summaryrefslogtreecommitdiff
path: root/libs/zlib/src/deflate.c
blob: 18a90bb83dbf4d408ff2fa51fe8215c674ddff2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
/* deflate.c -- compress data using the deflation algorithm
 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 */

/*
 *  ALGORITHM
 *
 *      The "deflation" process depends on being able to identify portions
 *      of the input text which are identical to earlier input (within a
 *      sliding window trailing behind the input currently being processed).
 *
 *      The most straightforward technique turns out to be the fastest for
 *      most input files: try all possible matches and select the longest.
 *      The key feature of this algorithm is that insertions into the string
 *      dictionary are very simple and thus fast, and deletions are avoided
 *      completely. Insertions are performed at each input character, whereas
 *      string matches are performed only when the previous match ends. So it
 *      is preferable to spend more time in matches to allow very fast string
 *      insertions and avoid deletions. The matching algorithm for small
 *      strings is inspired from that of Rabin & Karp. A brute force approach
 *      is used to find longer strings when a small match has been found.
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
 *      (by Leonid Broukhis).
 *         A previous version of this file used a more sophisticated algorithm
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
 *      time, but has a larger average cost, uses more memory and is patented.
 *      However the F&G algorithm may be faster for some highly redundant
 *      files if the parameter max_chain_length (described below) is too large.
 *
 *  ACKNOWLEDGEMENTS
 *
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
 *      I found it in 'freeze' written by Leonid Broukhis.
 *      Thanks to many people for bug reports and testing.
 *
 *  REFERENCES
 *
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
 *      Available in http://tools.ietf.org/html/rfc1951
 *
 *      A description of the Rabin and Karp algorithm is given in the book
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
 *
 *      Fiala,E.R., and Greene,D.H.
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
 *
 */

/* @(#) $Id$ */

#include "deflate.h"

const char deflate_copyright[] =
   " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
/*
  If you use the zlib library in a product, an acknowledgment is welcome
  in the documentation of your product. If for some reason you cannot
  include such an acknowledgment, I would appreciate that you keep this
  copyright string in the executable of your product.
 */

/* ===========================================================================
 *  Function prototypes.
 */
typedef enum {
    need_more,      /* block not completed, need more input or more output */
    block_done,     /* block flush performed */
    finish_started, /* finish started, need only more output at next deflate */
    finish_done     /* finish done, accept no more input or output */
} block_state;

typedef block_state (*compress_func) OF((deflate_state *s, int flush));
/* Compression function. Returns the block state after the call. */

local int deflateStateCheck      OF((z_streamp strm));
local void slide_hash     OF((deflate_state *s));
local void fill_window    OF((deflate_state *s));
local block_state deflate_stored OF((deflate_state *s, int flush));
local block_state deflate_fast   OF((deflate_state *s, int flush));
#ifndef FASTEST
local block_state deflate_slow   OF((deflate_state *s, int flush));
#endif
local block_state deflate_rle    OF((deflate_state *s, int flush));
local block_state deflate_huff   OF((deflate_state *s, int flush));
local void lm_init        OF((deflate_state *s));
local void putShortMSB    OF((deflate_state *s, uInt b));
local void flush_pending  OF((z_streamp strm));
local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
local uInt longest_match  OF((deflate_state *s, IPos cur_match));

#ifdef ZLIB_DEBUG
local  void check_match OF((deflate_state *s, IPos start, IPos match,
                            int length));
#endif

/* ===========================================================================
 * Local data
 */

#define NIL 0
/* Tail of hash chains */

#ifndef TOO_FAR
#  define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */

/* Values for max_lazy_match, good_match and max_chain_length, depending on
 * the desired pack level (0..9). The values given below have been tuned to
 * exclude worst case performance for pathological files. Better values may be
 * found for specific files.
 */
typedef struct config_s {
   ush good_length; /* reduce lazy search above this match length */
   ush max_lazy;    /* do not perform lazy search above this match length */
   ush nice_length; /* quit search above this match length */
   ush max_chain;
   compress_func func;
} config;

#ifdef FASTEST
local const config configuration_table[2] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
#else
local const config configuration_table[10] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
/* 2 */ {4,    5, 16,    8, deflate_fast},
/* 3 */ {4,    6, 32,   32, deflate_fast},

/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
/* 5 */ {8,   16, 32,   32, deflate_slow},
/* 6 */ {8,   16, 128, 128, deflate_slow},
/* 7 */ {8,   32, 128, 256, deflate_slow},
/* 8 */ {32, 128, 258, 1024, deflate_slow},
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
#endif

/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 * meaning.
 */

/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))

/* ===========================================================================
 * Update a hash value with the given input byte
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
 *    characters, so that a running hash key can be computed from the previous
 *    key instead of complete recalculation each time.
 */
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)


/* ===========================================================================
 * Insert string str in the dictionary and set match_head to the previous head
 * of the hash chain (the most recent string with same hash key). Return
 * the previous length of the hash chain.
 * If this file is compiled with -DFASTEST, the compression level is forced
 * to 1, and no hash chains are maintained.
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
 *    characters and the first MIN_MATCH bytes of str are valid (except for
 *    the last MIN_MATCH-1 bytes of the input file).
 */
#ifdef FASTEST
#define INSERT_STRING(s, str, match_head) \
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    match_head = s->head[s->ins_h], \
    s->head[s->ins_h] = (Pos)(str))
#else
#define INSERT_STRING(s, str, match_head) \
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
    s->head[s->ins_h] = (Pos)(str))
#endif

/* ===========================================================================
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
 * prev[] will be initialized on the fly.
 */
#define CLEAR_HASH(s) \
    do { \
        s->head[s->hash_size - 1] = NIL; \
        zmemzero((Bytef *)s->head, \
                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
    } while (0)

/* ===========================================================================
 * Slide the hash table when sliding the window down (could be avoided with 32
 * bit values at the expense of memory usage). We slide even when level == 0 to
 * keep the hash table consistent if we switch back to level > 0 later.
 */
local void slide_hash(s)
    deflate_state *s;
{
    unsigned n, m;
    Posf *p;
    uInt wsize = s->w_size;

    n = s->hash_size;
    p = &s->head[n];
    do {
        m = *--p;
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
    } while (--n);
    n = wsize;
#ifndef FASTEST
    p = &s->prev[n];
    do {
        m = *--p;
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
        /* If n is not on any hash chain, prev[n] is garbage but
         * its value will never be used.
         */
    } while (--n);
#endif
}

/* ========================================================================= */
int ZEXPORT deflateInit_(strm, level, version, stream_size)
    z_streamp strm;
    int level;
    const char *version;
    int stream_size;
{
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
                         Z_DEFAULT_STRATEGY, version, stream_size);
    /* To do: ignore strm->next_in if we use it as window */
}

/* ========================================================================= */
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
                  version, stream_size)
    z_streamp strm;
    int  level;
    int  method;
    int  windowBits;
    int  memLevel;
    int  strategy;
    const char *version;
    int stream_size;
{
    deflate_state *s;
    int wrap = 1;
    static const char my_version[] = ZLIB_VERSION;

    if (version == Z_NULL || version[0] != my_version[0] ||
        stream_size != sizeof(z_stream)) {
        return Z_VERSION_ERROR;
    }
    if (strm == Z_NULL) return Z_STREAM_ERROR;

    strm->msg = Z_NULL;
    if (strm->zalloc == (alloc_func)0) {
#ifdef Z_SOLO
        return Z_STREAM_ERROR;
#else
        strm->zalloc = zcalloc;
        strm->opaque = (voidpf)0;
#endif
    }
    if (strm->zfree == (free_func)0)
#ifdef Z_SOLO
        return Z_STREAM_ERROR;
#else
        strm->zfree = zcfree;
#endif

