in some (any) register
+** and return that register.
*/
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
luaK_dischargevars(fs, e);
if (e->k == VNONRELOC) { /* expression already has a register? */
if (!hasjumps(e)) /* no jumps? */
return e->u.info; /* result is already in a register */
- if (e->u.info >= fs->nactvar) { /* reg. is not a local? */
+ if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
exp2reg(fs, e, e->u.info); /* put final result in it */
return e->u.info;
}
@@ -728,8 +953,8 @@ int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
/*
-** Ensures final expression result is either in a register or in an
-** upvalue.
+** Ensures final expression result is either in a register
+** or in an upvalue.
*/
void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
if (e->k != VUPVAL || hasjumps(e))
@@ -738,8 +963,8 @@ void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
/*
-** Ensures final expression result is either in a register or it is
-** a constant.
+** Ensures final expression result is either in a register
+** or it is a constant.
*/
void luaK_exp2val (FuncState *fs, expdesc *e) {
if (hasjumps(e))
@@ -750,29 +975,53 @@ void luaK_exp2val (FuncState *fs, expdesc *e) {
/*
+** Try to make 'e' a K expression with an index in the range of R/K
+** indices. Return true iff succeeded.
+*/
+static int luaK_exp2K (FuncState *fs, expdesc *e) {
+ if (!hasjumps(e)) {
+ int info;
+ switch (e->k) { /* move constants to 'k' */
+ case VTRUE: info = boolT(fs); break;
+ case VFALSE: info = boolF(fs); break;
+ case VNIL: info = nilK(fs); break;
+ case VKINT: info = luaK_intK(fs, e->u.ival); break;
+ case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
+ case VKSTR: info = stringK(fs, e->u.strval); break;
+ case VK: info = e->u.info; break;
+ default: return 0; /* not a constant */
+ }
+ if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
+ e->k = VK; /* make expression a 'K' expression */
+ e->u.info = info;
+ return 1;
+ }
+ }
+ /* else, expression doesn't fit; leave it unchanged */
+ return 0;
+}
+
+
+/*
** Ensures final expression result is in a valid R/K index
** (that is, it is either in a register or in 'k' with an index
** in the range of R/K indices).
-** Returns R/K index.
+** Returns 1 iff expression is K.
*/
int luaK_exp2RK (FuncState *fs, expdesc *e) {
- luaK_exp2val(fs, e);
- switch (e->k) { /* move constants to 'k' */
- case VTRUE: e->u.info = boolK(fs, 1); goto vk;
- case VFALSE: e->u.info = boolK(fs, 0); goto vk;
- case VNIL: e->u.info = nilK(fs); goto vk;
- case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
- case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
- case VK:
- vk:
- e->k = VK;
- if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */
- return RKASK(e->u.info);
- else break;
- default: break;
+ if (luaK_exp2K(fs, e))
+ return 1;
+ else { /* not a constant in the right range: put it in a register */
+ luaK_exp2anyreg(fs, e);
+ return 0;
}
- /* not a constant in the right range: put it in a register */
- return luaK_exp2anyreg(fs, e);
+}
+
+
+static void codeABRK (FuncState *fs, OpCode o, int a, int b,
+ expdesc *ec) {
+ int k = luaK_exp2RK(fs, ec);
+ luaK_codeABCk(fs, o, a, b, ec->u.info, k);
}
@@ -783,7 +1032,7 @@ void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
switch (var->k) {
case VLOCAL: {
freeexp(fs, ex);
- exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */
+ exp2reg(fs, ex, var->u.var.sidx); /* compute 'ex' into proper place */
return;
}
case VUPVAL: {
@@ -791,10 +1040,20 @@ void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
break;
}
+ case VINDEXUP: {
+ codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
+ break;
+ }
+ case VINDEXI: {
+ codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
+ break;
+ }
+ case VINDEXSTR: {
+ codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
+ break;
+ }
case VINDEXED: {
- OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP;
- int e = luaK_exp2RK(fs, ex);
- luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
+ codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
break;
}
default: lua_assert(0); /* invalid var kind to store */
@@ -814,7 +1073,7 @@ void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
e->u.info = fs->freereg; /* base register for op_self */
e->k = VNONRELOC; /* self expression has a fixed register */
luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
- luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
+ codeABRK(fs, OP_SELF, e->u.info, ereg, key);
freeexp(fs, key);
}
@@ -826,7 +1085,7 @@ static void negatecondition (FuncState *fs, expdesc *e) {
Instruction *pc = getjumpcontrol(fs, e->u.info);
lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
GET_OPCODE(*pc) != OP_TEST);
- SETARG_A(*pc, !(GETARG_A(*pc)));
+ SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
}
@@ -837,17 +1096,17 @@ static void negatecondition (FuncState *fs, expdesc *e) {
** and removing the 'not'.
*/
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
- if (e->k == VRELOCABLE) {
+ if (e->k == VRELOC) {
Instruction ie = getinstruction(fs, e);
if (GET_OPCODE(ie) == OP_NOT) {
- fs->pc--; /* remove previous OP_NOT */
- return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
+ removelastinstruction(fs); /* remove previous OP_NOT */
+ return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
}
/* else go through */
}
discharge2anyreg(fs, e);
freeexp(fs, e);
- return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
+ return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
}
@@ -863,7 +1122,7 @@ void luaK_goiftrue (FuncState *fs, expdesc *e) {
pc = e->u.info; /* save jump position */
break;
}
- case VK: case VKFLT: case VKINT: case VTRUE: {
+ case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
pc = NO_JUMP; /* always true; do nothing */
break;
}
@@ -908,13 +1167,12 @@ void luaK_goiffalse (FuncState *fs, expdesc *e) {
** Code 'not e', doing constant folding.
*/
static void codenot (FuncState *fs, expdesc *e) {
- luaK_dischargevars(fs, e);
switch (e->k) {
case VNIL: case VFALSE: {
e->k = VTRUE; /* true == not nil == not false */
break;
}
- case VK: case VKFLT: case VKINT: case VTRUE: {
+ case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
break;
}
@@ -922,12 +1180,12 @@ static void codenot (FuncState *fs, expdesc *e) {
negatecondition(fs, e);
break;
}
- case VRELOCABLE:
+ case VRELOC:
case VNONRELOC: {
discharge2anyreg(fs, e);
freeexp(fs, e);
e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
- e->k = VRELOCABLE;
+ e->k = VRELOC;
break;
}
default: lua_assert(0); /* cannot happen */
@@ -940,15 +1198,94 @@ static void codenot (FuncState *fs, expdesc *e) {
/*
+** Check whether expression 'e' is a small literal string
+*/
+static int isKstr (FuncState *fs, expdesc *e) {
+ return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
+ ttisshrstring(&fs->f->k[e->u.info]));
+}
+
+/*
+** Check whether expression 'e' is a literal integer.
+*/
+int luaK_isKint (expdesc *e) {
+ return (e->k == VKINT && !hasjumps(e));
+}
+
+
+/*
+** Check whether expression 'e' is a literal integer in
+** proper range to fit in register C
+*/
+static int isCint (expdesc *e) {
+ return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
+}
+
+
+/*
+** Check whether expression 'e' is a literal integer in
+** proper range to fit in register sC
+*/
+static int isSCint (expdesc *e) {
+ return luaK_isKint(e) && fitsC(e->u.ival);
+}
+
+
+/*
+** Check whether expression 'e' is a literal integer or float in
+** proper range to fit in a register (sB or sC).
+*/
+static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
+ lua_Integer i;
+ if (e->k == VKINT)
+ i = e->u.ival;
+ else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
+ *isfloat = 1;
+ else
+ return 0; /* not a number */
+ if (!hasjumps(e) && fitsC(i)) {
+ *pi = int2sC(cast_int(i));
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+/*
** Create expression 't[k]'. 't' must have its final result already in a
-** register or upvalue.
+** register or upvalue. Upvalues can only be indexed by literal strings.
+** Keys can be literal strings in the constant table or arbitrary
+** values in registers.
