summaryrefslogtreecommitdiff
path: root/plugins/AdvaImg/src/FreeImage/tmoColorConvert.cpp
blob: 66869b2806be59facc1520cc94891c607aabff4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// ==========================================================
// High Dynamic Range bitmap conversion routines
//
// Design and implementation by
// - Hervé Drolon (drolon@infonie.fr)
// - Mihail Naydenov (mnaydenov@users.sourceforge.net)
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================

#include "FreeImage.h"
#include "Utilities.h"
#include "ToneMapping.h"

// ----------------------------------------------------------
// Convert RGB to and from Yxy, same as in Reinhard et al. SIGGRAPH 2002
// References : 
// [1] Radiance Home Page [Online] http://radsite.lbl.gov/radiance/HOME.html
// [2] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda,  
//     Photographic Tone Reproduction for Digital Images, ACM Transactions on Graphics, 
//     21(3):267-276, 2002 (Proceedings of SIGGRAPH 2002). 
// [3] J. Tumblin and H.E. Rushmeier, 
//     Tone Reproduction for Realistic Images. IEEE Computer Graphics and Applications, 
//     13(6):42-48, 1993.
// ----------------------------------------------------------

/**
nominal CRT primaries 
*/
/*
static const float CIE_x_r = 0.640F;
static const float CIE_y_r = 0.330F;
static const float CIE_x_g = 0.290F;
static const float CIE_y_g = 0.600F;
static const float CIE_x_b = 0.150F;
static const float CIE_y_b = 0.060F;
static const float CIE_x_w = 0.3333F;	// use true white
static const float CIE_y_w = 0.3333F;
*/
/**
sRGB primaries
*/
static const float CIE_x_r = 0.640F;
static const float CIE_y_r = 0.330F;
static const float CIE_x_g = 0.300F;
static const float CIE_y_g = 0.600F;
static const float CIE_x_b = 0.150F;
static const float CIE_y_b = 0.060F;
static const float CIE_x_w = 0.3127F;	// Illuminant D65
static const float CIE_y_w = 0.3290F;

static const float CIE_D = ( CIE_x_r*(CIE_y_g - CIE_y_b) + CIE_x_g*(CIE_y_b - CIE_y_r) + CIE_x_b*(CIE_y_r - CIE_y_g) );
static const float CIE_C_rD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_g - CIE_y_b) - CIE_y_w*(CIE_x_g - CIE_x_b) + CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g) );
static const float CIE_C_gD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_b - CIE_y_r) - CIE_y_w*(CIE_x_b - CIE_x_r) - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r) );
static const float CIE_C_bD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_r - CIE_y_g) - CIE_y_w*(CIE_x_r - CIE_x_g) + CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r) );

/**
RGB to XYZ (no white balance)
*/
static const float  RGB2XYZ[3][3] = {
	{ CIE_x_r*CIE_C_rD / CIE_D, 
	  CIE_x_g*CIE_C_gD / CIE_D, 
	  CIE_x_b*CIE_C_bD / CIE_D 
	},
	{ CIE_y_r*CIE_C_rD / CIE_D, 
	  CIE_y_g*CIE_C_gD / CIE_D, 
	  CIE_y_b*CIE_C_bD / CIE_D 
	},
	{ (1 - CIE_x_r-CIE_y_r)*CIE_C_rD / CIE_D,
	  (1 - CIE_x_g-CIE_y_g)*CIE_C_gD / CIE_D,
	  (1 - CIE_x_b-CIE_y_b)*CIE_C_bD / CIE_D
	}
};

/**
XYZ to RGB (no white balance)
*/
static const float  XYZ2RGB[3][3] = {
	{(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g) / CIE_C_rD,
	 (CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b) / CIE_C_rD,
	 (CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g) / CIE_C_rD
	},
	{(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b) / CIE_C_gD,
	 (CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r) / CIE_C_gD,
	 (CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b) / CIE_C_gD
	},
	{(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r) / CIE_C_bD,
	 (CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g) / CIE_C_bD,
	 (CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r) / CIE_C_bD
	}
};

/**
This gives approximately the following matrices : 

static const float RGB2XYZ[3][3] = { 
	{ 0.41239083F, 0.35758433F, 0.18048081F },
	{ 0.21263903F, 0.71516865F, 0.072192319F },
	{ 0.019330820F, 0.11919473F, 0.95053220F }
};
static const float XYZ2RGB[3][3] = { 
	{ 3.2409699F, -1.5373832F, -0.49861079F },
	{ -0.96924376F, 1.8759676F, 0.041555084F },
	{ 0.055630036F, -0.20397687F, 1.0569715F }
};
*/