#ifdef FASTEST
    if (level != 0) level = 1;
#else
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif

    if (windowBits < 0) { /* suppress zlib wrapper */
        wrap = 0;
        if (windowBits < -15)
            return Z_STREAM_ERROR;
        windowBits = -windowBits;
    }
#ifdef GZIP
    else if (windowBits > 15) {
        wrap = 2;       /* write gzip wrapper instead */
        windowBits -= 16;
    }
#endif
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
        return Z_STREAM_ERROR;
    }
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    if (s == Z_NULL) return Z_MEM_ERROR;
    strm->state = (struct internal_state FAR *)s;
    s->strm = strm;
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */

    s->wrap = wrap;
    s->gzhead = Z_NULL;
    s->w_bits = (uInt)windowBits;
    s->w_size = 1 << s->w_bits;
    s->w_mask = s->w_size - 1;

    s->hash_bits = (uInt)memLevel + 7;
    s->hash_size = 1 << s->hash_bits;
    s->hash_mask = s->hash_size - 1;
    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);

    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));

    s->high_water = 0;      /* nothing written to s->window yet */

    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */

    /* We overlay pending_buf and sym_buf. This works since the average size
     * for length/distance pairs over any compressed block is assured to be 31
     * bits or less.
     *
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
     * possible fixed-codes length/distance pair is then 31 bits total.
     *
     * sym_buf starts one-fourth of the way into pending_buf. So there are
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
     * in sym_buf is three bytes -- two for the distance and one for the
     * literal/length. As each symbol is consumed, the pointer to the next
     * sym_buf value to read moves forward three bytes. From that symbol, up to
     * 31 bits are written to pending_buf. The closest the written pending_buf
     * bits gets to the next sym_buf symbol to read is just before the last
     * code is written. At that time, 31*(n - 2) bits have been written, just
     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
     * symbols are written.) The closest the writing gets to what is unread is
     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
     * can range from 128 to 32768.
     *
     * Therefore, at a minimum, there are 142 bits of space between what is
     * written and what is read in the overlain buffers, so the symbols cannot
     * be overwritten by the compressed data. That space is actually 139 bits,
     * due to the three-bit fixed-code block header.
     *
     * That covers the case where either Z_FIXED is specified, forcing fixed
     * codes, or when the use of fixed codes is chosen, because that choice
     * results in a smaller compressed block than dynamic codes. That latter
     * condition then assures that the above analysis also covers all dynamic
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
     * fewer bits than a fixed-code block would for the same set of symbols.
     * Therefore its average symbol length is assured to be less than 31. So
     * the compressed data for a dynamic block also cannot overwrite the
     * symbols from which it is being constructed.
     */

    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;

    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
        s->pending_buf == Z_NULL) {
        s->status = FINISH_STATE;
        strm->msg = ERR_MSG(Z_MEM_ERROR);
        deflateEnd (strm);
        return Z_MEM_ERROR;
    }
    s->sym_buf = s->pending_buf + s->lit_bufsize;
    s->sym_end = (s->lit_bufsize - 1) * 3;
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
     * on 16 bit machines and because stored blocks are restricted to
     * 64K-1 bytes.
     */

    s->level = level;
    s->strategy = strategy;
    s->method = (Byte)method;

    return deflateReset(strm);
}

/* =========================================================================
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
 */
local int deflateStateCheck(strm)
    z_streamp strm;
{
    deflate_state *s;
    if (strm == Z_NULL ||
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
        return 1;
    s = strm->state;
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
#ifdef GZIP
                                           s->status != GZIP_STATE &&
#endif
                                           s->status != EXTRA_STATE &&
                                           s->status != NAME_STATE &&
                                           s->status != COMMENT_STATE &&
                                           s->status != HCRC_STATE &&
                                           s->status != BUSY_STATE &&
                                           s->status != FINISH_STATE))
        return 1;
    return 0;
}

/* ========================================================================= */
int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
    z_streamp strm;
    const Bytef *dictionary;
    uInt  dictLength;
{
    deflate_state *s;
    uInt str, n;
    int wrap;
    unsigned avail;
    z_const unsigned char *next;

    if (deflateStateCheck(strm) || dictionary == Z_NULL)
        return Z_STREAM_ERROR;
    s = strm->state;
    wrap = s->wrap;
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
        return Z_STREAM_ERROR;

    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
    if (wrap == 1)
        strm->adler = adler32(strm->adler, dictionary, dictLength);
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */

    /* if dictionary would fill window, just replace the history */
    if (dictLength >= s->w_size) {
        if (wrap == 0) {            /* already empty otherwise */
            CLEAR_HASH(s);
            s->strstart = 0;
            s->block_start = 0L;
            s->insert = 0;
        }
        dictionary += dictLength - s->w_size;  /* use the tail */
        dictLength = s->w_size;
    }

    /* insert dictionary into window and hash */
    avail = strm->avail_in;
    next = strm->next_in;
    strm->avail_in = dictLength;
    strm->next_in = (z_const Bytef *)dictionary;
    fill_window(s);
    while (s->lookahead >= MIN_MATCH) {
        str = s->strstart;
        n = s->lookahead - (MIN_MATCH-1);
        do {
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
            s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
            s->head[s->ins_h] = (Pos)str;
            str++;
        } while (--n);
        s->strstart = str;
        s->lookahead = MIN_MATCH-1;
        fill_window(s);
    }
    s->strstart += s->lookahead;
    s->block_start = (long)s->strstart;
    s->insert = s->lookahead;
    s->lookahead = 0;
    s->match_length = s->prev_length = MIN_MATCH-1;
    s->match_available = 0;
    strm->next_in = next;
    strm->avail_in = avail;
    s->wrap = wrap;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
    z_streamp strm;
    Bytef *dictionary;
    uInt  *dictLength;
{
    deflate_state *s;
    uInt len;

    if (deflateStateCheck(strm))
        return Z_STREAM_ERROR;
    s = strm->state;
    len = s->strstart + s->lookahead;
    if (len > s->w_size)
        len = s->w_size;
    if (dictionary != Z_NULL && len)
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
    if (dictLength != Z_NULL)
        *dictLength = len;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateResetKeep(strm)
    z_streamp strm;
{
    deflate_state *s;

    if (deflateStateCheck(strm)) {
        return Z_STREAM_ERROR;
    }

    strm->total_in = strm->total_out = 0;
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    strm->data_type = Z_UNKNOWN;

    s = (deflate_state *)strm->state;
    s->pending = 0;
    s->pending_out = s->pending_buf;

    if (s->wrap < 0) {
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
    }
    s->status =
#ifdef GZIP
        s->wrap == 2 ? GZIP_STATE :
#endif
        INIT_STATE;
    strm->adler =
#ifdef GZIP
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
#endif
        adler32(0L, Z_NULL, 0);
    s->last_flush = -2;

