summaryrefslogtreecommitdiff
path: root/plugins/Dbx_mdb/src/mdbx/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/Dbx_mdb/src/mdbx/README.md')
-rw-r--r--plugins/Dbx_mdb/src/mdbx/README.md758
1 files changed, 0 insertions, 758 deletions
diff --git a/plugins/Dbx_mdb/src/mdbx/README.md b/plugins/Dbx_mdb/src/mdbx/README.md
deleted file mode 100644
index c962da2dc3..0000000000
--- a/plugins/Dbx_mdb/src/mdbx/README.md
+++ /dev/null
@@ -1,758 +0,0 @@
-libmdbx
-======================================
-**The revised and extended descendant of [Symas LMDB](https://symas.com/lmdb/).**
-
-*The Future will Positive. Всё будет хорошо.*
-[![Build Status](https://travis-ci.org/leo-yuriev/libmdbx.svg?branch=master)](https://travis-ci.org/leo-yuriev/libmdbx)
-[![Build status](https://ci.appveyor.com/api/projects/status/ue94mlopn50dqiqg/branch/master?svg=true)](https://ci.appveyor.com/project/leo-yuriev/libmdbx/branch/master)
-[![Coverity Scan Status](https://scan.coverity.com/projects/12915/badge.svg)](https://scan.coverity.com/projects/reopen-libmdbx)
-
-English version [by Google](https://translate.googleusercontent.com/translate_c?act=url&ie=UTF8&sl=ru&tl=en&u=https://github.com/leo-yuriev/libmdbx/tree/master)
-and [by Yandex](https://translate.yandex.ru/translate?url=https%3A%2F%2Fgithub.com%2FReOpen%2Flibmdbx%2Ftree%2Fmaster&lang=ru-en).
-
-### Project Status
-
-**Now MDBX is under _active development_** and until 2018 is expected a big
-change both of API and database format. Unfortunately those update will lead to
-loss of compatibility with previous versions.
-
-The aim of this revolution in providing a clearer robust API and adding new
-features, including the database properties.
-
-
-## Содержание
-
-- [Обзор](#Обзор)
- - [Сравнение с другими СУБД](#Сравнение-с-другими-СУБД)
- - [История & Acknowledgements](#История)
-- [Основные свойства](#Основные-свойства)
-- [Сравнение производительности](#Сравнение-производительности)
- - [Интегральная производительность](#Интегральная-производительность)
- - [Масштабируемость чтения](#Масштабируемость-чтения)
- - [Синхронная фиксация](#Синхронная-фиксация)
- - [Отложенная фиксация](#Отложенная-фиксация)
- - [Асинхронная фиксация](#Асинхронная-фиксация)
- - [Потребление ресурсов](#Потребление-ресурсов)
-- [Недостатки и Компромиссы](#Недостатки-и-Компромиссы)
- - [Проблема долгих чтений](#Проблема-долгих-чтений)
- - [Сохранность данных в режиме асинхронной фиксации](#Сохранность-данных-в-режиме-асинхронной-фиксации)
-- [Доработки и усовершенствования относительно LMDB](#Доработки-и-усовершенствования-относительно-lmdb)
-
-
-## Обзор
-
-_libmdbx_ - это встраиваемый key-value движок хранения со специфическим
-набором свойств и возможностей, ориентированный на создание уникальных
-легковесных решений с предельной производительностью.
-
-_libmdbx_ позволяет множеству процессов совместно читать и обновлять
-несколько key-value таблиц с соблюдением [ACID](https://ru.wikipedia.org/wiki/ACID),
-при минимальных накладных расходах и амортизационной стоимости любых операций Olog(N).
-
-_libmdbx_ обеспечивает
-[serializability](https://en.wikipedia.org/wiki/Serializability)
-изменений и согласованность данных после аварий. При этом транзакции
-изменяющие данные никак не мешают операциям чтения и выполняются строго
-последовательно с использованием единственного
-[мьютекса](https://en.wikipedia.org/wiki/Mutual_exclusion).
-
-_libmdbx_ позволяет выполнять операции чтения с гарантиями
-[wait-free](https://en.wikipedia.org/wiki/Non-blocking_algorithm#Wait-freedom),
-параллельно на каждом ядре CPU, без использования атомарных операций
-и/или примитивов синхронизации.
-
-_libmdbx_ не использует [LSM](https://en.wikipedia.org/wiki/Log-structured_merge-tree), а основан на [B+Tree](https://en.wikipedia.org/wiki/B%2B_tree) с [отображением](https://en.wikipedia.org/wiki/Memory-mapped_file) всех данных в память,
-при этом текущая версия не использует [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging).
-Это предопределяет многие свойства, в том числе удачные и противопоказанные сценарии использования.
-
-### Сравнение с другими СУБД
-
-Ввиду того, что в _libmdbx_ сейчас происходит революция, я посчитал лучшим решением
-ограничится здесь ссылкой на [главу Comparison with other databases](https://github.com/coreos/bbolt#comparison-with-other-databases) в описании _BoltDB_.