*/
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
- lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
- t->u.ind.t = t->u.info; /* register or upvalue index */
- t->u.ind.idx = luaK_exp2RK(fs, k); /* R/K index for key */
- t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL;
- t->k = VINDEXED;
+ if (k->k == VKSTR)
+ str2K(fs, k);
+ lua_assert(!hasjumps(t) &&
+ (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
+ if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
+ luaK_exp2anyreg(fs, t); /* put it in a register */
+ if (t->k == VUPVAL) {
+ t->u.ind.t = t->u.info; /* upvalue index */
+ t->u.ind.idx = k->u.info; /* literal string */
+ t->k = VINDEXUP;
+ }
+ else {
+ /* register index of the table */
+ t->u.ind.t = (t->k == VLOCAL) ? t->u.var.sidx: t->u.info;
+ if (isKstr(fs, k)) {
+ t->u.ind.idx = k->u.info; /* literal string */
+ t->k = VINDEXSTR;
+ }
+ else if (isCint(k)) {
+ t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
+ t->k = VINDEXI;
+ }
+ else {
+ t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
+ t->k = VINDEXED;
+ }
+ }
}
@@ -962,7 +1299,7 @@ static int validop (int op, TValue *v1, TValue *v2) {
case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
lua_Integer i;
- return (tointeger(v1, &i) && tointeger(v2, &i));
+ return (tointegerns(v1, &i) && tointegerns(v2, &i));
}
case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
return (nvalue(v2) != 0);
@@ -976,11 +1313,11 @@ static int validop (int op, TValue *v1, TValue *v2) {
** (In this case, 'e1' has the final result.)
*/
static int constfolding (FuncState *fs, int op, expdesc *e1,
- const expdesc *e2) {
+ const expdesc *e2) {
TValue v1, v2, res;
if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
return 0; /* non-numeric operands or not safe to fold */
- luaO_arith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
+ luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
if (ttisinteger(&res)) {
e1->k = VKINT;
e1->u.ival = ivalue(&res);
@@ -1005,7 +1342,7 @@ static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
freeexp(fs, e);
e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
- e->k = VRELOCABLE; /* all those operations are relocatable */
+ e->k = VRELOC; /* all those operations are relocatable */
luaK_fixline(fs, line);
}
@@ -1015,61 +1352,212 @@ static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
** (everything but logical operators 'and'/'or' and comparison
** operators).
** Expression to produce final result will be encoded in 'e1'.
-** Because 'luaK_exp2RK' can free registers, its calls must be
-** in "stack order" (that is, first on 'e2', which may have more
-** recent registers to be released).
*/
-static void codebinexpval (FuncState *fs, OpCode op,
- expdesc *e1, expdesc *e2, int line) {
- int rk2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */
- int rk1 = luaK_exp2RK(fs, e1);
+static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
+ OpCode op, int v2, int flip, int line,
+ OpCode mmop, TMS event) {
+ int v1 = luaK_exp2anyreg(fs, e1);
+ int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
freeexps(fs, e1, e2);
- e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2); /* generate opcode */
- e1->k = VRELOCABLE; /* all those operations are relocatable */
+ e1->u.info = pc;
+ e1->k = VRELOC; /* all those operations are relocatable */
+ luaK_fixline(fs, line);
+ luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
luaK_fixline(fs, line);
}
/*
-** Emit code for comparisons.
-** 'e1' was already put in R/K form by 'luaK_infix'.
+** Emit code for binary expressions that "produce values" over
+** two registers.
*/
-static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
- int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
- : check_exp(e1->k == VNONRELOC, e1->u.info);
- int rk2 = luaK_exp2RK(fs, e2);
- freeexps(fs, e1, e2);
- switch (opr) {
- case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */
- e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
- break;
- }
- case OPR_GT: case OPR_GE: {
- /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */
- OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
- e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */
- break;
- }
- default: { /* '==', '<', '<=' use their own opcodes */
- OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
- e1->u.info = condjump(fs, op, 1, rk1, rk2);
- break;
+static void codebinexpval (FuncState *fs, OpCode op,
+ expdesc *e1, expdesc *e2, int line) {
+ int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */
+ lua_assert(OP_ADD <= op && op <= OP_SHR);
+ finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
+ cast(TMS, (op - OP_ADD) + TM_ADD));
+}
+
+
+/*
+** Code binary operators with immediate operands.
+*/
+static void codebini (FuncState *fs, OpCode op,
+ expdesc *e1, expdesc *e2, int flip, int line,
+ TMS event) {
+ int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
+ lua_assert(e2->k == VKINT);
+ finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
+}
+
+
+/* Try to code a binary operator negating its second operand.
+** For the metamethod, 2nd operand must keep its original value.
+*/
+static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
+ OpCode op, int line, TMS event) {
+ if (!luaK_isKint(e2))
+ return 0; /* not an integer constant */
+ else {
+ lua_Integer i2 = e2->u.ival;
+ if (!(fitsC(i2) && fitsC(-i2)))
+ return 0; /* not in the proper range */
+ else { /* operating a small integer constant */
+ int v2 = cast_int(i2);
+ finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
+ /* correct metamethod argument */
+ SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
+ return 1; /* successfully coded */
}
}
+}
+
+
+static void swapexps (expdesc *e1, expdesc *e2) {
+ expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
+}
+
+
+/*
+** Code arithmetic operators ('+', '-', ...). If second operand is a
+** constant in the proper range, use variant opcodes with K operands.