// ----------------------------------------------------------

static const float EPSILON = 1e-06F;
static const float INF = 1e+10F;

/**
Convert in-place floating point RGB data to Yxy.<br>
On output, pixel->red == Y, pixel->green == x, pixel->blue == y
@param dib Input RGBF / Output Yxy image
@return Returns TRUE if successful, returns FALSE otherwise
*/
BOOL 
ConvertInPlaceRGBFToYxy(FIBITMAP *dib) {
	float result[3];

	if(FreeImage_GetImageType(dib) != FIT_RGBF)
		return FALSE;

	const unsigned width  = FreeImage_GetWidth(dib);
	const unsigned height = FreeImage_GetHeight(dib);
	const unsigned pitch  = FreeImage_GetPitch(dib);
	
	BYTE *bits = (BYTE*)FreeImage_GetBits(dib);
	for(unsigned y = 0; y < height; y++) {
		FIRGBF *pixel = (FIRGBF*)bits;
		for(unsigned x = 0; x < width; x++) {
			result[0] = result[1] = result[2] = 0;
			for (int i = 0; i < 3; i++) {
				result[i] += RGB2XYZ[i][0] * pixel[x].red;
				result[i] += RGB2XYZ[i][1] * pixel[x].green;
				result[i] += RGB2XYZ[i][2] * pixel[x].blue;
			}
			const float W = result[0] + result[1] + result[2];
			const float Y = result[1];
			if(W > 0) { 
				pixel[x].red   = Y;			    // Y 
				pixel[x].green = result[0] / W;	// x 
				pixel[x].blue  = result[1] / W;	// y 	
			} else {
				pixel[x].red = pixel[x].green = pixel[x].blue = 0;
			}
		}
		// next line
		bits += pitch;
	}

	return TRUE;
}

/**
Convert in-place Yxy image to floating point RGB data.<br>
On input, pixel->red == Y, pixel->green == x, pixel->blue == y
@param dib Input Yxy / Output RGBF image
@return Returns TRUE if successful, returns FALSE otherwise
*/
BOOL 
ConvertInPlaceYxyToRGBF(FIBITMAP *dib) {
	float result[3];
	float X, Y, Z;

	if(FreeImage_GetImageType(dib) != FIT_RGBF)
		return FALSE;

	const unsigned width  = FreeImage_GetWidth(dib);
	const unsigned height = FreeImage_GetHeight(dib);
	const unsigned pitch  = FreeImage_GetPitch(dib);

	BYTE *bits = (BYTE*)FreeImage_GetBits(dib);
	for(unsigned y = 0; y < height; y++) {
		FIRGBF *pixel = (FIRGBF*)bits;
		for(unsigned x = 0; x < width; x++) {
			Y = pixel[x].red;	        // Y 
			result[1] = pixel[x].green;	// x 
			result[2] = pixel[x].blue;	// y 
			if ((Y > EPSILON) && (result[1] > EPSILON) && (result[2] > EPSILON)) {
				X = (result[1] * Y) / result[2];
				Z = (X / result[1]) - X - Y;
			} else {
				X = Z = EPSILON;
			}
			pixel[x].red   = X;
			pixel[x].green = Y;
			pixel[x].blue  = Z;
			result[0] = result[1] = result[2] = 0;
			for (int i = 0; i < 3; i++) {
				result[i] += XYZ2RGB[i][0] * pixel[x].red;
				result[i] += XYZ2RGB[i][1] * pixel[x].green;
				result[i] += XYZ2RGB[i][2] * pixel[x].blue;
			}
			pixel[x].red   = result[0];	// R
			pixel[x].green = result[1];	// G
			pixel[x].blue  = result[2];	// B
		}
		// next line
		bits += pitch;
	}

	return TRUE;
}

/**
Get the maximum, minimum and average luminance.<br>
On input, pixel->red == Y, pixel->green == x, pixel->blue == y
@param Yxy Source Yxy image to analyze
@param maxLum Maximum luminance
@param minLum Minimum luminance
@param worldLum Average luminance (world adaptation luminance)
@return Returns TRUE if successful, returns FALSE otherwise
*/
BOOL 
LuminanceFromYxy(FIBITMAP *Yxy, float *maxLum, float *minLum, float *worldLum) {
	if(FreeImage_GetImageType(Yxy) != FIT_RGBF)
		return FALSE;

	const unsigned width  = FreeImage_GetWidth(Yxy);
	const unsigned height = FreeImage_GetHeight(Yxy);
	const unsigned pitch  = FreeImage_GetPitch(Yxy);

	float max_lum = 0, min_lum = 0;
	double sum = 0;