-
-
-### История
-
-_libmdbx_ является результатом переработки и развития "Lightning Memory-Mapped Database",
-известной под аббревиатурой
-[LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database).
-Изначально доработка производилась в составе проекта
-[ReOpenLDAP](https://github.com/leo-yuriev/ReOpenLDAP). Примерно за год
-работы внесенные изменения приобрели самостоятельную ценность. Осенью
-2015 доработанный движок был выделен в отдельный проект, который был
-[представлен на конференции Highload++
-2015](http://www.highload.ru/2015/abstracts/1831.html).
-
-В начале 2017 года движок _libmdbx_ получил новый импульс развития,
-благодаря использованию в [Fast Positive
-Tables](https://github.com/leo-yuriev/libfpta), aka ["Позитивные
-Таблицы"](https://github.com/leo-yuriev/libfpta) by [Positive
-Technologies](https://www.ptsecurity.ru).
-
-
-#### Acknowledgements
-
-Howard Chu (Symas Corporation) - the author of LMDB,
-from which originated the MDBX in 2015.
-
-Martin Hedenfalk <martin@bzero.se> - the author of `btree.c` code,
-which was used for begin development of LMDB.
-
-
-Основные свойства
-=================
-
-_libmdbx_ наследует все ключевые возможности и особенности от
-своего прародителя [LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database),
-но с устранением ряда описываемых далее проблем и архитектурных недочетов.
-
-1. Данные хранятся в упорядоченном отображении (ordered map), ключи всегда
- отсортированы, поддерживается выборка диапазонов (range lookups).
-
-2. Данные отображается в память каждого работающего с БД процесса.
- К данным и ключам обеспечивается прямой доступ в памяти без необходимости их
- копирования.
-
-3. Транзакции согласно
- [ACID](https://ru.wikipedia.org/wiki/ACID), посредством
- [MVCC](https://ru.wikipedia.org/wiki/MVCC) и
- [COW](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BF%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D0%B8_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D0%B8).
- Изменения строго последовательны и не блокируются чтением,
- конфликты между транзакциями не возможны.
- При этом гарантируется чтение только зафиксированных данных, см [relaxing serializability](https://en.wikipedia.org/wiki/Serializability).
-
-4. Чтение и поиск [без блокировок](https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B1%D0%BB%D0%BE%D0%BA%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B0%D1%8F_%D1%81%D0%B8%D0%BD%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F),
- без [атомарных операций](https://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BE%D0%BC%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D1%8F).
- Читатели не блокируются операциями записи и не конкурируют
- между собой, чтение масштабируется линейно по ядрам CPU.
- > Для точности следует отметить, что "подключение к БД" (старт первой
- > читающей транзакции в потоке) и "отключение от БД" (закрытие БД или
- > завершение потока) требуют краткосрочного захвата блокировки для
- > регистрации/дерегистрации текущего потока в "таблице читателей".
-
-5. Эффективное хранение дубликатов (ключей с несколькими
- значениями), без дублирования ключей, с сортировкой значений, в
- том числе целочисленных (для вторичных индексов).
-
-6. Эффективная поддержка коротких ключей фиксированной длины, в том числе целочисленных.
-
-7. Амортизационная стоимость любой операции Olog(N),
- [WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write
- Amplification Factor) и RAF (Read Amplification Factor) также Olog(N).
-
-8. Нет [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) и журнала
- транзакций, после сбоев не требуется восстановление. Не требуется компактификация
- или какое-либо периодическое обслуживание. Поддерживается резервное копирование
- "по горячему", на работающей БД без приостановки изменения данных.
-
-9. Отсутствует какое-либо внутреннее управление памятью или кэшированием. Всё
- необходимое штатно выполняет ядро ОС!
-
-
-Сравнение производительности
-============================
-
-Все представленные ниже данные получены многократным прогоном тестов на
-ноутбуке Lenovo Carbon-2, i7-4600U 2.1 ГГц, 8 Гб ОЗУ, с SSD-диском
-SAMSUNG MZNTD512HAGL-000L1 (DXT23L0Q) 512 Гб.
-
-Исходный код бенчмарка [_IOArena_](https://github.com/pmwkaa/ioarena) и
-сценарии тестирования [доступны на
-github](https://github.com/pmwkaa/ioarena/tree/HL%2B%2B2015).
-
---------------------------------------------------------------------------------
-
-### Интегральная производительность
-
-Показана соотнесенная сумма ключевых показателей производительности в трёх
-бенчмарках:
-
- - Чтение/Поиск на машине с 4-мя процессорами;
-
- - Транзакции с [CRUD](https://ru.wikipedia.org/wiki/CRUD)-операциями
- (вставка, чтение, обновление, удаление) в режиме **синхронной фиксации**
- данных (fdatasync при завершении каждой транзакции или аналог);
-
- - Транзакции с [CRUD](https://ru.wikipedia.org/wiki/CRUD)-операциями
- (вставка, чтение, обновление, удаление) в режиме **отложенной фиксации**
- данных (отложенная запись посредством файловой систем или аналог);
-
-*Бенчмарк в режиме асинхронной записи не включен по двум причинам:*
-
- 1. Такое сравнение не совсем правомочно, его следует делать с движками
- ориентированными на хранение данных в памяти ([Tarantool](https://tarantool.io/), [Redis](https://redis.io/)).