    _tr_init(s);

    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateReset(strm)
    z_streamp strm;
{
    int ret;

    ret = deflateResetKeep(strm);
    if (ret == Z_OK)
        lm_init(strm->state);
    return ret;
}

/* ========================================================================= */
int ZEXPORT deflateSetHeader(strm, head)
    z_streamp strm;
    gz_headerp head;
{
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
        return Z_STREAM_ERROR;
    strm->state->gzhead = head;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflatePending(strm, pending, bits)
    unsigned *pending;
    int *bits;
    z_streamp strm;
{
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    if (pending != Z_NULL)
        *pending = strm->state->pending;
    if (bits != Z_NULL)
        *bits = strm->state->bi_valid;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflatePrime(strm, bits, value)
    z_streamp strm;
    int bits;
    int value;
{
    deflate_state *s;
    int put;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    s = strm->state;
    if (bits < 0 || bits > 16 ||
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
        return Z_BUF_ERROR;
    do {
        put = Buf_size - s->bi_valid;
        if (put > bits)
            put = bits;
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
        s->bi_valid += put;
        _tr_flush_bits(s);
        value >>= put;
        bits -= put;
    } while (bits);
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateParams(strm, level, strategy)
    z_streamp strm;
    int level;
    int strategy;
{
    deflate_state *s;
    compress_func func;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    s = strm->state;

#ifdef FASTEST
    if (level != 0) level = 1;
#else
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
        return Z_STREAM_ERROR;
    }
    func = configuration_table[s->level].func;

    if ((strategy != s->strategy || func != configuration_table[level].func) &&
        s->last_flush != -2) {
        /* Flush the last buffer: */
        int err = deflate(strm, Z_BLOCK);
        if (err == Z_STREAM_ERROR)
            return err;
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
            return Z_BUF_ERROR;
    }
    if (s->level != level) {
        if (s->level == 0 && s->matches != 0) {
            if (s->matches == 1)
                slide_hash(s);
            else
                CLEAR_HASH(s);
            s->matches = 0;
        }
        s->level = level;
        s->max_lazy_match   = configuration_table[level].max_lazy;
        s->good_match       = configuration_table[level].good_length;
        s->nice_match       = configuration_table[level].nice_length;
        s->max_chain_length = configuration_table[level].max_chain;
    }
    s->strategy = strategy;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
    z_streamp strm;
    int good_length;
    int max_lazy;
    int nice_length;
    int max_chain;
{
    deflate_state *s;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    s = strm->state;
    s->good_match = (uInt)good_length;
    s->max_lazy_match = (uInt)max_lazy;
    s->nice_match = nice_length;
    s->max_chain_length = (uInt)max_chain;
    return Z_OK;
}

/* =========================================================================
 * For the default windowBits of 15 and memLevel of 8, this function returns a
 * close to exact, as well as small, upper bound on the compressed size. This
 * is an expansion of ~0.03%, plus a small constant.
 *
 * For any setting other than those defaults for windowBits and memLevel, one
 * of two worst case bounds is returned. This is at most an expansion of ~4% or
 * ~13%, plus a small constant.
 *
 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
 * expansion results from five bytes of header for each stored block.
 *
 * The larger expansion of 13% results from a window size less than or equal to
 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
 * the data being compressed may have slid out of the sliding window, impeding
 * a stored block from being emitted. Then the only choice is a fixed or
 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
 * which this can occur is 255 (memLevel == 2).
 *
 * Shifts are used to approximate divisions, for speed.
 */
uLong ZEXPORT deflateBound(strm, sourceLen)
    z_streamp strm;
    uLong sourceLen;
{
    deflate_state *s;
    uLong fixedlen, storelen, wraplen;

    /* upper bound for fixed blocks with 9-bit literals and length 255
       (memLevel == 2, which is the lowest that may not use stored blocks) --
       ~13% overhead plus a small constant */
    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
               (sourceLen >> 9) + 4;

    /* upper bound for stored blocks with length 127 (memLevel == 1) --
       ~4% overhead plus a small constant */
    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
               (sourceLen >> 11) + 7;

    /* if can't get parameters, return larger bound plus a zlib wrapper */
    if (deflateStateCheck(strm))
        return (fixedlen > storelen ? fixedlen : storelen) + 6;

    /* compute wrapper length */
    s = strm->state;
    switch (s->wrap) {
    case 0:                                 /* raw deflate */
        wraplen = 0;
        break;
    case 1:                                 /* zlib wrapper */
        wraplen = 6 + (s->strstart ? 4 : 0);
        break;
#ifdef GZIP
    case 2:                                 /* gzip wrapper */
        wraplen = 18;
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
            Bytef *str;
            if (s->gzhead->extra != Z_NULL)
                wraplen += 2 + s->gzhead->extra_len;
            str = s->gzhead->name;
            if (str != Z_NULL)
                do {
                    wraplen++;
                } while (*str++);
            str = s->gzhead->comment;
            if (str != Z_NULL)
                do {
                    wraplen++;
                } while (*str++);
            if (s->gzhead->hcrc)
                wraplen += 2;
        }
        break;
#endif
    default:                                /* for compiler happiness */
        wraplen = 6;
    }

    /* if not default parameters, return one of the conservative bounds */
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
        return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;

    /* default settings: return tight bound for that case -- ~0.03% overhead
       plus a small constant */
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
           (sourceLen >> 25) + 13 - 6 + wraplen;
}

/* =========================================================================
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 * IN assertion: the stream state is correct and there is enough room in
 * pending_buf.
 */
local void putShortMSB(s, b)
    deflate_state *s;
    uInt b;
{
    put_byte(s, (Byte)(b >> 8));
    put_byte(s, (Byte)(b & 0xff));
}

/* =========================================================================
 * Flush as much pending output as possible. All deflate() output, except for
 * some deflate_stored() output, goes through this function so some
 * applications may wish to modify it to avoid allocating a large
 * strm->next_out buffer and copying into it. (See also read_buf()).
 */
local void flush_pending(strm)
    z_streamp strm;
{
    unsigned len;
    deflate_state *s = strm->state;

    _tr_flush_bits(s);
    len = s->pending;
    if (len > strm->avail_out) len = strm->avail_out;
    if (len == 0) return;

    zmemcpy(strm->next_out, s->pending_out, len);
    strm->next_out  += len;
    s->pending_out  += len;
    strm->total_out += len;
    strm->avail_out -= len;
    s->pending      -= len;
    if (s->pending == 0) {
        s->pending_out = s->pending_buf;
    }
}

/* ===========================================================================
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
 */
#define HCRC_UPDATE(beg) \
    do { \
        if (s->gzhead->hcrc && s->pending > (beg)) \
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
                                s->pending - (beg)); \
    } while (0)

/* ========================================================================= */
int ZEXPORT deflate(strm, flush)
    z_streamp strm;
    int flush;
{
    int old_flush; /* value of flush param for previous deflate call */
    deflate_state *s;

    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
        return Z_STREAM_ERROR;
    }
    s = strm->state;

    if (strm->next_out == Z_NULL ||
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
        ERR_RETURN(strm, Z_STREAM_ERROR);
    }
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);

    old_flush = s->last_flush;
    s->last_flush = flush;