+*/
+static void codearith (FuncState *fs, BinOpr opr,
+ expdesc *e1, expdesc *e2, int flip, int line) {
+ TMS event = cast(TMS, opr + TM_ADD);
+ if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */
+ int v2 = e2->u.info; /* K index */
+ OpCode op = cast(OpCode, opr + OP_ADDK);
+ finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
+ }
+ else { /* 'e2' is neither an immediate nor a K operand */
+ OpCode op = cast(OpCode, opr + OP_ADD);
+ if (flip)
+ swapexps(e1, e2); /* back to original order */
+ codebinexpval(fs, op, e1, e2, line); /* use standard operators */
+ }
+}
+
+
+/*
+** Code commutative operators ('+', '*'). If first operand is a
+** numeric constant, change order of operands to try to use an
+** immediate or K operator.
+*/
+static void codecommutative (FuncState *fs, BinOpr op,
+ expdesc *e1, expdesc *e2, int line) {
+ int flip = 0;
+ if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
+ swapexps(e1, e2); /* change order */
+ flip = 1;
+ }
+ if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
+ codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
+ else
+ codearith(fs, op, e1, e2, flip, line);
+}
+
+
+/*
+** Code bitwise operations; they are all associative, so the function
+** tries to put an integer constant as the 2nd operand (a K operand).
+*/
+static void codebitwise (FuncState *fs, BinOpr opr,
+ expdesc *e1, expdesc *e2, int line) {
+ int flip = 0;
+ int v2;
+ OpCode op;
+ if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
+ swapexps(e1, e2); /* 'e2' will be the constant operand */
+ flip = 1;
+ }
+ else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */
+ op = cast(OpCode, opr + OP_ADD);
+ codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */
+ return;
+ }
+ v2 = e2->u.info; /* index in K array */
+ op = cast(OpCode, opr + OP_ADDK);
+ lua_assert(ttisinteger(&fs->f->k[v2]));
+ finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
+ cast(TMS, opr + TM_ADD));
+}
+
+
+/*
+** Emit code for order comparisons. When using an immediate operand,
+** 'isfloat' tells whether the original value was a float.
+*/
+static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
+ int r1, r2;
+ int im;
+ int isfloat = 0;
+ if (isSCnumber(e2, &im, &isfloat)) {
+ /* use immediate operand */
+ r1 = luaK_exp2anyreg(fs, e1);
+ r2 = im;
+ op = cast(OpCode, (op - OP_LT) + OP_LTI);
+ }
+ else if (isSCnumber(e1, &im, &isfloat)) {
+ /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
+ r1 = luaK_exp2anyreg(fs, e2);
+ r2 = im;
+ op = (op == OP_LT) ? OP_GTI : OP_GEI;
+ }
+ else { /* regular case, compare two registers */
+ r1 = luaK_exp2anyreg(fs, e1);
+ r2 = luaK_exp2anyreg(fs, e2);
+ }
+ freeexps(fs, e1, e2);
+ e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
e1->k = VJMP;
}
/*
-** Aplly prefix operation 'op' to expression 'e'.
+** Emit code for equality comparisons ('==', '~=').
+** 'e1' was already put as RK by 'luaK_infix'.
+*/
+static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
+ int r1, r2;
+ int im;
+ int isfloat = 0; /* not needed here, but kept for symmetry */
+ OpCode op;
+ if (e1->k != VNONRELOC) {
+ lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
+ swapexps(e1, e2);
+ }
+ r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
+ if (isSCnumber(e2, &im, &isfloat)) {
+ op = OP_EQI;
+ r2 = im; /* immediate operand */
+ }
+ else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */
+ op = OP_EQK;
+ r2 = e2->u.info; /* constant index */
+ }
+ else {
+ op = OP_EQ; /* will compare two registers */
+ r2 = luaK_exp2anyreg(fs, e2);
+ }
+ freeexps(fs, e1, e2);
+ e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
+ e1->k = VJMP;
+}
+
+
+/*
+** Apply prefix operation 'op' to expression 'e'.