-
- 2. Превосходство libmdbx становится еще более подавляющем, что мешает
- восприятию информации.
-
-![Comparison #1: Integral Performance](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-1.png)
-
---------------------------------------------------------------------------------
-
-### Масштабируемость чтения
-
-Для каждого движка показана суммарная производительность при
-одновременном выполнении запросов чтения/поиска в 1-2-4-8 потоков на
-машине с 4-мя физическими процессорами.
-
-![Comparison #2: Read Scalability](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-2.png)
-
---------------------------------------------------------------------------------
-
-### Синхронная фиксация
-
- - Линейная шкала слева и темные прямоугольники соответствуют количеству
- транзакций в секунду, усредненному за всё время теста.
-
- - Логарифмическая шкала справа и желтые интервальные отрезки
- соответствуют времени выполнения транзакций. При этом каждый отрезок
- показывает минимальное и максимальное время затраченное на выполнение
- транзакций, а крестиком отмечено среднеквадратичное значение.
-
-Выполняется **10.000 транзакций в режиме синхронной фиксации данных** на
-диске. При этом требуется гарантия, что при аварийном выключении питания
-(или другом подобном сбое) все данные будут консистентны и полностью
-соответствовать последней завершенной транзакции. В _libmdbx_ в этом
-режиме при фиксации каждой транзакции выполняется системный вызов
-[fdatasync](https://linux.die.net/man/2/fdatasync).
-
-В каждой транзакции выполняется комбинированная CRUD-операция (две
-вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
-на пустой базе, а при завершении, в результате выполняемых действий, в
-базе насчитывается 10.000 небольших key-value записей.
-
-![Comparison #3: Sync-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-3.png)
-
---------------------------------------------------------------------------------
-
-### Отложенная фиксация
-
- - Линейная шкала слева и темные прямоугольники соответствуют количеству
- транзакций в секунду, усредненному за всё время теста.
-
- - Логарифмическая шкала справа и желтые интервальные отрезки
- соответствуют времени выполнения транзакций. При этом каждый отрезок
- показывает минимальное и максимальное время затраченное на выполнение
- транзакций, а крестиком отмечено среднеквадратичное значение.
-
-Выполняется **100.000 транзакций в режиме отложенной фиксации данных**
-на диске. При этом требуется гарантия, что при аварийном выключении
-питания (или другом подобном сбое) все данные будут консистентны на
-момент завершения одной из транзакций, но допускается потеря изменений
-из некоторого количества последних транзакций, что для многих движков
-предполагает включение
-[WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) (write-ahead
-logging) либо журнала транзакций, который в свою очередь опирается на
-гарантию упорядоченности данных в журналируемой файловой системе.
-_libmdbx_ при этом не ведет WAL, а передает весь контроль файловой
-системе и ядру ОС.
-
-В каждой транзакции выполняется комбинированная CRUD-операция (две
-вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
-на пустой базе, а при завершении, в результате выполняемых действий, в
-базе насчитывается 100.000 небольших key-value записей.
-
-![Comparison #4: Lazy-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-4.png)
-
---------------------------------------------------------------------------------
-
-### Асинхронная фиксация
-
- - Линейная шкала слева и темные прямоугольники соответствуют количеству
- транзакций в секунду, усредненному за всё время теста.
-
- - Логарифмическая шкала справа и желтые интервальные отрезки
- соответствуют времени выполнения транзакций. При этом каждый отрезок
- показывает минимальное и максимальное время затраченное на выполнение
- транзакций, а крестиком отмечено среднеквадратичное значение.
-
-Выполняется **1.000.000 транзакций в режиме асинхронной фиксации
-данных** на диске. При этом требуется гарантия, что при аварийном
-выключении питания (или другом подобном сбое) все данные будут
-консистентны на момент завершения одной из транзакций, но допускается
-потеря изменений из значительного количества последних транзакций. Во
-всех движках при этом включался режим предполагающий минимальную
-нагрузку на диск по-записи, и соответственно минимальную гарантию
-сохранности данных. В _libmdbx_ при этом используется режим асинхронной
-записи измененных страниц на диск посредством ядра ОС и системного
-вызова [msync(MS_ASYNC)](https://linux.die.net/man/2/msync).
-
-В каждой транзакции выполняется комбинированная CRUD-операция (две
-вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
-на пустой базе, а при завершении, в результате выполняемых действий, в
-базе насчитывается 10.000 небольших key-value записей.
