diff options
author | George Hazan <ghazan@miranda.im> | 2017-08-29 18:19:40 +0300 |
---|---|---|
committer | George Hazan <ghazan@miranda.im> | 2017-08-29 18:19:40 +0300 |
commit | 7f51e11dbf2276d80b80798eabf3a44e91ade8c3 (patch) | |
tree | 4b27def7128854e920e50d82c537e2e389a41532 /plugins/Clist_ng/AGG/src/agg_curves.cpp | |
parent | ff5533969ae8d41a5b29883e39f96320368ff6bf (diff) |
fixes #905 (Move clist_ng to deprecated)
Diffstat (limited to 'plugins/Clist_ng/AGG/src/agg_curves.cpp')
-rw-r--r-- | plugins/Clist_ng/AGG/src/agg_curves.cpp | 620 |
1 files changed, 0 insertions, 620 deletions
diff --git a/plugins/Clist_ng/AGG/src/agg_curves.cpp b/plugins/Clist_ng/AGG/src/agg_curves.cpp deleted file mode 100644 index eec67d21f3..0000000000 --- a/plugins/Clist_ng/AGG/src/agg_curves.cpp +++ /dev/null @@ -1,620 +0,0 @@ -//----------------------------------------------------------------------------
-// Anti-Grain Geometry (AGG) - Version 2.5
-// A high quality rendering engine for C++
-// Copyright (C) 2002-2006 Maxim Shemanarev
-// Contact: mcseem@antigrain.com
-// mcseemagg@yahoo.com
-// http://antigrain.com
-//
-// AGG is free software; you can redistribute it and/or
-// modify it under the terms of the GNU General Public License
-// as published by the Free Software Foundation; either version 2
-// of the License, or (at your option) any later version.
-//
-// AGG is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with AGG; if not, write to the Free Software
-// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
-// MA 02110-1301, USA.
-//----------------------------------------------------------------------------
-
-#include <math.h>
-#include "agg_curves.h"
-#include "agg_math.h"
-
-namespace agg
-{
-
- //------------------------------------------------------------------------
- const double curve_distance_epsilon = 1e-30;
- const double curve_collinearity_epsilon = 1e-30;
- const double curve_angle_tolerance_epsilon = 0.01;
- enum curve_recursion_limit_e { curve_recursion_limit = 32 };
-
-
-
- //------------------------------------------------------------------------
- void curve3_inc::approximation_scale(double s)
- {
- m_scale = s;
- }
-
- //------------------------------------------------------------------------
- double curve3_inc::approximation_scale() const
- {
- return m_scale;
- }
-
- //------------------------------------------------------------------------
- void curve3_inc::init(double x1, double y1,
- double x2, double y2,
- double x3, double y3)
- {
- m_start_x = x1;
- m_start_y = y1;
- m_end_x = x3;
- m_end_y = y3;
-
- double dx1 = x2 - x1;
- double dy1 = y2 - y1;
- double dx2 = x3 - x2;
- double dy2 = y3 - y2;
-
- double len = sqrt(dx1 * dx1 + dy1 * dy1) + sqrt(dx2 * dx2 + dy2 * dy2);
-
- m_num_steps = uround(len * 0.25 * m_scale);
-
- if(m_num_steps < 4)
- {
- m_num_steps = 4;
- }
-
- double subdivide_step = 1.0 / m_num_steps;
- double subdivide_step2 = subdivide_step * subdivide_step;
-
- double tmpx = (x1 - x2 * 2.0 + x3) * subdivide_step2;
- double tmpy = (y1 - y2 * 2.0 + y3) * subdivide_step2;
-
- m_saved_fx = m_fx = x1;
- m_saved_fy = m_fy = y1;
-
- m_saved_dfx = m_dfx = tmpx + (x2 - x1) * (2.0 * subdivide_step);
- m_saved_dfy = m_dfy = tmpy + (y2 - y1) * (2.0 * subdivide_step);
-
- m_ddfx = tmpx * 2.0;
- m_ddfy = tmpy * 2.0;
-
- m_step = m_num_steps;
- }
-
- //------------------------------------------------------------------------
- void curve3_inc::rewind(unsigned)
- {
- if(m_num_steps == 0)
- {
- m_step = -1;
- return;
- }
- m_step = m_num_steps;
- m_fx = m_saved_fx;
- m_fy = m_saved_fy;
- m_dfx = m_saved_dfx;
- m_dfy = m_saved_dfy;
- }
-
- //------------------------------------------------------------------------
- unsigned curve3_inc::vertex(double* x, double* y)
- {
- if(m_step < 0) return path_cmd_stop;
- if(m_step == m_num_steps)