    /* Flush as much pending output as possible */
    if (s->pending != 0) {
        flush_pending(strm);
        if (strm->avail_out == 0) {
            /* Since avail_out is 0, deflate will be called again with
             * more output space, but possibly with both pending and
             * avail_in equal to zero. There won't be anything to do,
             * but this is not an error situation so make sure we
             * return OK instead of BUF_ERROR at next call of deflate:
             */
            s->last_flush = -1;
            return Z_OK;
        }

    /* Make sure there is something to do and avoid duplicate consecutive
     * flushes. For repeated and useless calls with Z_FINISH, we keep
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
     */
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
               flush != Z_FINISH) {
        ERR_RETURN(strm, Z_BUF_ERROR);
    }

    /* User must not provide more input after the first FINISH: */
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
        ERR_RETURN(strm, Z_BUF_ERROR);
    }

    /* Write the header */
    if (s->status == INIT_STATE && s->wrap == 0)
        s->status = BUSY_STATE;
    if (s->status == INIT_STATE) {
        /* zlib header */
        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
        uInt level_flags;

        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
            level_flags = 0;
        else if (s->level < 6)
            level_flags = 1;
        else if (s->level == 6)
            level_flags = 2;
        else
            level_flags = 3;
        header |= (level_flags << 6);
        if (s->strstart != 0) header |= PRESET_DICT;
        header += 31 - (header % 31);

        putShortMSB(s, header);

        /* Save the adler32 of the preset dictionary: */
        if (s->strstart != 0) {
            putShortMSB(s, (uInt)(strm->adler >> 16));
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
        }
        strm->adler = adler32(0L, Z_NULL, 0);
        s->status = BUSY_STATE;

        /* Compression must start with an empty pending buffer */
        flush_pending(strm);
        if (s->pending != 0) {
            s->last_flush = -1;
            return Z_OK;
        }
    }
#ifdef GZIP
    if (s->status == GZIP_STATE) {
        /* gzip header */
        strm->adler = crc32(0L, Z_NULL, 0);
        put_byte(s, 31);
        put_byte(s, 139);
        put_byte(s, 8);
        if (s->gzhead == Z_NULL) {
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, s->level == 9 ? 2 :
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                      4 : 0));
            put_byte(s, OS_CODE);
            s->status = BUSY_STATE;

            /* Compression must start with an empty pending buffer */
            flush_pending(strm);
            if (s->pending != 0) {
                s->last_flush = -1;
                return Z_OK;
            }
        }
        else {
            put_byte(s, (s->gzhead->text ? 1 : 0) +
                     (s->gzhead->hcrc ? 2 : 0) +
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
                     );
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
            put_byte(s, s->level == 9 ? 2 :
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                      4 : 0));
            put_byte(s, s->gzhead->os & 0xff);
            if (s->gzhead->extra != Z_NULL) {
                put_byte(s, s->gzhead->extra_len & 0xff);
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
            }
            if (s->gzhead->hcrc)
                strm->adler = crc32(strm->adler, s->pending_buf,
                                    s->pending);
            s->gzindex = 0;
            s->status = EXTRA_STATE;
        }
    }
    if (s->status == EXTRA_STATE) {
        if (s->gzhead->extra != Z_NULL) {
            ulg beg = s->pending;   /* start of bytes to update crc */
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
            while (s->pending + left > s->pending_buf_size) {
                uInt copy = s->pending_buf_size - s->pending;
                zmemcpy(s->pending_buf + s->pending,
                        s->gzhead->extra + s->gzindex, copy);
                s->pending = s->pending_buf_size;
                HCRC_UPDATE(beg);
                s->gzindex += copy;
                flush_pending(strm);
                if (s->pending != 0) {
                    s->last_flush = -1;
                    return Z_OK;
                }
                beg = 0;
                left -= copy;
            }
            zmemcpy(s->pending_buf + s->pending,
                    s->gzhead->extra + s->gzindex, left);
            s->pending += left;
            HCRC_UPDATE(beg);
            s->gzindex = 0;
        }
        s->status = NAME_STATE;
    }
    if (s->status == NAME_STATE) {
        if (s->gzhead->name != Z_NULL) {
            ulg beg = s->pending;   /* start of bytes to update crc */
            int val;
            do {
                if (s->pending == s->pending_buf_size) {
                    HCRC_UPDATE(beg);
                    flush_pending(strm);
                    if (s->pending != 0) {
                        s->last_flush = -1;
                        return Z_OK;
                    }
                    beg = 0;
                }
                val = s->gzhead->name[s->gzindex++];
                put_byte(s, val);
            } while (val != 0);
            HCRC_UPDATE(beg);
            s->gzindex = 0;
        }
        s->status = COMMENT_STATE;
    }
    if (s->status == COMMENT_STATE) {
        if (s->gzhead->comment != Z_NULL) {
            ulg beg = s->pending;   /* start of bytes to update crc */
            int val;
            do {
                if (s->pending == s->pending_buf_size) {
                    HCRC_UPDATE(beg);
                    flush_pending(strm);
                    if (s->pending != 0) {
                        s->last_flush = -1;
                        return Z_OK;
                    }
                    beg = 0;
                }
                val = s->gzhead->comment[s->gzindex++];
                put_byte(s, val);
            } while (val != 0);
            HCRC_UPDATE(beg);
        }
        s->status = HCRC_STATE;
    }
    if (s->status == HCRC_STATE) {
        if (s->gzhead->hcrc) {
            if (s->pending + 2 > s->pending_buf_size) {
                flush_pending(strm);
                if (s->pending != 0) {
                    s->last_flush = -1;
                    return Z_OK;
                }
            }
            put_byte(s, (Byte)(strm->adler & 0xff));
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
            strm->adler = crc32(0L, Z_NULL, 0);
        }
        s->status = BUSY_STATE;

        /* Compression must start with an empty pending buffer */
        flush_pending(strm);
        if (s->pending != 0) {
            s->last_flush = -1;
            return Z_OK;
        }
    }
#endif

    /* Start a new block or continue the current one.
     */
    if (strm->avail_in != 0 || s->lookahead != 0 ||
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
        block_state bstate;

        bstate = s->level == 0 ? deflate_stored(s, flush) :
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
                 (*(configuration_table[s->level].func))(s, flush);

        if (bstate == finish_started || bstate == finish_done) {
            s->status = FINISH_STATE;
        }
        if (bstate == need_more || bstate == finish_started) {
            if (strm->avail_out == 0) {
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
            }
            return Z_OK;
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
             * of deflate should use the same flush parameter to make sure
             * that the flush is complete. So we don't have to output an
             * empty block here, this will be done at next call. This also
             * ensures that for a very small output buffer, we emit at most
             * one empty block.
             */
        }
        if (bstate == block_done) {
            if (flush == Z_PARTIAL_FLUSH) {
                _tr_align(s);
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
                _tr_stored_block(s, (char*)0, 0L, 0);
                /* For a full flush, this empty block will be recognized
                 * as a special marker by inflate_sync().
                 */
                if (flush == Z_FULL_FLUSH) {
                    CLEAR_HASH(s);             /* forget history */
                    if (s->lookahead == 0) {
                        s->strstart = 0;
                        s->block_start = 0L;
                        s->insert = 0;
                    }
                }
            }
            flush_pending(strm);
            if (strm->avail_out == 0) {
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
              return Z_OK;
            }
        }
    }

    if (flush != Z_FINISH) return Z_OK;
    if (s->wrap <= 0) return Z_STREAM_END;

