1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
/*
Jabber Protocol Plugin for Miranda IM
XEP-0138 (Stream Compression) implementation
Copyright (C) 2005-12 George Hazan
Copyright (C) 2007 Kostya Chukavin, Taras Zackrepa
Copyright (C) 2012-13 Miranda NG project
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "jabber.h"
BOOL ThreadData::zlibInit(void)
{
proto->debugLogA("Zlib init...");
zStreamIn.zalloc = Z_NULL;
zStreamIn.zfree = Z_NULL;
zStreamIn.opaque = Z_NULL;
zStreamIn.next_in = Z_NULL;
zStreamIn.avail_in = 0;
zStreamOut.zalloc = Z_NULL;
zStreamOut.zfree = Z_NULL;
zStreamOut.opaque = Z_NULL;
if (deflateInit(&zStreamOut, Z_BEST_COMPRESSION) != Z_OK) return FALSE;
if (inflateInit(&zStreamIn) != Z_OK) return FALSE;
zRecvReady = true;
return TRUE;
}
void ThreadData::zlibUninit(void)
{
deflateEnd(&zStreamOut);
inflateEnd(&zStreamIn);
}
int ThreadData::zlibSend(char* data, int datalen)
{
char send_data[ ZLIB_CHUNK_SIZE ];
int bytesOut = 0;
zStreamOut.avail_in = datalen;
zStreamOut.next_in = (unsigned char*)data;
do {
zStreamOut.avail_out = ZLIB_CHUNK_SIZE;
zStreamOut.next_out = (unsigned char*)send_data;
switch (deflate(&zStreamOut, Z_SYNC_FLUSH)) {
case Z_OK: proto->debugLogA("Deflate: Z_OK"); break;
case Z_BUF_ERROR: proto->debugLogA("Deflate: Z_BUF_ERROR"); break;
case Z_DATA_ERROR: proto->debugLogA("Deflate: Z_DATA_ERROR"); break;
case Z_MEM_ERROR: proto->debugLogA("Deflate: Z_MEM_ERROR"); break;
}
int len, send_datalen = ZLIB_CHUNK_SIZE - zStreamOut.avail_out;
if ((len = sendws(send_data, send_datalen, MSG_NODUMP)) == SOCKET_ERROR || len != send_datalen) {
proto->debugLogA("Netlib_Send() failed, error=%d", WSAGetLastError());
return FALSE;
}
bytesOut += len;
}
while (zStreamOut.avail_out == 0);
if (db_get_b(NULL, "Netlib", "DumpSent", TRUE) == TRUE)
proto->debugLogA("(ZLIB) Data sent\n%s\n===OUT: %d(%d) bytes", data, datalen, bytesOut);
return TRUE;
}
int ThreadData::zlibRecv(char* data, long datalen)
{
if (zRecvReady) {
retry:
zRecvDatalen = recvws(zRecvData, ZLIB_CHUNK_SIZE, MSG_NODUMP);
if (zRecvDatalen == SOCKET_ERROR) {
proto->debugLogA("Netlib_Recv() failed, error=%d", WSAGetLastError());
return SOCKET_ERROR;
}
if (zRecvDatalen == 0)
return 0;
zStreamIn.avail_in = zRecvDatalen;
zStreamIn.next_in = (Bytef*)zRecvData;
}
zStreamIn.avail_out = datalen;
zStreamIn.next_out = (BYTE*)data;
switch (inflate(&zStreamIn, Z_NO_FLUSH)) {
case Z_OK: proto->debugLogA("Inflate: Z_OK"); break;
case Z_BUF_ERROR: proto->debugLogA("Inflate: Z_BUF_ERROR"); break;
case Z_DATA_ERROR: proto->debugLogA("Inflate: Z_DATA_ERROR"); break;
case Z_MEM_ERROR: proto->debugLogA("Inflate: Z_MEM_ERROR"); break;
}
int len = datalen - zStreamIn.avail_out;
if (db_get_b(NULL, "Netlib", "DumpRecv", TRUE) == TRUE) {
char* szLogBuffer = (char*)alloca(len+32);
memcpy(szLogBuffer, data, len);
szLogBuffer[ len ]='\0';
proto->debugLogA("(ZLIB) Data received\n%s\n===IN: %d(%d) bytes", szLogBuffer, len, zRecvDatalen);
}
if (len == 0)
goto retry;
zRecvReady = (zStreamIn.avail_out != 0);
return len;
}
|