-
-![Comparison #5: Async-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-5.png)
-
---------------------------------------------------------------------------------
-
-### Потребление ресурсов
-
-Показана соотнесенная сумма использованных ресурсов в ходе бенчмарка в
-режиме отложенной фиксации:
-
- - суммарное количество операций ввода-вывода (IOPS), как записи, так и
- чтения.
-
- - суммарное затраченное время процессора, как в режиме пользовательских процессов,
- так и в режиме ядра ОС.
-
- - использованное место на диске при завершении теста, после закрытия БД из тестирующего процесса,
- но без ожидания всех внутренних операций обслуживания (компактификации LSM и т.п.).
-
-Движок _ForestDB_ был исключен при оформлении результатов, так как
-относительно конкурентов многократно превысил потребление каждого из
-ресурсов (потратил процессорное время на генерацию IOPS для заполнения
-диска), что не позволяло наглядно сравнить показатели остальных движков
-на одной диаграмме.
-
-Все данные собирались посредством системного вызова
-[getrusage()](http://man7.org/linux/man-pages/man2/getrusage.2.html) и
-сканированием директорий с данными.
-
-![Comparison #6: Cost comparison](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-6.png)
-
---------------------------------------------------------------------------------
-
-## Недостатки и Компромиссы
-
-1. Единовременно может выполняться не более одной транзакция изменения данных
- (один писатель). Зато все изменения всегда последовательны, не может быть
- конфликтов или логических ошибок при откате транзакций.
-
-2. Отсутствие [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging)
- обуславливает относительно большой
- [WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write
- Amplification Factor). Поэтому фиксация изменений на диске может быть
- достаточно дорогой и являться главным ограничением производительности
- при интенсивном изменении данных.
- > В качестве компромисса _libmdbx_ предлагает несколько режимов ленивой
- > и/или периодической фиксации. В том числе режим `MAPASYNC`, при котором
- > изменения происходят только в памяти и асинхронно фиксируются на диске
- > ядром ОС.
- >
- > Однако, следует воспринимать это свойство аккуратно и взвешенно.
- > Например, полная фиксация транзакции в БД с журналом потребует минимум 2
- > IOPS (скорее всего 3-4) из-за накладных расходов в файловой системе. В
- > _libmdbx_ фиксация транзакции также требует от 2 IOPS. Однако, в БД с
- > журналом кол-во IOPS будет меняться в зависимости от файловой системы,
- > но не от кол-ва записей или их объема. Тогда как в _libmdbx_ кол-во
- > будет расти логарифмически от кол-во записей/строк в БД (по высоте
- > b+tree).
-
-3. [COW](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BF%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D0%B8_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D0%B8)
- для реализации [MVCC](https://ru.wikipedia.org/wiki/MVCC) выполняется на
- уровне страниц в [B+
- дереве](https://ru.wikipedia.org/wiki/B-%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE).
- Поэтому изменение данных амортизационно требует копирования Olog(N)
- страниц, что расходует [пропускную способность оперативной
- памяти](https://en.wikipedia.org/wiki/Memory_bandwidth) и является
- основным ограничителем производительности в режиме `MAPASYNC`.
- > Этот недостаток неустраним, тем не менее следует дать некоторые пояснения.
- > Дело в том, что фиксация изменений на диске потребует гораздо более
- > значительного копирования данных в памяти и массы других затратных операций.
- > Поэтому обусловленное этим недостатком падение производительности становится
- > заметным только при отказе от фиксации изменений на диске.
- > Соответственно, корректнее сказать что _libmdbx_ позволяет
- > получить персистентность ценой минимального падения производительности.
- > Если же нет необходимости оперативно сохранять данные, то логичнее
- > использовать `std::map`.
-
-4. В _LMDB_ существует проблема долгих чтений (приостановленных читателей),
- которая приводит к деградации производительности и переполнению БД.
- > В _libmdbx_ предложены средства для предотвращения, быстрого выхода из
- > некомфортной ситуации и устранения её последствий. Подробности ниже.
-
-5. В _LMDB_ есть вероятность разрушения БД в режиме `WRITEMAP+MAPASYNC`.
- В _libmdbx_ для `WRITEMAP+MAPASYNC` гарантируется как сохранность базы,
- так и согласованность данных.
- > Дополнительно, в качестве альтернативы, предложен режим `UTTERLY_NOSYNC`.
- > Подробности ниже.
-
-
-#### Проблема долгих чтений
-
-*Следует отметить*, что проблема "сборки мусора" так или иначе
-существует во всех СУБД (Vacuum в PostgreSQL). Однако в случае _libmdbx_
-и LMDB она проявляется более остро, прежде всего из-за высокой
-производительности, а также из-за намеренного упрощения внутренних
-механизмов ради производительности.
-
-Понимание проблемы требует некоторых пояснений, которые
-изложены ниже, но могут быть сложны для быстрого восприятия.
-Поэтому, тезисно:
-
-* Изменение данных на фоне долгой операции чтения может
- приводить к исчерпанию места в БД.
-
-* После чего любая попытка обновить данные будет приводить к
- ошибке `MAP_FULL` до завершения долгой операции чтения.
