summaryrefslogtreecommitdiff
path: root/protocols/Sametime/src/glib/gmem.c
blob: 7212ae49db5013d1250738f62d66a3477a4248a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/*
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
 * file for a list of people on the GLib Team.  See the ChangeLog
 * files for a list of changes.  These files are distributed with
 * GLib at ftp://ftp.gtk.org/pub/gtk/. 
 */

/* 
 * MT safe
 */

#include "config.h"

#include "gmem.h"

#include <stdlib.h>
#include <string.h>
#include <signal.h>

#include "gbacktrace.h"
#include "gtestutils.h"
#include "gthread.h"
#include "glib_trace.h"


#define MEM_PROFILE_TABLE_SIZE 4096


/* notes on macros:
 * having G_DISABLE_CHECKS defined disables use of glib_mem_profiler_table and
 * g_mem_profile().
 * REALLOC_0_WORKS is defined if g_realloc (NULL, x) works.
 * SANE_MALLOC_PROTOS is defined if the systems malloc() and friends functions
 * match the corresponding GLib prototypes, keep configure.ac and gmem.h in sync here.
 * g_mem_gc_friendly is TRUE, freed memory should be 0-wiped.
 */

/* --- prototypes --- */
static gboolean g_mem_initialized = FALSE;
static void     g_mem_init_nomessage (void);


/* --- malloc wrappers --- */
#ifndef	REALLOC_0_WORKS
static gpointer
standard_realloc (gpointer mem,
		  gsize    n_bytes)
{
  if (!mem)
    return malloc (n_bytes);
  else
    return realloc (mem, n_bytes);
}
#endif	/* !REALLOC_0_WORKS */

#ifdef SANE_MALLOC_PROTOS
#  define standard_malloc	malloc
#  ifdef REALLOC_0_WORKS
#    define standard_realloc	realloc
#  endif /* REALLOC_0_WORKS */
#  define standard_free		free
#  define standard_calloc	calloc
#  define standard_try_malloc	malloc
#  define standard_try_realloc	realloc
#else	/* !SANE_MALLOC_PROTOS */
static gpointer
standard_malloc (gsize n_bytes)
{
  return malloc (n_bytes);
}
#  ifdef REALLOC_0_WORKS
static gpointer
standard_realloc (gpointer mem,
		  gsize    n_bytes)
{
  return realloc (mem, n_bytes);
}
#  endif /* REALLOC_0_WORKS */
static void
standard_free (gpointer mem)
{
  free (mem);
}
static gpointer
standard_calloc (gsize n_blocks,
		 gsize n_bytes)
{
  return calloc (n_blocks, n_bytes);
}
#define	standard_try_malloc	standard_malloc
#define	standard_try_realloc	standard_realloc
#endif	/* !SANE_MALLOC_PROTOS */


/* --- variables --- */
static GMemVTable glib_mem_vtable = {
  standard_malloc,
  standard_realloc,
  standard_free,
  standard_calloc,
  standard_try_malloc,
  standard_try_realloc,
};

/**
 * SECTION:memory
 * @Short_Description: general memory-handling
 * @Title: Memory Allocation
 * 
 * These functions provide support for allocating and freeing memory.
 * 
 * <note>
 * If any call to allocate memory fails, the application is terminated.
 * This also means that there is no need to check if the call succeeded.
 * </note>
 * 
 * <note>
 * It's important to match g_malloc() with g_free(), plain malloc() with free(),
 * and (if you're using C++) new with delete and new[] with delete[]. Otherwise
 * bad things can happen, since these allocators may use different memory
 * pools (and new/delete call constructors and destructors). See also
 * g_mem_set_vtable().
 * </note>
 */