    /* Write the trailer */
#ifdef GZIP
    if (s->wrap == 2) {
        put_byte(s, (Byte)(strm->adler & 0xff));
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
        put_byte(s, (Byte)(strm->total_in & 0xff));
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
    }
    else
#endif
    {
        putShortMSB(s, (uInt)(strm->adler >> 16));
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
    }
    flush_pending(strm);
    /* If avail_out is zero, the application will call deflate again
     * to flush the rest.
     */
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
}

/* ========================================================================= */
int ZEXPORT deflateEnd(strm)
    z_streamp strm;
{
    int status;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;

    status = strm->state->status;

    /* Deallocate in reverse order of allocations: */
    TRY_FREE(strm, strm->state->pending_buf);
    TRY_FREE(strm, strm->state->head);
    TRY_FREE(strm, strm->state->prev);
    TRY_FREE(strm, strm->state->window);

    ZFREE(strm, strm->state);
    strm->state = Z_NULL;

    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
}

/* =========================================================================
 * Copy the source state to the destination state.
 * To simplify the source, this is not supported for 16-bit MSDOS (which
 * doesn't have enough memory anyway to duplicate compression states).
 */
int ZEXPORT deflateCopy(dest, source)
    z_streamp dest;
    z_streamp source;
{
#ifdef MAXSEG_64K
    return Z_STREAM_ERROR;
#else
    deflate_state *ds;
    deflate_state *ss;


    if (deflateStateCheck(source) || dest == Z_NULL) {
        return Z_STREAM_ERROR;
    }

    ss = source->state;

    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));

    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
    if (ds == Z_NULL) return Z_MEM_ERROR;
    dest->state = (struct internal_state FAR *) ds;
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
    ds->strm = dest;

    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);

    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
        ds->pending_buf == Z_NULL) {
        deflateEnd (dest);
        return Z_MEM_ERROR;
    }
    /* following zmemcpy do not work for 16-bit MSDOS */
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);

    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;

    ds->l_desc.dyn_tree = ds->dyn_ltree;
    ds->d_desc.dyn_tree = ds->dyn_dtree;
    ds->bl_desc.dyn_tree = ds->bl_tree;

    return Z_OK;
#endif /* MAXSEG_64K */
}

/* ===========================================================================
 * Read a new buffer from the current input stream, update the adler32
 * and total number of bytes read.  All deflate() input goes through
 * this function so some applications may wish to modify it to avoid
 * allocating a large strm->next_in buffer and copying from it.
 * (See also flush_pending()).
 */
local unsigned read_buf(strm, buf, size)
    z_streamp strm;
    Bytef *buf;
    unsigned size;
{
    unsigned len = strm->avail_in;

    if (len > size) len = size;
    if (len == 0) return 0;

    strm->avail_in  -= len;

    zmemcpy(buf, strm->next_in, len);
    if (strm->state->wrap == 1) {
        strm->adler = adler32(strm->adler, buf, len);
    }
#ifdef GZIP
    else if (strm->state->wrap == 2) {
        strm->adler = crc32(strm->adler, buf, len);
    }
#endif
    strm->next_in  += len;
    strm->total_in += len;

    return len;
}

/* ===========================================================================
 * Initialize the "longest match" routines for a new zlib stream
 */
local void lm_init(s)
    deflate_state *s;
{
    s->window_size = (ulg)2L*s->w_size;

    CLEAR_HASH(s);

    /* Set the default configuration parameters:
     */
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
    s->good_match       = configuration_table[s->level].good_length;
    s->nice_match       = configuration_table[s->level].nice_length;
    s->max_chain_length = configuration_table[s->level].max_chain;

    s->strstart = 0;
    s->block_start = 0L;
    s->lookahead = 0;
    s->insert = 0;
    s->match_length = s->prev_length = MIN_MATCH-1;
    s->match_available = 0;
    s->ins_h = 0;
}

#ifndef FASTEST
/* ===========================================================================
 * Set match_start to the longest match starting at the given string and
 * return its length. Matches shorter or equal to prev_length are discarded,
 * in which case the result is equal to prev_length and match_start is
 * garbage.
 * IN assertions: cur_match is the head of the hash chain for the current
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 * OUT assertion: the match length is not greater than s->lookahead.
 */
local uInt longest_match(s, cur_match)
    deflate_state *s;
    IPos cur_match;                             /* current match */
{
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
    register Bytef *scan = s->window + s->strstart; /* current string */
    register Bytef *match;                      /* matched string */
    register int len;                           /* length of current match */
    int best_len = (int)s->prev_length;         /* best match length so far */
    int nice_match = s->nice_match;             /* stop if match long enough */
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
        s->strstart - (IPos)MAX_DIST(s) : NIL;
    /* Stop when cur_match becomes <= limit. To simplify the code,
     * we prevent matches with the string of window index 0.
     */
    Posf *prev = s->prev;
    uInt wmask = s->w_mask;

#ifdef UNALIGNED_OK
    /* Compare two bytes at a time. Note: this is not always beneficial.
     * Try with and without -DUNALIGNED_OK to check.
     */
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
    register ush scan_start = *(ushf*)scan;
    register ush scan_end   = *(ushf*)(scan + best_len - 1);
#else
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
    register Byte scan_end1  = scan[best_len - 1];
    register Byte scan_end   = scan[best_len];
#endif

    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
     * It is easy to get rid of this optimization if necessary.
     */
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

    /* Do not waste too much time if we already have a good match: */
    if (s->prev_length >= s->good_match) {
        chain_length >>= 2;
    }
    /* Do not look for matches beyond the end of the input. This is necessary
     * to make deflate deterministic.
     */
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;

    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
           "need lookahead");

    do {
        Assert(cur_match < s->strstart, "no future");
        match = s->window + cur_match;

        /* Skip to next match if the match length cannot increase
         * or if the match length is less than 2.  Note that the checks below
         * for insufficient lookahead only occur occasionally for performance
         * reasons.  Therefore uninitialized memory will be accessed, and
         * conditional jumps will be made that depend on those values.
         * However the length of the match is limited to the lookahead, so
         * the output of deflate is not affected by the uninitialized values.
         */
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
        /* This code assumes sizeof(unsigned short) == 2. Do not use
         * UNALIGNED_OK if your compiler uses a different size.
         */
        if (*(ushf*)(match + best_len - 1) != scan_end ||
            *(ushf*)match != scan_start) continue;

        /* It is not necessary to compare scan[2] and match[2] since they are
         * always equal when the other bytes match, given that the hash keys
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
         * lookahead only every 4th comparison; the 128th check will be made
         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
         * necessary to put more guard bytes at the end of the window, or
         * to check more often for insufficient lookahead.
         */
        Assert(scan[2] == match[2], "scan[2]?");
        scan++, match++;
        do {
        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
                 scan < strend);
        /* The funny "do {}" generates better code on most compilers */

        /* Here, scan <= window + strstart + 257 */
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
               "wild scan");
        if (*scan == *match) scan++;

        len = (MAX_MATCH - 1) - (int)(strend - scan);
        scan = strend - (MAX_MATCH-1);