	BYTE *bits = (BYTE*)FreeImage_GetBits(Yxy);
	for(unsigned y = 0; y < height; y++) {
		const FIRGBF *pixel = (FIRGBF*)bits;
		for(unsigned x = 0; x < width; x++) {
			const float Y = pixel[x].red;
			max_lum = (max_lum < Y) ? Y : max_lum;	// max Luminance in the scene
			min_lum = (min_lum < Y) ? min_lum : Y;	// min Luminance in the scene
			sum += log(2.3e-5F + Y);				// contrast constant in Tumblin paper
		}
		// next line
		bits += pitch;
	}
	// maximum luminance
	*maxLum = max_lum;
	// minimum luminance
	*minLum = min_lum;
	// average log luminance
	double avgLogLum = (sum / (width * height));
	// world adaptation luminance
	*worldLum = (float)exp(avgLogLum);

	return TRUE;
}

/**
Clamp RGBF image highest values to display white, 
then convert to 24-bit RGB
*/
FIBITMAP* 
ClampConvertRGBFTo24(FIBITMAP *src) {
	if(FreeImage_GetImageType(src) != FIT_RGBF)
		return FALSE;

	const unsigned width  = FreeImage_GetWidth(src);
	const unsigned height = FreeImage_GetHeight(src);

	FIBITMAP *dst = FreeImage_Allocate(width, height, 24, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK);
	if(!dst) return NULL;

	const unsigned src_pitch  = FreeImage_GetPitch(src);
	const unsigned dst_pitch  = FreeImage_GetPitch(dst);

	BYTE *src_bits = (BYTE*)FreeImage_GetBits(src);
	BYTE *dst_bits = (BYTE*)FreeImage_GetBits(dst);

	for(unsigned y = 0; y < height; y++) {
		const FIRGBF *src_pixel = (FIRGBF*)src_bits;
		BYTE *dst_pixel = (BYTE*)dst_bits;
		for(unsigned x = 0; x < width; x++) {
			const float red   = (src_pixel[x].red > 1)   ? 1 : src_pixel[x].red;
			const float green = (src_pixel[x].green > 1) ? 1 : src_pixel[x].green;
			const float blue  = (src_pixel[x].blue > 1)  ? 1 : src_pixel[x].blue;
			
			dst_pixel[FI_RGBA_RED]   = (BYTE)(255.0F * red   + 0.5F);
			dst_pixel[FI_RGBA_GREEN] = (BYTE)(255.0F * green + 0.5F);
			dst_pixel[FI_RGBA_BLUE]  = (BYTE)(255.0F * blue  + 0.5F);
			dst_pixel += 3;
		}
		src_bits += src_pitch;
		dst_bits += dst_pitch;
	}

	return dst;
}

/**
Extract the luminance channel L from a RGBF image. 
Luminance is calculated from the sRGB model (RGB2XYZ matrix) 
using a D65 white point : 
L = ( 0.2126 * r ) + ( 0.7152 * g ) + ( 0.0722 * b )
Reference : 
A Standard Default Color Space for the Internet - sRGB. 
[online] http://www.w3.org/Graphics/Color/sRGB
*/
FIBITMAP*  
ConvertRGBFToY(FIBITMAP *src) {
	if(FreeImage_GetImageType(src) != FIT_RGBF)
		return FALSE;

	const unsigned width  = FreeImage_GetWidth(src);
	const unsigned height = FreeImage_GetHeight(src);

	FIBITMAP *dst = FreeImage_AllocateT(FIT_FLOAT, width, height);
	if(!dst) return NULL;

	const unsigned src_pitch  = FreeImage_GetPitch(src);
	const unsigned dst_pitch  = FreeImage_GetPitch(dst);

	
	BYTE *src_bits = (BYTE*)FreeImage_GetBits(src);
	BYTE *dst_bits = (BYTE*)FreeImage_GetBits(dst);

	for(unsigned y = 0; y < height; y++) {
		const FIRGBF *src_pixel = (FIRGBF*)src_bits;
		float  *dst_pixel = (float*)dst_bits;
		for(unsigned x = 0; x < width; x++) {
			const float L = LUMA_REC709(src_pixel[x].red, src_pixel[x].green, src_pixel[x].blue);
			dst_pixel[x] = (L > 0) ? L : 0;
		}
		// next line
		src_bits += src_pitch;
		dst_bits += dst_pitch;
	}

	return dst;
}

/**
Get the maximum, minimum, average luminance and log average luminance from a Y image
@param dib Source Y image to analyze
@param maxLum Maximum luminance
@param minLum Minimum luminance
@param Lav Average luminance
@param Llav Log average luminance (also known as 'world adaptation luminance')
@return Returns TRUE if successful, returns FALSE otherwise
@see ConvertRGBFToY, FreeImage_TmoReinhard05Ex
*/
BOOL 
LuminanceFromY(FIBITMAP *dib, float *maxLum, float *minLum, float *Lav, float *Llav) {
	if(FreeImage_GetImageType(dib) != FIT_FLOAT)
		return FALSE;

	unsigned width  = FreeImage_GetWidth(dib);
	unsigned height = FreeImage_GetHeight(dib);
	unsigned pitch  = FreeImage_GetPitch(dib);

	float max_lum = -1e20F, min_lum = 1e20F;
	double sumLum = 0, sumLogLum = 0;