/* --- functions --- */
/**
 * g_malloc:
 * @n_bytes: the number of bytes to allocate
 * 
 * Allocates @n_bytes bytes of memory.
 * If @n_bytes is 0 it returns %NULL.
 * 
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc (gsize n_bytes)
{
  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    {
      gpointer mem;

      mem = glib_mem_vtable.malloc (n_bytes);
      TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 0));
      if (mem)
	return mem;

      g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_bytes);
    }

  TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 0, 0));

  return NULL;
}

/**
 * g_malloc0:
 * @n_bytes: the number of bytes to allocate
 * 
 * Allocates @n_bytes bytes of memory, initialized to 0's.
 * If @n_bytes is 0 it returns %NULL.
 * 
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc0 (gsize n_bytes)
{
  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    {
      gpointer mem;

      mem = glib_mem_vtable.calloc (1, n_bytes);
      TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 1, 0));
      if (mem)
	return mem;

      g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_bytes);
    }

  TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 1, 0));

  return NULL;
}

/**
 * g_realloc:
 * @mem: the memory to reallocate
 * @n_bytes: new size of the memory in bytes
 * 
 * Reallocates the memory pointed to by @mem, so that it now has space for
 * @n_bytes bytes of memory. It returns the new address of the memory, which may
 * have been moved. @mem may be %NULL, in which case it's considered to
 * have zero-length. @n_bytes may be 0, in which case %NULL will be returned
 * and @mem will be freed unless it is %NULL.
 * 
 * Returns: the new address of the allocated memory
 */
gpointer
g_realloc (gpointer mem,
	   gsize    n_bytes)
{
  gpointer newmem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    {
      newmem = glib_mem_vtable.realloc (mem, n_bytes);
      TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 0));
      if (newmem)
	return newmem;

      g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_bytes);
    }

  if (mem)
    glib_mem_vtable.free (mem);

  TRACE (GLIB_MEM_REALLOC((void*) NULL, (void*)mem, 0, 0));

  return NULL;
}

/**
 * g_free:
 * @mem: the memory to free
 * 
 * Frees the memory pointed to by @mem.
 * If @mem is %NULL it simply returns.
 */
void
g_free (gpointer mem)
{
  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (mem))
    glib_mem_vtable.free (mem);
  TRACE(GLIB_MEM_FREE((void*) mem));
}

/**
 * g_try_malloc:
 * @n_bytes: number of bytes to allocate.
 * 
 * Attempts to allocate @n_bytes, and returns %NULL on failure.
 * Contrast with g_malloc(), which aborts the program on failure.
 * 
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_malloc (gsize n_bytes)
{
  gpointer mem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    mem = glib_mem_vtable.try_malloc (n_bytes);
  else
    mem = NULL;

  TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 1));

  return mem;
}

/**
 * g_try_malloc0:
 * @n_bytes: number of bytes to allocate
 * 
 * Attempts to allocate @n_bytes, initialized to 0's, and returns %NULL on
 * failure. Contrast with g_malloc0(), which aborts the program on failure.
 * 
 * Since: 2.8
 * Returns: the allocated memory, or %NULL
 */
gpointer
g_try_malloc0 (gsize n_bytes)
{
  gpointer mem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    mem = glib_mem_vtable.try_malloc (n_bytes);
  else
    mem = NULL;

  if (mem)
    memset (mem, 0, n_bytes);

  return mem;
}

/**
 * g_try_realloc:
 * @mem: previously-allocated memory, or %NULL.
 * @n_bytes: number of bytes to allocate.
 * 
 * Attempts to realloc @mem to a new size, @n_bytes, and returns %NULL
 * on failure. Contrast with g_realloc(), which aborts the program
 * on failure. If @mem is %NULL, behaves the same as g_try_malloc().
 * 
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_realloc (gpointer mem,
	       gsize    n_bytes)
{
  gpointer newmem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    newmem = glib_mem_vtable.try_realloc (mem, n_bytes);
  else
    {
      newmem = NULL;
      if (mem)
	glib_mem_vtable.free (mem);
    }

  TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 1));

  return newmem;
}


#define SIZE_OVERFLOWS(a,b) (G_UNLIKELY ((b) > 0 && (a) > G_MAXSIZE / (b)))