- {
- *x = m_start_x;
- *y = m_start_y;
- --m_step;
- return path_cmd_move_to;
- }
- if(m_step == 0)
- {
- *x = m_end_x;
- *y = m_end_y;
- --m_step;
- return path_cmd_line_to;
- }
- m_fx += m_dfx;
- m_fy += m_dfy;
- m_dfx += m_ddfx;
- m_dfy += m_ddfy;
- *x = m_fx;
- *y = m_fy;
- --m_step;
- return path_cmd_line_to;
- }
-
- //------------------------------------------------------------------------
- void curve3_div::init(double x1, double y1,
- double x2, double y2,
- double x3, double y3)
- {
- m_points.remove_all();
- m_distance_tolerance_square = 0.5 / m_approximation_scale;
- m_distance_tolerance_square *= m_distance_tolerance_square;
- bezier(x1, y1, x2, y2, x3, y3);
- m_count = 0;
- }
-
- //------------------------------------------------------------------------
- void curve3_div::recursive_bezier(double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- unsigned level)
- {
- if(level > curve_recursion_limit)
- {
- return;
- }
-
- // Calculate all the mid-points of the line segments
- //----------------------
- double x12 = (x1 + x2) / 2;
- double y12 = (y1 + y2) / 2;
- double x23 = (x2 + x3) / 2;
- double y23 = (y2 + y3) / 2;
- double x123 = (x12 + x23) / 2;
- double y123 = (y12 + y23) / 2;
-
- double dx = x3-x1;
- double dy = y3-y1;
- double d = fabs(((x2 - x3) * dy - (y2 - y3) * dx));
- double da;
-
- if(d > curve_collinearity_epsilon)
- {
- // Regular case
- //-----------------
- if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy))
- {
- // If the curvature doesn't exceed the distance_tolerance value
- // we tend to finish subdivisions.
- //----------------------
- if(m_angle_tolerance < curve_angle_tolerance_epsilon)
- {
- m_points.add(point_d(x123, y123));
- return;
- }
-
- // Angle & Cusp Condition
- //----------------------
- da = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
- if(da >= pi) da = 2*pi - da;
-
- if(da < m_angle_tolerance)
- {
- // Finally we can stop the recursion
- //----------------------
- m_points.add(point_d(x123, y123));
- return;
- }
- }
- }
- else
- {
- // Collinear case
- //------------------
- da = dx*dx + dy*dy;
- if(da == 0)
- {
- d = calc_sq_distance(x1, y1, x2, y2);
- }
- else
- {
- d = ((x2 - x1)*dx + (y2 - y1)*dy) / da;
- if(d > 0 && d < 1)
- {
- // Simple collinear case, 1---2---3
- // We can leave just two endpoints
- return;
- }
- if(d <= 0) d = calc_sq_distance(x2, y2, x1, y1);
- else if(d >= 1) d = calc_sq_distance(x2, y2, x3, y3);
- else d = calc_sq_distance(x2, y2, x1 + d*dx, y1 + d*dy);
- }
- if(d < m_distance_tolerance_square)
- {
- m_points.add(point_d(x2, y2));
- return;
- }
- }
-
- // Continue subdivision
- //----------------------
- recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1);
- recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1);
- }
-
- //------------------------------------------------------------------------
- void curve3_div::bezier(double x1, double y1,
- double x2, double y2,
- double x3, double y3)
- {
- m_points.add(point_d(x1, y1));
- recursive_bezier(x1, y1, x2, y2, x3, y3, 0);
- m_points.add(point_d(x3, y3));
- }
-
-
-
-
-
- //------------------------------------------------------------------------
- void curve4_inc::approximation_scale(double s)
- {
- m_scale = s;
- }
-
- //------------------------------------------------------------------------
- double curve4_inc::approximation_scale() const
- {
- return m_scale;
- }
-
- //------------------------------------------------------------------------
- static double MSC60_fix_ICE(double v) { return v; }
-
- //------------------------------------------------------------------------
- void curve4_inc::init(double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- double x4, double y4)
- {
- m_start_x = x1;
- m_start_y = y1;
- m_end_x = x4;
- m_end_y = y4;
-
- double dx1 = x2 - x1;
- double dy1 = y2 - y1;
