summaryrefslogtreecommitdiff
path: root/plugins/MirOTR/Libgcrypt/mpi/power/mpih-mul2.S
blob: d056e8f3c22b251f8480f2ca5c828286cae5c011 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/* IBM POWER addmul_1 -- Multiply a limb vector with a limb and add
 *			 the result to a second limb vector.
 *
 *      Copyright (C) 1992, 1994, 1999, 2002 Free Software Foundation, Inc.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

#include "sysdep.h"
#include "asm-syntax.h"



/*
# INPUT PARAMETERS
# res_ptr	r3
# s1_ptr	r4
# size		r5
# s2_limb	r6

# The RS/6000 has no unsigned 32x32->64 bit multiplication instruction.  To
# obtain that operation, we have to use the 32x32->64 signed multiplication
# instruction, and add the appropriate compensation to the high limb of the
# result.  We add the multiplicand if the multiplier has its most significant
# bit set, and we add the multiplier if the multiplicand has its most
# significant bit set.	We need to preserve the carry flag between each
# iteration, so we have to compute the compensation carefully (the natural,
# srai+and doesn't work).  Since the POWER architecture has a branch unit
# we can branch in zero cycles, so that's how we perform the additions.
 */

	.toc
	.csect ._gcry_mpih_addmul_1[PR]
	.align 2
	.globl _gcry_mpih_addmul_1
	.globl ._gcry_mpih_addmul_1
	.csect _gcry_mpih_addmul_1[DS]
_gcry_mpih_addmul_1:
	.long ._gcry_mpih_addmul_1[PR], TOC[tc0], 0
	.csect ._gcry_mpih_addmul_1[PR]
._gcry_mpih_addmul_1:

	cal	3,-4(3)
	l	0,0(4)
	cmpi	0,6,0
	mtctr	5
	mul	9,0,6
	srai	7,0,31
	and	7,7,6
	mfmq	8
	cax	9,9,7
	l	7,4(3)
	a	8,8,7		# add res_limb
	blt	Lneg
Lpos:	bdz	Lend

Lploop: lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	10,0,6
	mfmq	0
	ae	8,0,9		# low limb + old_cy_limb + old cy
	l	7,4(3)
	aze	10,10		# propagate cy to new cy_limb
	a	8,8,7		# add res_limb
	bge	Lp0
	cax	10,10,6 	# adjust high limb for negative limb from s1
Lp0:	bdz	Lend0
	lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	9,0,6
	mfmq	0
	ae	8,0,10
	l	7,4(3)
	aze	9,9
	a	8,8,7
	bge	Lp1
	cax	9,9,6		# adjust high limb for negative limb from s1
Lp1:	bdn	Lploop

	b	Lend

Lneg:	cax	9,9,0
	bdz	Lend
Lnloop: lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	10,0,6
	mfmq	7
	ae	8,7,9
	l	7,4(3)
	ae	10,10,0 	# propagate cy to new cy_limb
	a	8,8,7		# add res_limb
	bge	Ln0
	cax	10,10,6 	# adjust high limb for negative limb from s1
Ln0:	bdz	Lend0
	lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	9,0,6
	mfmq	7
	ae	8,7,10
	l	7,4(3)
	ae	9,9,0		# propagate cy to new cy_limb
	a	8,8,7		# add res_limb
	bge	Ln1
	cax	9,9,6		# adjust high limb for negative limb from s1
Ln1:	bdn	Lnloop
	b	Lend

Lend0:	cal	9,0(10)
Lend:	st	8,4(3)
	aze	3,9
	br