/**
 * g_malloc_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_malloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc_n (gsize n_blocks,
	    gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    {
      if (G_UNLIKELY (!g_mem_initialized))
	g_mem_init_nomessage();

      g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_blocks, n_block_bytes);
    }

  return g_malloc (n_blocks * n_block_bytes);
}

/**
 * g_malloc0_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc0_n (gsize n_blocks,
	     gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    {
      if (G_UNLIKELY (!g_mem_initialized))
	g_mem_init_nomessage();

      g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_blocks, n_block_bytes);
    }

  return g_malloc0 (n_blocks * n_block_bytes);
}

/**
 * g_realloc_n:
 * @mem: the memory to reallocate
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_realloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the new address of the allocated memory
 */
gpointer
g_realloc_n (gpointer mem,
	     gsize    n_blocks,
	     gsize    n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    {
      if (G_UNLIKELY (!g_mem_initialized))
	g_mem_init_nomessage();

      g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_blocks, n_block_bytes);
    }

  return g_realloc (mem, n_blocks * n_block_bytes);
}

/**
 * g_try_malloc_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_try_malloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_malloc_n (gsize n_blocks,
		gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    return NULL;

  return g_try_malloc (n_blocks * n_block_bytes);
}

/**
 * g_try_malloc0_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_try_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the allocated memory, or %NULL
 */
gpointer
g_try_malloc0_n (gsize n_blocks,
		 gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    return NULL;

  return g_try_malloc0 (n_blocks * n_block_bytes);
}

/**
 * g_try_realloc_n:
 * @mem: previously-allocated memory, or %NULL.
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_try_realloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_realloc_n (gpointer mem,
		 gsize    n_blocks,
		 gsize    n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    return NULL;

  return g_try_realloc (mem, n_blocks * n_block_bytes);
}



static gpointer
fallback_calloc (gsize n_blocks,
		 gsize n_block_bytes)
{
  gsize l = n_blocks * n_block_bytes;
  gpointer mem = glib_mem_vtable.malloc (l);

  if (mem)
    memset (mem, 0, l);

  return mem;
}

static gboolean vtable_set = FALSE;

/**
 * g_mem_is_system_malloc
 * 
 * Checks whether the allocator used by g_malloc() is the system's
 * malloc implementation. If it returns %TRUE memory allocated with
 * malloc() can be used interchangeable with memory allocated using g_malloc().
 * This function is useful for avoiding an extra copy of allocated memory returned
 * by a non-GLib-based API.
 *
 * A different allocator can be set using g_mem_set_vtable().
 *
 * Return value: if %TRUE, malloc() and g_malloc() can be mixed.
 **/
gboolean
g_mem_is_system_malloc (void)
{
  return !vtable_set;
}

/**
 * g_mem_set_vtable:
 * @vtable: table of memory allocation routines.
 * 
 * Sets the #GMemVTable to use for memory allocation. You can use this to provide
 * custom memory allocation routines. <emphasis>This function must be called
 * before using any other GLib functions.</emphasis> The @vtable only needs to
 * provide malloc(), realloc(), and free() functions; GLib can provide default
 * implementations of the others. The malloc() and realloc() implementations
 * should return %NULL on failure, GLib will handle error-checking for you.
 * @vtable is copied, so need not persist after this function has been called.
 */
void
g_mem_set_vtable (GMemVTable *vtable)
{
  if (!vtable_set)
    {
      if (vtable->malloc && vtable->realloc && vtable->free)
	{
	  glib_mem_vtable.malloc = vtable->malloc;
	  glib_mem_vtable.realloc = vtable->realloc;
	  glib_mem_vtable.free = vtable->free;
	  glib_mem_vtable.calloc = vtable->calloc ? vtable->calloc : fallback_calloc;
	  glib_mem_vtable.try_malloc = vtable->try_malloc ? vtable->try_malloc : glib_mem_vtable.malloc;
	  glib_mem_vtable.try_realloc = vtable->try_realloc ? vtable->try_realloc : glib_mem_vtable.realloc;
	  vtable_set = TRUE;
	}
      else
	g_warning (G_STRLOC ": memory allocation vtable lacks one of malloc(), realloc() or free()");
    }
  else
    g_warning (G_STRLOC ": memory allocation vtable can only be set once at startup");
}