-
-* Характерными примерами долгих чтений являются горячее
- резервное копирования и отладка клиентского приложения при
- активной транзакции чтения.
-
-* В оригинальной _LMDB_ после этого будет наблюдаться
- устойчивая деградация производительности всех механизмов
- обратной записи на диск (в I/O контроллере, в гипервизоре,
- в ядре ОС).
-
-* В _libmdbx_ предусмотрен механизм аварийного прерывания таких
- операций, а также режим `LIFO RECLAIM` устраняющий последующую
- деградацию производительности.
-
-Операции чтения выполняются в контексте снимка данных (версии
-БД), который был актуальным на момент старта транзакции чтения. Такой
-читаемый снимок поддерживается неизменным до завершения операции. В свою
-очередь, это не позволяет повторно использовать страницы БД в
-последующих версиях (снимках БД).
-
-Другими словами, если обновление данных выполняется на фоне долгой
-операции чтения, то вместо повторного использования "старых" ненужных
-страниц будут выделяться новые, так как "старые" страницы составляют
-снимок БД, который еще используется долгой операцией чтения.
-
-В результате, при интенсивном изменении данных и достаточно длительной
-операции чтения, в БД могут быть исчерпаны свободные страницы, что не
-позволит создавать новые снимки/версии БД. Такая ситуация будет
-сохраняться до завершения операции чтения, которая использует старый
-снимок данных и препятствует повторному использованию страниц БД.
-
-Однако, на этом проблемы не заканчиваются. После описанной ситуации, все
-дополнительные страницы, которые были выделены пока переработка старых
-была невозможна, будут участвовать в цикле выделения/освобождения до
-конца жизни экземпляра БД. В оригинальной _LMDB_ этот цикл использования
-страниц работает по принципу [FIFO](https://ru.wikipedia.org/wiki/FIFO).
-Поэтому увеличение количества циркулирующий страниц, с точки зрения
-механизмов кэширования и/или обратной записи, выглядит как увеличение
-рабочего набор данных. Проще говоря, однократное попадание в ситуацию
-"уснувшего читателя" приводит к устойчивому эффекту вымывания I/O кэша
-при всех последующих изменениях данных.
-
-Для устранения описанных проблемы в _libmdbx_ сделаны существенные
-доработки, подробности ниже. Иллюстрации к проблеме "долгих чтений"
-можно найти в [слайдах презентации](http://www.slideshare.net/leoyuriev/lmdb).
-
-Там же приведен пример количественной оценки прироста производительности
-за счет эффективной работы [BBWC](https://en.wikipedia.org/wiki/BBWC)
-при включении `LIFO RECLAIM` в _libmdbx_.
-
-
-#### Сохранность данных в режиме асинхронной фиксации
-
-При работе в режиме `WRITEMAP+MAPSYNC` запись измененных страниц
-выполняется ядром ОС, что имеет ряд преимуществ. Так например, при крахе
-приложения, ядро ОС сохранит все изменения.
-
-Однако, при аварийном отключении питания или сбое в ядре ОС, на диске
-может быть сохранена только часть измененных страниц БД. При этом с большой
-вероятностью может оказаться так, что будут сохранены мета-страницы со
-ссылками на страницы с новыми версиями данных, но не сами новые данные.
-В этом случае БД будет безвозвратна разрушена, даже если до аварии
-производилась полная синхронизация данных (посредством
-`mdbx_env_sync()`).
-
-В _libmdbx_ эта проблема устранена путем полной переработки
-пути записи данных:
-
-* В режиме `WRITEMAP+MAPSYNC` _libmdbx_ не обновляет
- мета-страницы непосредственно, а поддерживает их теневые копии
- с переносом изменений после фиксации данных.
-
-* При завершении транзакций, в зависимости от состояния
- синхронности данных между диском и оперативной память,
- _libmdbx_ помечает точки фиксации либо как сильные (strong),
- либо как слабые (weak). Так например, в режиме
- `WRITEMAP+MAPSYNC` завершаемые транзакции помечаются как
- слабые, а при явной синхронизации данных как сильные.
-
-* В _libmdbx_ поддерживается не две, а три отдельные мета-страницы.
- Это позволяет выполнять фиксацию транзакций с формированием как
- сильной, так и слабой точки фиксации, без потери двух предыдущих
- точек фиксации (из которых одна может быть сильной, а вторая слабой).
- В результате, _libmdbx_ позволяет в произвольном порядке чередовать
- сильные и слабые точки фиксации без нарушения соответствующих
- гарантий в случае неожиданной системной аварии во время фиксации.
-
-* При открытии БД выполняется автоматический откат к последней
- сильной фиксации. Этим обеспечивается гарантия сохранности БД.