#else /* UNALIGNED_OK */

        if (match[best_len]     != scan_end  ||
            match[best_len - 1] != scan_end1 ||
            *match              != *scan     ||
            *++match            != scan[1])      continue;

        /* The check at best_len - 1 can be removed because it will be made
         * again later. (This heuristic is not always a win.)
         * It is not necessary to compare scan[2] and match[2] since they
         * are always equal when the other bytes match, given that
         * the hash keys are equal and that HASH_BITS >= 8.
         */
        scan += 2, match++;
        Assert(*scan == *match, "match[2]?");

        /* We check for insufficient lookahead only every 8th comparison;
         * the 256th check will be made at strstart + 258.
         */
        do {
        } while (*++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 scan < strend);

        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
               "wild scan");

        len = MAX_MATCH - (int)(strend - scan);
        scan = strend - MAX_MATCH;

#endif /* UNALIGNED_OK */

        if (len > best_len) {
            s->match_start = cur_match;
            best_len = len;
            if (len >= nice_match) break;
#ifdef UNALIGNED_OK
            scan_end = *(ushf*)(scan + best_len - 1);
#else
            scan_end1  = scan[best_len - 1];
            scan_end   = scan[best_len];
#endif
        }
    } while ((cur_match = prev[cur_match & wmask]) > limit
             && --chain_length != 0);

    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
    return s->lookahead;
}

#else /* FASTEST */

/* ---------------------------------------------------------------------------
 * Optimized version for FASTEST only
 */
local uInt longest_match(s, cur_match)
    deflate_state *s;
    IPos cur_match;                             /* current match */
{
    register Bytef *scan = s->window + s->strstart; /* current string */
    register Bytef *match;                       /* matched string */
    register int len;                           /* length of current match */
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;

    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
     * It is easy to get rid of this optimization if necessary.
     */
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
           "need lookahead");

    Assert(cur_match < s->strstart, "no future");

    match = s->window + cur_match;

    /* Return failure if the match length is less than 2:
     */
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;

    /* The check at best_len - 1 can be removed because it will be made
     * again later. (This heuristic is not always a win.)
     * It is not necessary to compare scan[2] and match[2] since they
     * are always equal when the other bytes match, given that
     * the hash keys are equal and that HASH_BITS >= 8.
     */
    scan += 2, match += 2;
    Assert(*scan == *match, "match[2]?");

    /* We check for insufficient lookahead only every 8th comparison;
     * the 256th check will be made at strstart + 258.
     */
    do {
    } while (*++scan == *++match && *++scan == *++match &&
             *++scan == *++match && *++scan == *++match &&
             *++scan == *++match && *++scan == *++match &&
             *++scan == *++match && *++scan == *++match &&
             scan < strend);

    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");

    len = MAX_MATCH - (int)(strend - scan);

    if (len < MIN_MATCH) return MIN_MATCH - 1;

    s->match_start = cur_match;
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
}

#endif /* FASTEST */

#ifdef ZLIB_DEBUG

#define EQUAL 0
/* result of memcmp for equal strings */

/* ===========================================================================
 * Check that the match at match_start is indeed a match.
 */
local void check_match(s, start, match, length)
    deflate_state *s;
    IPos start, match;
    int length;
{
    /* check that the match is indeed a match */
    if (zmemcmp(s->window + match,
                s->window + start, length) != EQUAL) {
        fprintf(stderr, " start %u, match %u, length %d\n",
                start, match, length);
        do {
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
        } while (--length != 0);
        z_error("invalid match");
    }
    if (z_verbose > 1) {
        fprintf(stderr,"\\[%d,%d]", start - match, length);
        do { putc(s->window[start++], stderr); } while (--length != 0);
    }
}
#else
#  define check_match(s, start, match, length)
#endif /* ZLIB_DEBUG */

/* ===========================================================================
 * Fill the window when the lookahead becomes insufficient.
 * Updates strstart and lookahead.
 *
 * IN assertion: lookahead < MIN_LOOKAHEAD
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 *    At least one byte has been read, or avail_in == 0; reads are
 *    performed for at least two bytes (required for the zip translate_eol
 *    option -- not supported here).
 */
local void fill_window(s)
    deflate_state *s;
{
    unsigned n;
    unsigned more;    /* Amount of free space at the end of the window. */
    uInt wsize = s->w_size;

    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");

    do {
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);

        /* Deal with !@#$% 64K limit: */
        if (sizeof(int) <= 2) {
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
                more = wsize;

            } else if (more == (unsigned)(-1)) {
                /* Very unlikely, but possible on 16 bit machine if
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
                 */
                more--;
            }
        }

        /* If the window is almost full and there is insufficient lookahead,
         * move the upper half to the lower one to make room in the upper half.
         */
        if (s->strstart >= wsize + MAX_DIST(s)) {

            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
            s->match_start -= wsize;
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
            s->block_start -= (long) wsize;
            if (s->insert > s->strstart)
                s->insert = s->strstart;
            slide_hash(s);
            more += wsize;
        }
        if (s->strm->avail_in == 0) break;

        /* If there was no sliding:
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
         *    more == window_size - lookahead - strstart
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
         * => more >= window_size - 2*WSIZE + 2
         * In the BIG_MEM or MMAP case (not yet supported),
         *   window_size == input_size + MIN_LOOKAHEAD  &&
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
         * Otherwise, window_size == 2*WSIZE so more >= 2.
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
         */
        Assert(more >= 2, "more < 2");

        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
        s->lookahead += n;

        /* Initialize the hash value now that we have some input: */
        if (s->lookahead + s->insert >= MIN_MATCH) {
            uInt str = s->strstart - s->insert;
            s->ins_h = s->window[str];
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
#if MIN_MATCH != 3
            Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
            while (s->insert) {
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
                s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
                s->head[s->ins_h] = (Pos)str;
                str++;
                s->insert--;
                if (s->lookahead + s->insert < MIN_MATCH)
                    break;
            }
        }
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
         * but this is not important since only literal bytes will be emitted.
         */

    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);

    /* If the WIN_INIT bytes after the end of the current data have never been
     * written, then zero those bytes in order to avoid memory check reports of
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
     * the longest match routines.  Update the high water mark for the next
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
     */
    if (s->high_water < s->window_size) {
        ulg curr = s->strstart + (ulg)(s->lookahead);
        ulg init;

        if (s->high_water < curr) {
            /* Previous high water mark below current data -- zero WIN_INIT
             * bytes or up to end of window, whichever is less.
             */
            init = s->window_size - curr;
            if (init > WIN_INIT)
                init = WIN_INIT;
            zmemzero(s->window + curr, (unsigned)init);
            s->high_water = curr + init;
        }
        else if (s->high_water < (ulg)curr + WIN_INIT) {
            /* High water mark at or above current data, but below current data
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
             * to end of window, whichever is less.
             */
            init = (ulg)curr + WIN_INIT - s->high_water;
            if (init > s->window_size - s->high_water)
                init = s->window_size - s->high_water;
            zmemzero(s->window + s->high_water, (unsigned)init);
            s->high_water += init;
        }
    }

    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
           "not enough room for search");
}