/* --- memory profiling and checking --- */
#ifdef	G_DISABLE_CHECKS
/**
 * glib_mem_profiler_table:
 * 
 * A #GMemVTable containing profiling variants of the memory
 * allocation functions. Use them together with g_mem_profile()
 * in order to get information about the memory allocation pattern
 * of your program.
 */
GMemVTable *glib_mem_profiler_table = &glib_mem_vtable;
void
g_mem_profile (void)
{
}
#else	/* !G_DISABLE_CHECKS */
typedef enum {
  PROFILER_FREE		= 0,
  PROFILER_ALLOC	= 1,
  PROFILER_RELOC	= 2,
  PROFILER_ZINIT	= 4
} ProfilerJob;
static guint *profile_data = NULL;
static gsize profile_allocs = 0;
static gsize profile_zinit = 0;
static gsize profile_frees = 0;
static GMutex *gmem_profile_mutex = NULL;
#ifdef  G_ENABLE_DEBUG
static volatile gsize g_trap_free_size = 0;
static volatile gsize g_trap_realloc_size = 0;
static volatile gsize g_trap_malloc_size = 0;
#endif  /* G_ENABLE_DEBUG */

#define	PROFILE_TABLE(f1,f2,f3)   ( ( ((f3) << 2) | ((f2) << 1) | (f1) ) * (MEM_PROFILE_TABLE_SIZE + 1))

static void
profiler_log (ProfilerJob job,
	      gsize       n_bytes,
	      gboolean    success)
{
  g_mutex_lock (gmem_profile_mutex);
  if (!profile_data)
    {
      profile_data = standard_calloc ((MEM_PROFILE_TABLE_SIZE + 1) * 8, 
                                      sizeof (profile_data[0]));
      if (!profile_data)	/* memory system kiddin' me, eh? */
	{
	  g_mutex_unlock (gmem_profile_mutex);
	  return;
	}
    }

  if (n_bytes < MEM_PROFILE_TABLE_SIZE)
    profile_data[n_bytes + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
                                          (job & PROFILER_RELOC) != 0,
                                          success != 0)] += 1;
  else
    profile_data[MEM_PROFILE_TABLE_SIZE + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
                                                         (job & PROFILER_RELOC) != 0,
                                                         success != 0)] += 1;
  if (success)
    {
      if (job & PROFILER_ALLOC)
        {
          profile_allocs += n_bytes;
          if (job & PROFILER_ZINIT)
            profile_zinit += n_bytes;
        }
      else
        profile_frees += n_bytes;
    }
  g_mutex_unlock (gmem_profile_mutex);
}

static void
profile_print_locked (guint   *local_data,
		      gboolean success)
{
  gboolean need_header = TRUE;
  guint i;

  for (i = 0; i <= MEM_PROFILE_TABLE_SIZE; i++)
    {
      glong t_malloc = local_data[i + PROFILE_TABLE (1, 0, success)];
      glong t_realloc = local_data[i + PROFILE_TABLE (1, 1, success)];
      glong t_free = local_data[i + PROFILE_TABLE (0, 0, success)];
      glong t_refree = local_data[i + PROFILE_TABLE (0, 1, success)];
      
      if (!t_malloc && !t_realloc && !t_free && !t_refree)
	continue;
      else if (need_header)
	{
	  need_header = FALSE;
	  g_print (" blocks of | allocated  | freed      | allocated  | freed      | n_bytes   \n");
	  g_print ("  n_bytes  | n_times by | n_times by | n_times by | n_times by | remaining \n");
	  g_print ("           | malloc()   | free()     | realloc()  | realloc()  |           \n");
	  g_print ("===========|============|============|============|============|===========\n");
	}
      if (i < MEM_PROFILE_TABLE_SIZE)
	g_print ("%10u | %10ld | %10ld | %10ld | %10ld |%+11ld\n",
		 i, t_malloc, t_free, t_realloc, t_refree,
		 (t_malloc - t_free + t_realloc - t_refree) * i);
      else if (i >= MEM_PROFILE_TABLE_SIZE)
	g_print ("   >%6u | %10ld | %10ld | %10ld | %10ld |        ***\n",
		 i, t_malloc, t_free, t_realloc, t_refree);
    }
  if (need_header)
    g_print (" --- none ---\n");
}