-
-Такая гарантия надежности не дается бесплатно. Для
-сохранности данных, страницы формирующие крайний снимок с
-сильной фиксацией, не должны повторно использоваться
-(перезаписываться) до формирования следующей сильной точки
-фиксации. Таким образом, крайняя точка фиксации создает
-описанный выше эффект "долгого чтения". Разница же здесь в том,
-что при исчерпании свободных страниц ситуация будет
-автоматически исправлена, посредством записи изменений на диск
-и формированием новой сильной точки фиксации.
-
-Таким образом, в режиме безопасной асинхронной фиксации _libmdbx_ будет
-всегда использовать новые страницы до исчерпания места в БД или до явного
-формирования сильной точки фиксации посредством `mdbx_env_sync()`.
-При этом суммарный трафик записи на диск будет примерно такой-же,
-как если бы отдельно фиксировалась каждая транзакций.
-
-В текущей версии _libmdbx_ вам предоставляется выбор между безопасным
-режимом (по умолчанию) асинхронной фиксации, и режимом `UTTERLY_NOSYNC` когда
-при системной аварии есть шанс полного разрушения БД как в LMDB.
-
-В последующих версиях _libmdbx_ будут предусмотрены средства
-для асинхронной записи данных на диск с автоматическим
-формированием сильных точек фиксации.
-
---------------------------------------------------------------------------------
-
-Доработки и усовершенствования относительно LMDB
-================================================
-
-1. Режим `LIFO RECLAIM`.
-
- Для повторного использования выбираются не самые старые, а
- самые новые страницы из доступных. За счет этого цикл
- использования страниц всегда имеет минимальную длину и не
- зависит от общего числа выделенных страниц.
-
- В результате механизмы кэширования и обратной записи работают с
- максимально возможной эффективностью. В случае использования
- контроллера дисков или системы хранения с
- [BBWC](https://en.wikipedia.org/wiki/BBWC) возможно
- многократное увеличение производительности по записи
- (обновлению данных).
-
-2. Обработчик `OOM-KICK`.
-
- Посредством `mdbx_env_set_oomfunc()` может быть установлен
- внешний обработчик (callback), который будет вызван при
- исчерпания свободных страниц из-за долгой операцией чтения.
- Обработчику будет передан PID и pthread_id виновника.
- В свою очередь обработчик может предпринять одно из действий:
-
- * нейтрализовать виновника (отправить сигнал kill #9), если
- долгое чтение выполняется сторонним процессом;
-
- * отменить или перезапустить проблемную операцию чтения, если
- операция выполняется одним из потоков текущего процесса;
-
- * подождать некоторое время, в расчете что проблемная операция
- чтения будет штатно завершена;
-
- * прервать текущую операцию изменения данных с возвратом кода
- ошибки.
-
-3. Гарантия сохранности БД в режиме `WRITEMAP+MAPSYNC`.
-
-В текущей версии _libmdbx_ вам предоставляется выбор между безопасным
-режимом (по умолчанию) асинхронной фиксации, и режимом `UTTERLY_NOSYNC`
-когда при системной аварии есть шанс полного разрушения БД как в LMDB.
-Для подробностей смотрите раздел
-[Сохранность данных в режиме асинхронной фиксации](#Сохранность-данных-в-режиме-асинхронной-фиксации).
-
-4. Возможность автоматического формирования контрольных точек
-(сброса данных на диск) при накоплении заданного объёма изменений,
-устанавливаемого функцией `mdbx_env_set_syncbytes()`.
-
-5. Возможность получить отставание текущей транзакции чтения от
-последней версии данных в БД посредством `mdbx_txn_straggler()`.
-
-6. Утилита mdbx_chk для проверки БД и функция `mdbx_env_pgwalk()` для
-обхода всех страниц БД.
-
-7. Управление отладкой и получение отладочных сообщений посредством
-`mdbx_setup_debug()`.
-
-8. Возможность связать с каждой завершаемой транзакцией до 3
-дополнительных маркеров посредством `mdbx_canary_put()`, и прочитать их
-в транзакции чтения посредством `mdbx_canary_get()`.
-
-9. Возможность узнать есть ли за текущей позицией курсора строка данных
-посредством `mdbx_cursor_eof()`.
-
-10. Возможность явно запросить обновление существующей записи, без
-создания новой посредством флажка `MDBX_CURRENT` для `mdbx_put()`.
-
-11. Возможность посредством `mdbx_replace()` обновить или удалить запись
-с получением предыдущего значения данных, а также адресно изменить
-конкретное multi-значение.
-
-12. Поддержка ключей и значений нулевой длины, включая сортированные
-дубликаты.
-
-13. Исправленный вариант `mdbx_cursor_count()`, возвращающий корректное
-количество дубликатов для всех типов таблиц и любого положения курсора.
-
-14. Возможность открыть БД в эксклюзивном режиме посредством
-`mdbx_env_open_ex()`, например в целях её проверки.
-
-15. Возможность закрыть БД в "грязном" состоянии (без сброса данных и
-формирования сильной точки фиксации) посредством `mdbx_env_close_ex()`.
-
-16. Возможность получить посредством `mdbx_env_info()` дополнительную
-информацию, включая номер самой старой версии БД (снимка данных),
-который используется одним из читателей.