- double dx2 = x3 - x2;
- double dy2 = y3 - y2;
- double dx3 = x4 - x3;
- double dy3 = y4 - y3;
-
- double len = (sqrt(dx1 * dx1 + dy1 * dy1) +
- sqrt(dx2 * dx2 + dy2 * dy2) +
- sqrt(dx3 * dx3 + dy3 * dy3)) * 0.25 * m_scale;
-
-#if defined(_MSC_VER) && _MSC_VER <= 1200
- m_num_steps = uround(MSC60_fix_ICE(len));
-#else
- m_num_steps = uround(len);
-#endif
-
- if(m_num_steps < 4)
- {
- m_num_steps = 4;
- }
-
- double subdivide_step = 1.0 / m_num_steps;
- double subdivide_step2 = subdivide_step * subdivide_step;
- double subdivide_step3 = subdivide_step * subdivide_step * subdivide_step;
-
- double pre1 = 3.0 * subdivide_step;
- double pre2 = 3.0 * subdivide_step2;
- double pre4 = 6.0 * subdivide_step2;
- double pre5 = 6.0 * subdivide_step3;
-
- double tmp1x = x1 - x2 * 2.0 + x3;
- double tmp1y = y1 - y2 * 2.0 + y3;
-
- double tmp2x = (x2 - x3) * 3.0 - x1 + x4;
- double tmp2y = (y2 - y3) * 3.0 - y1 + y4;
-
- m_saved_fx = m_fx = x1;
- m_saved_fy = m_fy = y1;
-
- m_saved_dfx = m_dfx = (x2 - x1) * pre1 + tmp1x * pre2 + tmp2x * subdivide_step3;
- m_saved_dfy = m_dfy = (y2 - y1) * pre1 + tmp1y * pre2 + tmp2y * subdivide_step3;
-
- m_saved_ddfx = m_ddfx = tmp1x * pre4 + tmp2x * pre5;
- m_saved_ddfy = m_ddfy = tmp1y * pre4 + tmp2y * pre5;
-
- m_dddfx = tmp2x * pre5;
- m_dddfy = tmp2y * pre5;
-
- m_step = m_num_steps;
- }
-
- //------------------------------------------------------------------------
- void curve4_inc::rewind(unsigned)
- {
- if(m_num_steps == 0)
- {
- m_step = -1;
- return;
- }
- m_step = m_num_steps;
- m_fx = m_saved_fx;
- m_fy = m_saved_fy;
- m_dfx = m_saved_dfx;
- m_dfy = m_saved_dfy;
- m_ddfx = m_saved_ddfx;
- m_ddfy = m_saved_ddfy;
- }
-
- //------------------------------------------------------------------------
- unsigned curve4_inc::vertex(double* x, double* y)
- {
- if(m_step < 0) return path_cmd_stop;
- if(m_step == m_num_steps)
- {
- *x = m_start_x;
- *y = m_start_y;
- --m_step;
- return path_cmd_move_to;
- }
-
- if(m_step == 0)
- {
- *x = m_end_x;
- *y = m_end_y;
- --m_step;
- return path_cmd_line_to;
- }
-
- m_fx += m_dfx;
- m_fy += m_dfy;
- m_dfx += m_ddfx;
- m_dfy += m_ddfy;
- m_ddfx += m_dddfx;
- m_ddfy += m_dddfy;
-
- *x = m_fx;
- *y = m_fy;
- --m_step;
- return path_cmd_line_to;
- }
-
-
-
-
- //------------------------------------------------------------------------
- void curve4_div::init(double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- double x4, double y4)
- {
- m_points.remove_all();
- m_distance_tolerance_square = 0.5 / m_approximation_scale;
- m_distance_tolerance_square *= m_distance_tolerance_square;
- bezier(x1, y1, x2, y2, x3, y3, x4, y4);
- m_count = 0;
- }
-
- //------------------------------------------------------------------------
- void curve4_div::recursive_bezier(double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- double x4, double y4,
- unsigned level)
- {
- if(level > curve_recursion_limit)
- {
- return;
- }
-
- // Calculate all the mid-points of the line segments
- //----------------------
- double x12 = (x1 + x2) / 2;
- double y12 = (y1 + y2) / 2;
- double x23 = (x2 + x3) / 2;
- double y23 = (y2 + y3) / 2;
- double x34 = (x3 + x4) / 2;
- double y34 = (y3 + y4) / 2;
- double x123 = (x12 + x23) / 2;
- double y123 = (y12 + y23) / 2;
- double x234 = (x23 + x34) / 2;
- double y234 = (y23 + y34) / 2;
- double x1234 = (x123 + x234) / 2;
- double y1234 = (y123 + y234) / 2;
-
-
- // Try to approximate the full cubic curve by a single straight line
- //------------------
- double dx = x4-x1;
- double dy = y4-y1;
-
- double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx));
- double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx));
- double da1, da2, k;
-
- switch((int(d2 > curve_collinearity_epsilon) << 1) +
- int(d3 > curve_collinearity_epsilon))
- {
- case 0:
- // All collinear OR p1==p4