/* ===========================================================================
 * Flush the current block, with given end-of-file flag.
 * IN assertion: strstart is set to the end of the current match.
 */
#define FLUSH_BLOCK_ONLY(s, last) { \
   _tr_flush_block(s, (s->block_start >= 0L ? \
                   (charf *)&s->window[(unsigned)s->block_start] : \
                   (charf *)Z_NULL), \
                (ulg)((long)s->strstart - s->block_start), \
                (last)); \
   s->block_start = s->strstart; \
   flush_pending(s->strm); \
   Tracev((stderr,"[FLUSH]")); \
}

/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, last) { \
   FLUSH_BLOCK_ONLY(s, last); \
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
}

/* Maximum stored block length in deflate format (not including header). */
#define MAX_STORED 65535

/* Minimum of a and b. */
#define MIN(a, b) ((a) > (b) ? (b) : (a))

/* ===========================================================================
 * Copy without compression as much as possible from the input stream, return
 * the current block state.
 *
 * In case deflateParams() is used to later switch to a non-zero compression
 * level, s->matches (otherwise unused when storing) keeps track of the number
 * of hash table slides to perform. If s->matches is 1, then one hash table
 * slide will be done when switching. If s->matches is 2, the maximum value
 * allowed here, then the hash table will be cleared, since two or more slides
 * is the same as a clear.
 *
 * deflate_stored() is written to minimize the number of times an input byte is
 * copied. It is most efficient with large input and output buffers, which
 * maximizes the opportunities to have a single copy from next_in to next_out.
 */
local block_state deflate_stored(s, flush)
    deflate_state *s;
    int flush;
{
    /* Smallest worthy block size when not flushing or finishing. By default
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
     * large input and output buffers, the stored block size will be larger.
     */
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);

    /* Copy as many min_block or larger stored blocks directly to next_out as
     * possible. If flushing, copy the remaining available input to next_out as
     * stored blocks, if there is enough space.
     */
    unsigned len, left, have, last = 0;
    unsigned used = s->strm->avail_in;
    do {
        /* Set len to the maximum size block that we can copy directly with the
         * available input data and output space. Set left to how much of that
         * would be copied from what's left in the window.
         */
        len = MAX_STORED;       /* maximum deflate stored block length */
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
        if (s->strm->avail_out < have)          /* need room for header */
            break;
            /* maximum stored block length that will fit in avail_out: */
        have = s->strm->avail_out - have;
        left = s->strstart - s->block_start;    /* bytes left in window */
        if (len > (ulg)left + s->strm->avail_in)
            len = left + s->strm->avail_in;     /* limit len to the input */
        if (len > have)
            len = have;                         /* limit len to the output */

        /* If the stored block would be less than min_block in length, or if
         * unable to copy all of the available input when flushing, then try
         * copying to the window and the pending buffer instead. Also don't
         * write an empty block when flushing -- deflate() does that.
         */
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
                                flush == Z_NO_FLUSH ||
                                len != left + s->strm->avail_in))
            break;

        /* Make a dummy stored block in pending to get the header bytes,
         * including any pending bits. This also updates the debugging counts.
         */
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
        _tr_stored_block(s, (char *)0, 0L, last);

        /* Replace the lengths in the dummy stored block with len. */
        s->pending_buf[s->pending - 4] = len;
        s->pending_buf[s->pending - 3] = len >> 8;
        s->pending_buf[s->pending - 2] = ~len;
        s->pending_buf[s->pending - 1] = ~len >> 8;

        /* Write the stored block header bytes. */
        flush_pending(s->strm);

#ifdef ZLIB_DEBUG
        /* Update debugging counts for the data about to be copied. */
        s->compressed_len += len << 3;
        s->bits_sent += len << 3;
#endif

        /* Copy uncompressed bytes from the window to next_out. */
        if (left) {
            if (left > len)
                left = len;
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
            s->strm->next_out += left;
            s->strm->avail_out -= left;
            s->strm->total_out += left;
            s->block_start += left;
            len -= left;
        }

        /* Copy uncompressed bytes directly from next_in to next_out, updating
         * the check value.
         */
        if (len) {
            read_buf(s->strm, s->strm->next_out, len);
            s->strm->next_out += len;
            s->strm->avail_out -= len;
            s->strm->total_out += len;
        }
    } while (last == 0);

    /* Update the sliding window with the last s->w_size bytes of the copied
     * data, or append all of the copied data to the existing window if less
     * than s->w_size bytes were copied. Also update the number of bytes to
     * insert in the hash tables, in the event that deflateParams() switches to
     * a non-zero compression level.
     */
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
    if (used) {
        /* If any input was used, then no unused input remains in the window,
         * therefore s->block_start == s->strstart.
         */
        if (used >= s->w_size) {    /* supplant the previous history */
            s->matches = 2;         /* clear hash */
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
            s->strstart = s->w_size;
            s->insert = s->strstart;
        }
        else {
            if (s->window_size - s->strstart <= used) {
                /* Slide the window down. */
                s->strstart -= s->w_size;
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
                if (s->matches < 2)
                    s->matches++;   /* add a pending slide_hash() */
                if (s->insert > s->strstart)
                    s->insert = s->strstart;
            }
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
            s->strstart += used;
            s->insert += MIN(used, s->w_size - s->insert);
        }
        s->block_start = s->strstart;
    }
    if (s->high_water < s->strstart)
        s->high_water = s->strstart;

    /* If the last block was written to next_out, then done. */
    if (last)
        return finish_done;

    /* If flushing and all input has been consumed, then done. */
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
        return block_done;

    /* Fill the window with any remaining input. */
    have = s->window_size - s->strstart;
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
        /* Slide the window down. */
        s->block_start -= s->w_size;
        s->strstart -= s->w_size;
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
        if (s->matches < 2)
            s->matches++;           /* add a pending slide_hash() */
        have += s->w_size;          /* more space now */
        if (s->insert > s->strstart)
            s->insert = s->strstart;
    }
    if (have > s->strm->avail_in)
        have = s->strm->avail_in;
    if (have) {
        read_buf(s->strm, s->window + s->strstart, have);
        s->strstart += have;
        s->insert += MIN(have, s->w_size - s->insert);
    }
    if (s->high_water < s->strstart)
        s->high_water = s->strstart;

    /* There was not enough avail_out to write a complete worthy or flushed
     * stored block to next_out. Write a stored block to pending instead, if we
     * have enough input for a worthy block, or if flushing and there is enough
     * room for the remaining input as a stored block in the pending buffer.
     */
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
        /* maximum stored block length that will fit in pending: */
    have = MIN(s->pending_buf_size - have, MAX_STORED);
    min_block = MIN(have, s->w_size);
    left = s->strstart - s->block_start;
    if (left >= min_block ||
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
         s->strm->avail_in == 0 && left <= have)) {
        len = MIN(left, have);
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
               len == left ? 1 : 0;
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
        s->block_start += len;
        flush_pending(s->strm);
    }

    /* We've done all we can with the available input and output. */
    return last ? finish_started : need_more;
}

/* ===========================================================================
 * Compress as much as possible from the input stream, return the current
 * block state.
 * This function does not perform lazy evaluation of matches and inserts
 * new strings in the dictionary only for unmatched strings or for short
 * matches. It is used only for the fast compression options.
 */
local block_state deflate_fast(s, flush)
    deflate_state *s;
    int flush;
{
    IPos hash_head;       /* head of the hash chain */
    int bflush;           /* set if current block must be flushed */