-
-17. Функция `mdbx_del()` не игнорирует дополнительный (уточняющий)
-аргумент `data` для таблиц без дубликатов (без флажка `MDBX_DUPSORT`), а
-при его ненулевом значении всегда использует его для сверки с удаляемой
-записью.
-
-18. Возможность открыть dbi-таблицу, одновременно с установкой
-компараторов для ключей и данных, посредством `mdbx_dbi_open_ex()`.
-
-19. Возможность посредством `mdbx_is_dirty()` определить находятся ли
-некоторый ключ или данные в "грязной" странице БД. Таким образом,
-избегая лишнего копирования данных перед выполнением модифицирующих
-операций (значения в размещенные "грязных" страницах могут быть
-перезаписаны при изменениях, иначе они будут неизменны).
-
-20. Корректное обновление текущей записи, в том числе сортированного
-дубликата, при использовании режима `MDBX_CURRENT` в
-`mdbx_cursor_put()`.
-
-21. Все курсоры, как в транзакциях только для чтения, так и в пишущих,
-могут быть переиспользованы посредством `mdbx_cursor_renew()` и ДОЛЖНЫ
-ОСВОБОЖДАТЬСЯ ЯВНО.
- >
- > ## _ВАЖНО_, Обратите внимание!
- >
- > Это единственное изменение в API, которое значимо меняет
- > семантику управления курсорами и может приводить к утечкам
- > памяти. Следует отметить, что это изменение вынужденно.
- > Так устраняется неоднозначность с массой тяжких последствий:
- >
- > - обращение к уже освобожденной памяти;
- > - попытки повторного освобождения памяти;
- > - memory corruption and segfaults.
-
-22. Дополнительный код ошибки `MDBX_EMULTIVAL`, который возвращается из
-`mdbx_put()` и `mdbx_replace()` при попытке выполнить неоднозначное
-обновление или удаления одного из нескольких значений с одним ключом.
-
-23. Возможность посредством `mdbx_get_ex()` получить значение по
-заданному ключу, одновременно с количеством дубликатов.
-
-24. Наличие функций `mdbx_cursor_on_first()` и `mdbx_cursor_on_last()`,
-которые позволяют быстро выяснить стоит ли курсор на первой/последней
-позиции.
-
-25. При завершении читающих транзакций, открытые в них DBI-хендлы не
-закрываются и не теряются при завершении таких транзакций посредством
-`mdbx_txn_abort()` или `mdbx_txn_reset()`. Что позволяет избавится от ряда
-сложно обнаруживаемых ошибок.
-
-26. Генерация последовательностей посредством `mdbx_dbi_sequence()`.
-
-27. Расширенное динамическое управление размером БД, включая выбор
-размера страницы посредством `mdbx_env_set_geometry()`.
-
-28. Три мета-страницы вместо двух, что позволяет гарантированно
-консистентно обновлять слабые контрольные точки фиксации без риска
-повредить крайнюю сильную точку фиксации.
-
-29. В _libmdbx_ реализован автоматический возврат освобождающихся
-страниц в область нераспределенного резерва в конце файла данных. При
-этом уменьшается количество страниц загруженных в память и участвующих в
-цикле обновления данных и записи на диск. Фактически _libmdbx_ выполняет
-постоянную компактификацию данных, но не затрачивая на это
-дополнительных ресурсов, а только освобождая их. При освобождении места
-в БД, в случае наличия поддержки со стороны операционной системы и
-установки соответствующих параметров геометрии базы данных, также будет
-уменьшаться размер файла на диске.
