summaryrefslogtreecommitdiff
path: root/plugins/CryptoPP/crypto/modarith.h
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/CryptoPP/crypto/modarith.h')
-rw-r--r--plugins/CryptoPP/crypto/modarith.h158
1 files changed, 158 insertions, 0 deletions
diff --git a/plugins/CryptoPP/crypto/modarith.h b/plugins/CryptoPP/crypto/modarith.h
new file mode 100644
index 0000000000..7decb621dd
--- /dev/null
+++ b/plugins/CryptoPP/crypto/modarith.h
@@ -0,0 +1,158 @@
+#ifndef CRYPTOPP_MODARITH_H
+#define CRYPTOPP_MODARITH_H
+
+// implementations are in integer.cpp
+
+#include "cryptlib.h"
+#include "misc.h"
+#include "integer.h"
+#include "algebra.h"
+
+NAMESPACE_BEGIN(CryptoPP)
+
+CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>;
+CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>;
+CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
+
+//! ring of congruence classes modulo n
+/*! \note this implementation represents each congruence class as the smallest non-negative integer in that class */
+class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer>
+{
+public:
+
+ typedef int RandomizationParameter;
+ typedef Integer Element;
+
+ ModularArithmetic(const Integer &modulus = Integer::One())
+ : m_modulus(modulus), m_result((word)0, modulus.reg.size()) {}
+
+ ModularArithmetic(const ModularArithmetic &ma)
+ : m_modulus(ma.m_modulus), m_result((word)0, m_modulus.reg.size()) {}
+
+ ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters
+
+ virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
+
+ void DEREncode(BufferedTransformation &bt) const;
+
+ void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
+ void BERDecodeElement(BufferedTransformation &in, Element &a) const;
+
+ const Integer& GetModulus() const {return m_modulus;}
+ void SetModulus(const Integer &newModulus) {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());}
+
+ virtual bool IsMontgomeryRepresentation() const {return false;}
+
+ virtual Integer ConvertIn(const Integer &a) const
+ {return a%m_modulus;}
+
+ virtual Integer ConvertOut(const Integer &a) const
+ {return a;}
+
+ const Integer& Half(const Integer &a) const;
+
+ bool Equal(const Integer &a, const Integer &b) const
+ {return a==b;}
+
+ const Integer& Identity() const
+ {return Integer::Zero();}
+
+ const Integer& Add(const Integer &a, const Integer &b) const;
+
+ Integer& Accumulate(Integer &a, const Integer &b) const;
+
+ const Integer& Inverse(const Integer &a) const;
+
+ const Integer& Subtract(const Integer &a, const Integer &b) const;
+
+ Integer& Reduce(Integer &a, const Integer &b) const;
+
+ const Integer& Double(const Integer &a) const
+ {return Add(a, a);}
+
+ const Integer& MultiplicativeIdentity() const
+ {return Integer::One();}
+
+ const Integer& Multiply(const Integer &a, const Integer &b) const
+ {return m_result1 = a*b%m_modulus;}
+
+ const Integer& Square(const Integer &a) const
+ {return m_result1 = a.Squared()%m_modulus;}
+
+ bool IsUnit(const Integer &a) const
+ {return Integer::Gcd(a, m_modulus).IsUnit();}
+
+ const Integer& MultiplicativeInverse(const Integer &a) const
+ {return m_result1 = a.InverseMod(m_modulus);}
+
+ const Integer& Divide(const Integer &a, const Integer &b) const
+ {return Multiply(a, MultiplicativeInverse(b));}
+
+ Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
+
+ void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
+
+ unsigned int MaxElementBitLength() const
+ {return (m_modulus-1).BitCount();}
+
+ unsigned int MaxElementByteLength() const
+ {return (m_modulus-1).ByteCount();}
+
+ Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0 ) const
+ // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
+ {
+ return Element( rng , Integer( (long) 0) , m_modulus - Integer( (long) 1 ) ) ;
+ }
+
+ bool operator==(const ModularArithmetic &rhs) const
+ {return m_modulus == rhs.m_modulus;}
+
+ static const RandomizationParameter DefaultRandomizationParameter ;
+
+protected:
+ Integer m_modulus;
+ mutable Integer m_result, m_result1;
+
+};
+
+// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
+
+//! do modular arithmetics in Montgomery representation for increased speed
+/*! \note the Montgomery representation represents each congruence class [a] as a*r%n, where r is a convenient power of 2 */
+class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic
+{
+public:
+ MontgomeryRepresentation(const Integer &modulus); // modulus must be odd
+
+ virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
+
+ bool IsMontgomeryRepresentation() const {return true;}
+
+ Integer ConvertIn(const Integer &a) const
+ {return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;}
+
+ Integer ConvertOut(const Integer &a) const;
+
+ const Integer& MultiplicativeIdentity() const
+ {return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;}
+
+ const Integer& Multiply(const Integer &a, const Integer &b) const;
+
+ const Integer& Square(const Integer &a) const;
+
+ const Integer& MultiplicativeInverse(const Integer &a) const;
+
+ Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
+ {return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
+
+ void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
+ {AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);}
+
+private:
+ Integer m_u;
+ mutable IntegerSecBlock m_workspace;
+};
+
+NAMESPACE_END
+
+#endif