    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (s->lookahead < MIN_LOOKAHEAD) {
            fill_window(s);
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
                return need_more;
            }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* Insert the string window[strstart .. strstart + 2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        hash_head = NIL;
        if (s->lookahead >= MIN_MATCH) {
            INSERT_STRING(s, s->strstart, hash_head);
        }

        /* Find the longest match, discarding those <= prev_length.
         * At this point we have always match_length < MIN_MATCH
         */
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            s->match_length = longest_match (s, hash_head);
            /* longest_match() sets match_start */
        }
        if (s->match_length >= MIN_MATCH) {
            check_match(s, s->strstart, s->match_start, s->match_length);

            _tr_tally_dist(s, s->strstart - s->match_start,
                           s->match_length - MIN_MATCH, bflush);

            s->lookahead -= s->match_length;

            /* Insert new strings in the hash table only if the match length
             * is not too large. This saves time but degrades compression.
             */
#ifndef FASTEST
            if (s->match_length <= s->max_insert_length &&
                s->lookahead >= MIN_MATCH) {
                s->match_length--; /* string at strstart already in table */
                do {
                    s->strstart++;
                    INSERT_STRING(s, s->strstart, hash_head);
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                     * always MIN_MATCH bytes ahead.
                     */
                } while (--s->match_length != 0);
                s->strstart++;
            } else
#endif
            {
                s->strstart += s->match_length;
                s->match_length = 0;
                s->ins_h = s->window[s->strstart];
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
#if MIN_MATCH != 3
                Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                 * matter since it will be recomputed at next deflate call.
                 */
            }
        } else {
            /* No match, output a literal byte */
            Tracevv((stderr,"%c", s->window[s->strstart]));
            _tr_tally_lit(s, s->window[s->strstart], bflush);
            s->lookahead--;
            s->strstart++;
        }
        if (bflush) FLUSH_BLOCK(s, 0);
    }
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}

#ifndef FASTEST
/* ===========================================================================
 * Same as above, but achieves better compression. We use a lazy
 * evaluation for matches: a match is finally adopted only if there is
 * no better match at the next window position.
 */
local block_state deflate_slow(s, flush)
    deflate_state *s;
    int flush;
{
    IPos hash_head;          /* head of hash chain */
    int bflush;              /* set if current block must be flushed */

    /* Process the input block. */
    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (s->lookahead < MIN_LOOKAHEAD) {
            fill_window(s);
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
                return need_more;
            }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* Insert the string window[strstart .. strstart + 2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        hash_head = NIL;
        if (s->lookahead >= MIN_MATCH) {
            INSERT_STRING(s, s->strstart, hash_head);
        }

        /* Find the longest match, discarding those <= prev_length.
         */
        s->prev_length = s->match_length, s->prev_match = s->match_start;
        s->match_length = MIN_MATCH-1;

        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
            s->strstart - hash_head <= MAX_DIST(s)) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            s->match_length = longest_match (s, hash_head);
            /* longest_match() sets match_start */

            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
#if TOO_FAR <= 32767
                || (s->match_length == MIN_MATCH &&
                    s->strstart - s->match_start > TOO_FAR)
#endif
                )) {

                /* If prev_match is also MIN_MATCH, match_start is garbage
                 * but we will ignore the current match anyway.
                 */
                s->match_length = MIN_MATCH-1;
            }
        }
        /* If there was a match at the previous step and the current
         * match is not better, output the previous match:
         */
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
            /* Do not insert strings in hash table beyond this. */

            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);

            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
                           s->prev_length - MIN_MATCH, bflush);

            /* Insert in hash table all strings up to the end of the match.
             * strstart - 1 and strstart are already inserted. If there is not
             * enough lookahead, the last two strings are not inserted in
             * the hash table.
             */
            s->lookahead -= s->prev_length - 1;
            s->prev_length -= 2;
            do {
                if (++s->strstart <= max_insert) {
                    INSERT_STRING(s, s->strstart, hash_head);
                }
            } while (--s->prev_length != 0);
            s->match_available = 0;
            s->match_length = MIN_MATCH-1;
            s->strstart++;

            if (bflush) FLUSH_BLOCK(s, 0);

        } else if (s->match_available) {
            /* If there was no match at the previous position, output a
             * single literal. If there was a match but the current match
             * is longer, truncate the previous match to a single literal.
             */
            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
            if (bflush) {
                FLUSH_BLOCK_ONLY(s, 0);
            }
            s->strstart++;
            s->lookahead--;
            if (s->strm->avail_out == 0) return need_more;
        } else {
            /* There is no previous match to compare with, wait for
             * the next step to decide.
             */
            s->match_available = 1;
            s->strstart++;
            s->lookahead--;
        }
    }
    Assert (flush != Z_NO_FLUSH, "no flush?");
    if (s->match_available) {
        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
        s->match_available = 0;
    }
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}
#endif /* FASTEST */

/* ===========================================================================
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 * deflate switches away from Z_RLE.)
 */
local block_state deflate_rle(s, flush)
    deflate_state *s;
    int flush;
{
    int bflush;             /* set if current block must be flushed */
    uInt prev;              /* byte at distance one to match */
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */

    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the longest run, plus one for the unrolled loop.
         */
        if (s->lookahead <= MAX_MATCH) {
            fill_window(s);
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
                return need_more;
            }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* See how many times the previous byte repeats */
        s->match_length = 0;
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
            scan = s->window + s->strstart - 1;
            prev = *scan;
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
                strend = s->window + s->strstart + MAX_MATCH;
                do {
                } while (prev == *++scan && prev == *++scan &&
                         prev == *++scan && prev == *++scan &&
                         prev == *++scan && prev == *++scan &&
                         prev == *++scan && prev == *++scan &&
                         scan < strend);
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
                if (s->match_length > s->lookahead)
                    s->match_length = s->lookahead;
            }
            Assert(scan <= s->window + (uInt)(s->window_size - 1),
                   "wild scan");
        }

        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
        if (s->match_length >= MIN_MATCH) {
            check_match(s, s->strstart, s->strstart - 1, s->match_length);

            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);

            s->lookahead -= s->match_length;
            s->strstart += s->match_length;
            s->match_length = 0;
        } else {
            /* No match, output a literal byte */
            Tracevv((stderr,"%c", s->window[s->strstart]));
            _tr_tally_lit(s, s->window[s->strstart], bflush);
            s->lookahead--;
            s->strstart++;
        }
        if (bflush) FLUSH_BLOCK(s, 0);
    }
    s->insert = 0;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}

/* ===========================================================================
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 * (It will be regenerated if this run of deflate switches away from Huffman.)
 */
local block_state deflate_huff(s, flush)
    deflate_state *s;
    int flush;
{
    int bflush;             /* set if current block must be flushed */

    for (;;) {
        /* Make sure that we have a literal to write. */
        if (s->lookahead == 0) {
            fill_window(s);
            if (s->lookahead == 0) {
                if (flush == Z_NO_FLUSH)
                    return need_more;
                break;      /* flush the current block */
            }
        }

        /* Output a literal byte */
        s->match_length = 0;
        Tracevv((stderr,"%c", s->window[s->strstart]));
        _tr_tally_lit(s, s->window[s->strstart], bflush);
        s->lookahead--;
        s->strstart++;
        if (bflush) FLUSH_BLOCK(s, 0);
    }
    s->insert = 0;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}