-
---------------------------------------------------------------------------------
-
-```
-$ objdump -f -h -j .text libmdbx.so
-
-libmdbx.so: file format elf64-x86-64
-architecture: i386:x86-64, flags 0x00000150:
-HAS_SYMS, DYNAMIC, D_PAGED
-start address 0x000030e0
-
-Sections:
-Idx Name Size VMA LMA File off Algn
- 11 .text 00014661 000030e0 000030e0 000030e0 2**4
- CONTENTS, ALLOC, LOAD, READONLY, CODE
-```
-
-```
-$ objdump -C -T libmdbx.so | grep mdbx | sort
-
-00004057 g DF .text 0000003f Base mdbx_strerror_r
-00004096 g DF .text 00000031 Base mdbx_strerror
-00004207 g DF .text 00000025 Base mdbx_env_get_maxkeysize
-0000422c g DF .text 000000b8 Base mdbx_env_create
-000042e4 g DF .text 0000001f Base mdbx_env_set_mapsize
-00004f9f g DF .text 00000037 Base mdbx_env_set_maxdbs
-00004fd6 g DF .text 00000036 Base mdbx_env_set_maxreaders
-0000500c g DF .text 00000027 Base mdbx_env_get_maxreaders
-00005033 g DF .text 0000066a Base mdbx_env_open_ex
-0000569d g DF .text 00000008 Base mdbx_env_open
-000056a5 g DF .text 00000096 Base mdbx_env_close_ex
-0000573b g DF .text 00000007 Base mdbx_env_close
-00005742 g DF .text 00000047 Base mdbx_env_set_flags
-00005789 g DF .text 0000001d Base mdbx_env_get_flags
-000057a6 g DF .text 00000014 Base mdbx_env_set_userctx
-000057ba g DF .text 0000000f Base mdbx_env_get_userctx
-000057c9 g DF .text 0000000d Base mdbx_env_set_assert
-000057d6 g DF .text 0000001d Base mdbx_env_get_path
-000057f3 g DF .text 00000018 Base mdbx_env_get_fd
-0000580b g DF .text 00000056 Base mdbx_env_stat
-00005861 g DF .text 00000276 Base mdbx_env_info
-00005ad7 g DF .text 00000148 Base mdbx_reader_list
-0000656a g DF .text 0000012a Base mdbx_dbi_stat
-0000693a g DF .text 00000146 Base mdbx_env_copy2fd
-00006a80 g DF .text 0000012e Base mdbx_env_copy
-00006bae g DF .text 0000002a Base mdbx_reader_check
-00006bd8 g DF .text 000000f9 Base mdbx_setup_debug
-00006cd1 g DF .text 00000033 Base mdbx_env_set_syncbytes
-00006d04 g DF .text 00000023 Base mdbx_env_set_oomfunc
-00006d27 g DF .text 00000019 Base mdbx_env_get_oomfunc
-00006d40 g DF .text 00000121 Base mdbx_env_pgwalk
-0000ac60 g DF .text 00000163 Base mdbx_dkey
-0000add0 g DF .text 00000016 Base mdbx_cmp
-0000adf0 g DF .text 00000016 Base mdbx_dcmp
-0000ae10 g DF .text 00000271 Base mdbx_env_sync
-0000b090 g DF .text 0000001b Base mdbx_txn_env
-0000b0b0 g DF .text 0000001c Base mdbx_txn_id
-0000b0d0 g DF .text 00000077 Base mdbx_txn_reset
-0000b150 g DF .text 00000077 Base mdbx_txn_abort
-0000b1d0 g DF .text 00000057 Base mdbx_get_maxkeysize
-0000b230 g DF .text 000006b7 Base mdbx_env_set_geometry
-0000b8f0 g DF .text 000000ef Base mdbx_cursor_count
-0000b9e0 g DF .text 000000ad Base mdbx_cursor_close
-0000ba90 g DF .text 0000001b Base mdbx_cursor_txn
-0000bab0 g DF .text 00000017 Base mdbx_cursor_dbi
-0000bad0 g DF .text 0000007d Base mdbx_dbi_close
-0000bb50 g DF .text 000000cc Base mdbx_dbi_flags_ex
-0000bc20 g DF .text 00000038 Base mdbx_dbi_flags
-0000c250 g DF .text 00000077 Base mdbx_txn_renew
-0000c2d0 g DF .text 000004e5 Base mdbx_txn_begin
-0000dcb0 g DF .text 00000128 Base mdbx_cursor_open
-0000dde0 g DF .text 0000011d Base mdbx_cursor_renew
-0000e970 g DF .text 000000fc Base mdbx_get
-0000ef00 g DF .text 00000489 Base mdbx_cursor_get
-000125e0 g DF .text 00000719 Base mdbx_cursor_del
-00012e00 g DF .text 000000e4 Base mdbx_del
-00012ef0 g DF .text 000002c3 Base mdbx_drop
-000131c0 g DF .text 0000129e Base mdbx_cursor_put
-000145d0 g DF .text 000000a7 Base mdbx_put
-00014b60 g DF .text 000000bf Base mdbx_dbi_open_ex
-00014c20 g DF .text 0000000b Base mdbx_dbi_open
-00014c30 g DF .text 00001347 Base mdbx_txn_commit
-00015f80 g DF .text 00000105 Base mdbx_txn_straggler
-00016090 g DF .text 000000e7 Base mdbx_canary_put
-00016180 g DF .text 00000078 Base mdbx_canary_get
-00016200 g DF .text 0000006e Base mdbx_cursor_on_first
-00016270 g DF .text 00000096 Base mdbx_cursor_on_last
-00016310 g DF .text 00000066 Base mdbx_cursor_eof
-00016380 g DF .text 00000504 Base mdbx_replace
-00016890 g DF .text 0000017d Base mdbx_get_ex
-00016a10 g DF .text 000000a4 Base mdbx_is_dirty
-00016ac0 g DF .text 00000120 Base mdbx_dbi_sequence
-00016be0 g DF .text 00000064 Base mdbx_cursor_get_attr
-00016c50 g DF .text 00000064 Base mdbx_get_attr
-00016cc0 g DF .text 000000c7 Base mdbx_put_attr
-00016d90 g DF .text 000000c7 Base mdbx_cursor_put_attr
-00016e60 g DF .text 00000244 Base mdbx_set_attr
-```