*/
void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
+ luaK_dischargevars(fs, e);
switch (op) {
case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
if (constfolding(fs, op + LUA_OPUNM, e, &ef))
break;
- /* FALLTHROUGH */
+ /* else */ /* FALLTHROUGH */
case OPR_LEN:
codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
break;
@@ -1084,6 +1572,7 @@ void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
** 2nd operand.
*/
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
+ luaK_dischargevars(fs, v);
switch (op) {
case OPR_AND: {
luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
@@ -1094,7 +1583,7 @@ void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
break;
}
case OPR_CONCAT: {
- luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */
+ luaK_exp2nextreg(fs, v); /* operand must be on the stack */
break;
}
case OPR_ADD: case OPR_SUB:
@@ -1103,67 +1592,126 @@ void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
case OPR_BAND: case OPR_BOR: case OPR_BXOR:
case OPR_SHL: case OPR_SHR: {
if (!tonumeral(v, NULL))
- luaK_exp2RK(fs, v);
+ luaK_exp2anyreg(fs, v);
/* else keep numeral, which may be folded with 2nd operand */
break;
}
- default: {
- luaK_exp2RK(fs, v);
+ case OPR_EQ: case OPR_NE: {
+ if (!tonumeral(v, NULL))
+ luaK_exp2RK(fs, v);
+ /* else keep numeral, which may be an immediate operand */
+ break;
+ }
+ case OPR_LT: case OPR_LE:
+ case OPR_GT: case OPR_GE: {
+ int dummy, dummy2;
+ if (!isSCnumber(v, &dummy, &dummy2))
+ luaK_exp2anyreg(fs, v);
+ /* else keep numeral, which may be an immediate operand */
break;
}
+ default: lua_assert(0);
+ }
+}
+
+/*
+** Create code for '(e1 .. e2)'.
+** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
+** because concatenation is right associative), merge both CONCATs.
+*/
+static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
+ Instruction *ie2 = previousinstruction(fs);
+ if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
+ int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
+ lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
+ freeexp(fs, e2);
+ SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
+ SETARG_B(*ie2, n + 1); /* will concatenate one more element */
+ }
+ else { /* 'e2' is not a concatenation */
+ luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
+ freeexp(fs, e2);
+ luaK_fixline(fs, line);
}
}
/*
** Finalize code for binary operation, after reading 2nd operand.
-** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
-** concatenation is right associative), merge second CONCAT into first
-** one.
*/
-void luaK_posfix (FuncState *fs, BinOpr op,
+void luaK_posfix (FuncState *fs, BinOpr opr,
expdesc *e1, expdesc *e2, int line) {
- switch (op) {
+ luaK_dischargevars(fs, e2);
+ if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
+ return; /* done by folding */
+ switch (opr) {
case OPR_AND: {
- lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */
- luaK_dischargevars(fs, e2);
+ lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
luaK_concat(fs, &e2->f, e1->f);
*e1 = *e2;
break;
}
case OPR_OR: {
- lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */
- luaK_dischargevars(fs, e2);
+ lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
luaK_concat(fs, &e2->t, e1->t);
*e1 = *e2;
break;
}
- case OPR_CONCAT: {
- luaK_exp2val(fs, e2);
- if (e2->k == VRELOCABLE &&
- GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
- lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
- freeexp(fs, e1);
- SETARG_B(getinstruction(fs, e2), e1->u.info);
- e1->k = VRELOCABLE; e1->u.info = e2->u.info;
+ case OPR_CONCAT: { /* e1 .. e2 */
+ luaK_exp2nextreg(fs, e2);
+ codeconcat(fs, e1, e2, line);
+ break;
+ }
+ case OPR_ADD: case OPR_MUL: {
+ codecommutative(fs, opr, e1, e2, line);
+ break;
+ }
+ case OPR_SUB: {
+ if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
+ break; /* coded as (r1 + -I) */
+ /* ELSE */
+ } /* FALLTHROUGH */
+ case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
+ codearith(fs, opr, e1, e2, 0, line);
+ break;
+ }
+ case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
+ codebitwise(fs, opr, e1, e2, line);
+ break;
+ }
+ case OPR_SHL: {
+ if (isSCint(e1)) {
+ swapexps(e1, e2);
+ codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
}
- else {
- luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
- codebinexpval(fs, OP_CONCAT, e1, e2, line);
+ else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
+ /* coded as (r1 >> -I) */;
}
+ else /* regular case (two registers) */
+ codebinexpval(fs, OP_SHL, e1, e2, line);
break;
}
- case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
- case OPR_IDIV: case OPR_MOD: case OPR_POW:
- case OPR_BAND: case OPR_BOR: case OPR_BXOR:
- case OPR_SHL: case OPR_SHR: {
- if (!constfolding(fs, op + LUA_OPADD, e1, e2))
- codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
+ case OPR_SHR: {
+ if (isSCint(e2))
+ codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
+ else /* regular case (two registers) */
+ codebinexpval(fs, OP_SHR, e1, e2, line);
break;
}
- case OPR_EQ: case OPR_LT: case OPR_LE:
- case OPR_NE: case OPR_GT: case OPR_GE: {
- codecomp(fs, op, e1, e2);
+ case OPR_EQ: case OPR_NE: {
+ codeeq(fs, opr, e1, e2);
+ break;
+ }
+ case OPR_LT: case OPR_LE: {
+ OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
+ codeorder(fs, op, e1, e2);
+ break;
+ }
+ case OPR_GT: case OPR_GE: {
+ /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
+ OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
+ swapexps(e1, e2);
+ codeorder(fs, op, e1, e2);
break;
}
default: lua_assert(0);
@@ -1172,10 +1720,23 @@ void luaK_posfix (FuncState *fs, BinOpr op,
/*
-** Change line information associated with current position.
+** Change line information associated with current position, by removing
+** previous info and adding it again with new line.
*/
void luaK_fixline (FuncState *fs, int line) {
- fs->f->lineinfo[fs->pc - 1] = line;
+ removelastlineinfo(fs);
+ savelineinfo(fs, fs->f, line);
+}
+
+
+void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
+ Instruction *inst = &fs->f->code[pc];
+ int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
+ int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
+ int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
+ int k = (extra > 0); /* true iff needs extra argument */
+ *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
+ *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
}
@@ -1187,17 +1748,67 @@ void luaK_fixline (FuncState *fs, int line) {
** table (or LUA_MULTRET to add up to stack top).
*/
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
- int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
- int b = (tostore == LUA_MULTRET) ? 0 : tostore;
lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
- if (c <= MAXARG_C)
- luaK_codeABC(fs, OP_SETLIST, base, b, c);
- else if (c <= MAXARG_Ax) {
- luaK_codeABC(fs, OP_SETLIST, base, b, 0);
- codeextraarg(fs, c);
+ if (tostore == LUA_MULTRET)
+ tostore = 0;
+ if (nelems <= MAXARG_C)
+ luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
+ else {
+ int extra = nelems / (MAXARG_C + 1);
+ nelems %= (MAXARG_C + 1);
+ luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
+ codeextraarg(fs, extra);
}
- else
- luaX_syntaxerror(fs->ls, "constructor too long");
fs->freereg = base + 1; /* free registers with list values */
}
+
+/*
+** return the final target of a jump (skipping jumps to jumps)
+*/
+static int finaltarget (Instruction *code, int i) {
+ int count;
+ for (count = 0; count < 100; count++) { /* avoid infinite loops */
+ Instruction pc = code[i];
+ if (GET_OPCODE(pc) != OP_JMP)
+ break;
+ else
+ i += GETARG_sJ(pc) + 1;
+ }
+ return i;
+}
+
+
+/*
+** Do a final pass over the code of a function, doing small peephole
+** optimizations and adjustments.
+*/
+void luaK_finish (FuncState *fs) {
+ int i;
+ Proto *p = fs->f;
+ for (i = 0; i < fs->pc; i++) {
+ Instruction *pc = &p->code[i];
+ lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
+ switch (GET_OPCODE(*pc)) {
+ case OP_RETURN0: case OP_RETURN1: {
+ if (!(fs->needclose || p->is_vararg))
+ break; /* no extra work */
+ /* else use OP_RETURN to do the extra work */
+ SET_OPCODE(*pc, OP_RETURN);
+ } /* FALLTHROUGH */
+ case OP_RETURN: case OP_TAILCALL: {
+ if (fs->needclose)
+ SETARG_k(*pc, 1); /* signal that it needs to close */
+ if (p->is_vararg)
+ SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
+ break;
+ }
+ case OP_JMP: {
+ int target = finaltarget(p->code, i);
+ fixjump(fs, i, target);
+ break;
+ }
+ default: break;
+ }
+ }
+}