/**
 * g_mem_profile:
 * @void:
 * 
 * Outputs a summary of memory usage.
 * 
 * It outputs the frequency of allocations of different sizes,
 * the total number of bytes which have been allocated,
 * the total number of bytes which have been freed,
 * and the difference between the previous two values, i.e. the number of bytes
 * still in use.
 * 
 * Note that this function will not output anything unless you have
 * previously installed the #glib_mem_profiler_table with g_mem_set_vtable().
 */

void
g_mem_profile (void)
{
  guint local_data[(MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])];
  gsize local_allocs;
  gsize local_zinit;
  gsize local_frees;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();

  g_mutex_lock (gmem_profile_mutex);

  local_allocs = profile_allocs;
  local_zinit = profile_zinit;
  local_frees = profile_frees;

  if (!profile_data)
    {
      g_mutex_unlock (gmem_profile_mutex);
      return;
    }

  memcpy (local_data, profile_data, 
	  (MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0]));
  
  g_mutex_unlock (gmem_profile_mutex);

  g_print ("GLib Memory statistics (successful operations):\n");
  profile_print_locked (local_data, TRUE);
  g_print ("GLib Memory statistics (failing operations):\n");
  profile_print_locked (local_data, FALSE);
  g_print ("Total bytes: allocated=%"G_GSIZE_FORMAT", "
           "zero-initialized=%"G_GSIZE_FORMAT" (%.2f%%), "
           "freed=%"G_GSIZE_FORMAT" (%.2f%%), "
           "remaining=%"G_GSIZE_FORMAT"\n",
	   local_allocs,
	   local_zinit,
	   ((gdouble) local_zinit) / local_allocs * 100.0,
	   local_frees,
	   ((gdouble) local_frees) / local_allocs * 100.0,
	   local_allocs - local_frees);
}

static gpointer
profiler_try_malloc (gsize n_bytes)
{
  gsize *p;

#ifdef  G_ENABLE_DEBUG
  if (g_trap_malloc_size == n_bytes)
    G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */

  p = standard_malloc (sizeof (gsize) * 2 + n_bytes);

  if (p)
    {
      p[0] = 0;		/* free count */
      p[1] = n_bytes;	/* length */
      profiler_log (PROFILER_ALLOC, n_bytes, TRUE);
      p += 2;
    }
  else
    profiler_log (PROFILER_ALLOC, n_bytes, FALSE);
  
  return p;
}

static gpointer
profiler_malloc (gsize n_bytes)
{
  gpointer mem = profiler_try_malloc (n_bytes);

  if (!mem)
    g_mem_profile ();

  return mem;
}

static gpointer
profiler_calloc (gsize n_blocks,
		 gsize n_block_bytes)
{
  gsize l = n_blocks * n_block_bytes;
  gsize *p;

#ifdef  G_ENABLE_DEBUG
  if (g_trap_malloc_size == l)
    G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */
  
  p = standard_calloc (1, sizeof (gsize) * 2 + l);

  if (p)
    {
      p[0] = 0;		/* free count */
      p[1] = l;		/* length */
      profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, TRUE);
      p += 2;
    }
  else
    {
      profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, FALSE);
      g_mem_profile ();
    }

  return p;
}

static void
profiler_free (gpointer mem)
{
  gsize *p = mem;

  p -= 2;
  if (p[0])	/* free count */
    {
      g_warning ("free(%p): memory has been freed %"G_GSIZE_FORMAT" times already",
                 p + 2, p[0]);
      profiler_log (PROFILER_FREE,
		    p[1],	/* length */
		    FALSE);
    }
  else
    {
#ifdef  G_ENABLE_DEBUG
      if (g_trap_free_size == p[1])
	G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */

      profiler_log (PROFILER_FREE,
		    p[1],	/* length */
		    TRUE);
      memset (p + 2, 0xaa, p[1]);