	BYTE *bits = (BYTE*)FreeImage_GetBits(dib);
	for(unsigned y = 0; y < height; y++) {
		const float *pixel = (float*)bits;
		for(unsigned x = 0; x < width; x++) {
			const float Y = pixel[x];
			max_lum = (max_lum < Y) ? Y : max_lum;				// max Luminance in the scene
			min_lum = ((Y > 0) && (min_lum < Y)) ? min_lum : Y;	// min Luminance in the scene
			sumLum += Y;										// average luminance
			sumLogLum += log(2.3e-5F + Y);						// contrast constant in Tumblin paper
		}
		// next line
		bits += pitch;
	}

	// maximum luminance
	*maxLum = max_lum;
	// minimum luminance
	*minLum = min_lum;
	// average luminance
	*Lav = (float)(sumLum / (width * height));
	// average log luminance, a.k.a. world adaptation luminance
	*Llav = (float)exp(sumLogLum / (width * height));

	return TRUE;
}
// --------------------------------------------------------------------------

static void findMaxMinPercentile(FIBITMAP *Y, float minPrct, float *minLum, float maxPrct, float *maxLum) {
	int x, y;
	int width = FreeImage_GetWidth(Y);
	int height = FreeImage_GetHeight(Y);
	int pitch = FreeImage_GetPitch(Y);

	std::vector<float> vY(width * height);

	BYTE *bits = (BYTE*)FreeImage_GetBits(Y);
	for(y = 0; y < height; y++) {
		float *pixel = (float*)bits;
		for(x = 0; x < width; x++) {
			if(pixel[x] != 0) {
				vY.push_back(pixel[x]);
			}
		}
		bits += pitch;
	}

	std::sort(vY.begin(), vY.end());
	
	*minLum = vY.at( int(minPrct * vY.size()) );
	*maxLum = vY.at( int(maxPrct * vY.size()) );
}

/**
Clipping function<br>
Remove any extremely bright and/or extremely dark pixels 
and normalize between 0 and 1. 
@param Y Input/Output image
@param minPrct Minimum percentile
@param maxPrct Maximum percentile
*/
void 
NormalizeY(FIBITMAP *Y, float minPrct, float maxPrct) {
	int x, y;
	float maxLum, minLum;

	if(minPrct > maxPrct) {
		// swap values
		float t = minPrct; minPrct = maxPrct; maxPrct = t;
	}
	if(minPrct < 0) minPrct = 0;
	if(maxPrct > 1) maxPrct = 1;

	int width = FreeImage_GetWidth(Y);
	int height = FreeImage_GetHeight(Y);
	int pitch = FreeImage_GetPitch(Y);

	// find max & min luminance values
	if((minPrct > 0) || (maxPrct < 1)) {
		maxLum = 0, minLum = 0;
		findMaxMinPercentile(Y, minPrct, &minLum, maxPrct, &maxLum);
	} else {
		maxLum = -1e20F, minLum = 1e20F;
		BYTE *bits = (BYTE*)FreeImage_GetBits(Y);
		for(y = 0; y < height; y++) {
			const float *pixel = (float*)bits;
			for(x = 0; x < width; x++) {
				const float value = pixel[x];
				maxLum = (maxLum < value) ? value : maxLum;	// max Luminance in the scene
				minLum = (minLum < value) ? minLum : value;	// min Luminance in the scene
			}
			// next line
			bits += pitch;
		}
	}
	if(maxLum == minLum) return;

	// normalize to range 0..1 
	const float divider = maxLum - minLum;
	BYTE *bits = (BYTE*)FreeImage_GetBits(Y);
	for(y = 0; y < height; y++) {
		float *pixel = (float*)bits;
		for(x = 0; x < width; x++) {
			pixel[x] = (pixel[x] - minLum) / divider;
			if(pixel[x] <= 0) pixel[x] = EPSILON;
			if(pixel[x] > 1) pixel[x] = 1;
		}
		// next line
		bits += pitch;
	}
}