- //----------------------
- k = dx*dx + dy*dy;
- if(k == 0)
- {
- d2 = calc_sq_distance(x1, y1, x2, y2);
- d3 = calc_sq_distance(x4, y4, x3, y3);
- }
- else
- {
- k = 1 / k;
- da1 = x2 - x1;
- da2 = y2 - y1;
- d2 = k * (da1*dx + da2*dy);
- da1 = x3 - x1;
- da2 = y3 - y1;
- d3 = k * (da1*dx + da2*dy);
- if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
- {
- // Simple collinear case, 1---2---3---4
- // We can leave just two endpoints
- return;
- }
- if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1);
- else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4);
- else d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy);
-
- if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1);
- else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4);
- else d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy);
- }
- if(d2 > d3)
- {
- if(d2 < m_distance_tolerance_square)
- {
- m_points.add(point_d(x2, y2));
- return;
- }
- }
- else
- {
- if(d3 < m_distance_tolerance_square)
- {
- m_points.add(point_d(x3, y3));
- return;
- }
- }
- break;
-
- case 1:
- // p1,p2,p4 are collinear, p3 is significant
- //----------------------
- if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
- {
- if(m_angle_tolerance < curve_angle_tolerance_epsilon)
- {
- m_points.add(point_d(x23, y23));
- return;
- }
-
- // Angle Condition
- //----------------------
- da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
- if(da1 >= pi) da1 = 2*pi - da1;
-
- if(da1 < m_angle_tolerance)
- {
- m_points.add(point_d(x2, y2));
- m_points.add(point_d(x3, y3));
- return;
- }
-
- if(m_cusp_limit != 0.0)
- {
- if(da1 > m_cusp_limit)
- {
- m_points.add(point_d(x3, y3));
- return;
- }
- }
- }
- break;
-
- case 2:
- // p1,p3,p4 are collinear, p2 is significant
- //----------------------
- if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
- {
- if(m_angle_tolerance < curve_angle_tolerance_epsilon)
- {
- m_points.add(point_d(x23, y23));
- return;
- }
-
- // Angle Condition
- //----------------------
- da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
- if(da1 >= pi) da1 = 2*pi - da1;
-
- if(da1 < m_angle_tolerance)
- {
- m_points.add(point_d(x2, y2));
- m_points.add(point_d(x3, y3));
- return;
- }
-
- if(m_cusp_limit != 0.0)
- {
- if(da1 > m_cusp_limit)
- {
- m_points.add(point_d(x2, y2));
- return;
- }
- }
- }
- break;
-
- case 3:
- // Regular case
- //-----------------
- if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
- {
- // If the curvature doesn't exceed the distance_tolerance value
- // we tend to finish subdivisions.
- //----------------------
- if(m_angle_tolerance < curve_angle_tolerance_epsilon)
- {
- m_points.add(point_d(x23, y23));
- return;
- }
-
- // Angle & Cusp Condition
- //----------------------
- k = atan2(y3 - y2, x3 - x2);
- da1 = fabs(k - atan2(y2 - y1, x2 - x1));
- da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
- if(da1 >= pi) da1 = 2*pi - da1;
- if(da2 >= pi) da2 = 2*pi - da2;
-
- if(da1 + da2 < m_angle_tolerance)
- {
- // Finally we can stop the recursion
- //----------------------
- m_points.add(point_d(x23, y23));
- return;
- }
-
- if(m_cusp_limit != 0.0)
- {
- if(da1 > m_cusp_limit)
- {
- m_points.add(point_d(x2, y2));
- return;
- }
-
- if(da2 > m_cusp_limit)
- {
- m_points.add(point_d(x3, y3));
- return;
- }
- }
- }
- break;
- }
-
- // Continue subdivision
- //----------------------
- recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1);
- recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1);
- }
-
- //------------------------------------------------------------------------
- void curve4_div::bezier(double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- double x4, double y4)
- {
- m_points.add(point_d(x1, y1));
- recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0);
- m_points.add(point_d(x4, y4));
- }
-
-}
-
|