      /* for all those that miss standard_free (p); in this place, yes,
       * we do leak all memory when profiling, and that is intentional
       * to catch double frees. patch submissions are futile.
       */
    }
  p[0] += 1;
}

static gpointer
profiler_try_realloc (gpointer mem,
		      gsize    n_bytes)
{
  gsize *p = mem;

  p -= 2;

#ifdef  G_ENABLE_DEBUG
  if (g_trap_realloc_size == n_bytes)
    G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */
  
  if (mem && p[0])	/* free count */
    {
      g_warning ("realloc(%p, %"G_GSIZE_FORMAT"): "
                 "memory has been freed %"G_GSIZE_FORMAT" times already",
                 p + 2, (gsize) n_bytes, p[0]);
      profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);

      return NULL;
    }
  else
    {
      p = standard_realloc (mem ? p : NULL, sizeof (gsize) * 2 + n_bytes);

      if (p)
	{
	  if (mem)
	    profiler_log (PROFILER_FREE | PROFILER_RELOC, p[1], TRUE);
	  p[0] = 0;
	  p[1] = n_bytes;
	  profiler_log (PROFILER_ALLOC | PROFILER_RELOC, p[1], TRUE);
	  p += 2;
	}
      else
	profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);

      return p;
    }
}

static gpointer
profiler_realloc (gpointer mem,
		  gsize    n_bytes)
{
  mem = profiler_try_realloc (mem, n_bytes);

  if (!mem)
    g_mem_profile ();

  return mem;
}

static GMemVTable profiler_table = {
  profiler_malloc,
  profiler_realloc,
  profiler_free,
  profiler_calloc,
  profiler_try_malloc,
  profiler_try_realloc,
};
GMemVTable *glib_mem_profiler_table = &profiler_table;

#endif	/* !G_DISABLE_CHECKS */

/* --- MemChunks --- */
/**
 * SECTION: allocators
 * @title: Memory Allocators
 * @short_description: deprecated way to allocate chunks of memory for
 *                     GList, GSList and GNode
 *
 * Prior to 2.10, #GAllocator was used as an efficient way to allocate
 * small pieces of memory for use with the #GList, #GSList and #GNode
 * data structures. Since 2.10, it has been completely replaced by the
 * <link linkend="glib-Memory-Slices">slice allocator</link> and
 * deprecated.
 **/

/**
 * SECTION: memory_chunks
 * @title: Memory Chunks
 * @short_description: deprecated way to allocate groups of equal-sized
 *                     chunks of memory
 *
 * Memory chunks provide an space-efficient way to allocate equal-sized
 * pieces of memory, called atoms. However, due to the administrative
 * overhead (in particular for #G_ALLOC_AND_FREE, and when used from
 * multiple threads), they are in practise often slower than direct use
 * of g_malloc(). Therefore, memory chunks have been deprecated in
 * favor of the <link linkend="glib-Memory-Slices">slice
 * allocator</link>, which has been added in 2.10. All internal uses of
 * memory chunks in GLib have been converted to the
 * <literal>g_slice</literal> API.
 *
 * There are two types of memory chunks, #G_ALLOC_ONLY, and
 * #G_ALLOC_AND_FREE. <itemizedlist> <listitem><para> #G_ALLOC_ONLY
 * chunks only allow allocation of atoms. The atoms can never be freed
 * individually. The memory chunk can only be free in its entirety.
 * </para></listitem> <listitem><para> #G_ALLOC_AND_FREE chunks do
 * allow atoms to be freed individually. The disadvantage of this is
 * that the memory chunk has to keep track of which atoms have been
 * freed. This results in more memory being used and a slight
 * degradation in performance. </para></listitem> </itemizedlist>
 *
 * To create a memory chunk use g_mem_chunk_new() or the convenience
 * macro g_mem_chunk_create().
 *
 * To allocate a new atom use g_mem_chunk_alloc(),
 * g_mem_chunk_alloc0(), or the convenience macros g_chunk_new() or
 * g_chunk_new0().
 *
 * To free an atom use g_mem_chunk_free(), or the convenience macro
 * g_chunk_free(). (Atoms can only be freed if the memory chunk is
 * created with the type set to #G_ALLOC_AND_FREE.)
 *
 * To free any blocks of memory which are no longer being used, use
 * g_mem_chunk_clean(). To clean all memory chunks, use g_blow_chunks().
 *
 * To reset the memory chunk, freeing all of the atoms, use
 * g_mem_chunk_reset().
 *
 * To destroy a memory chunk, use g_mem_chunk_destroy().
 *
 * To help debug memory chunks, use g_mem_chunk_info() and
 * g_mem_chunk_print().
 *
 * <example>
 *  <title>Using a #GMemChunk</title>
 *  <programlisting>
 *   GMemChunk *mem_chunk;
 *   gchar *mem[10000];
 *   gint i;
 *
 *   /<!-- -->* Create a GMemChunk with atoms 50 bytes long, and memory
 *      blocks holding 100 bytes. Note that this means that only 2 atoms
 *      fit into each memory block and so isn't very efficient. *<!-- -->/
 *   mem_chunk = g_mem_chunk_new ("test mem chunk", 50, 100, G_ALLOC_AND_FREE);
 *   /<!-- -->* Now allocate 10000 atoms. *<!-- -->/
 *   for (i = 0; i &lt; 10000; i++)
 *     {
 *       mem[i] = g_chunk_new (gchar, mem_chunk);
 *       /<!-- -->* Fill in the atom memory with some junk. *<!-- -->/
 *       for (j = 0; j &lt; 50; j++)
 *         mem[i][j] = i * j;
 *     }
 *   /<!-- -->* Now free all of the atoms. Note that since we are going to
 *      destroy the GMemChunk, this wouldn't normally be used. *<!-- -->/
 *   for (i = 0; i &lt; 10000; i++)
 *     {
 *       g_mem_chunk_free (mem_chunk, mem[i]);
 *     }
 *   /<!-- -->* We are finished with the GMemChunk, so we destroy it. *<!-- -->/
 *   g_mem_chunk_destroy (mem_chunk);
 *  </programlisting>
 * </example>
 *
 * <example>
 *  <title>Using a #GMemChunk with data structures</title>
 *  <programlisting>
 *    GMemChunk *array_mem_chunk;
 *    GRealArray *array;
 *    /<!-- -->* Create a GMemChunk to hold GRealArray structures, using
 *       the g_mem_chunk_create(<!-- -->) convenience macro. We want 1024 atoms in each
 *       memory block, and we want to be able to free individual atoms. *<!-- -->/
 *    array_mem_chunk = g_mem_chunk_create (GRealArray, 1024, G_ALLOC_AND_FREE);
 *    /<!-- -->* Allocate one atom, using the g_chunk_new(<!-- -->) convenience macro. *<!-- -->/
 *    array = g_chunk_new (GRealArray, array_mem_chunk);
 *    /<!-- -->* We can now use array just like a normal pointer to a structure. *<!-- -->/
 *    array->data            = NULL;
 *    array->len             = 0;
 *    array->alloc           = 0;
 *    array->zero_terminated = (zero_terminated ? 1 : 0);
 *    array->clear           = (clear ? 1 : 0);
 *    array->elt_size        = elt_size;
 *    /<!-- -->* We can free the element, so it can be reused. *<!-- -->/
 *    g_chunk_free (array, array_mem_chunk);
 *    /<!-- -->* We destroy the GMemChunk when we are finished with it. *<!-- -->/
 *    g_mem_chunk_destroy (array_mem_chunk);
 *  </programlisting>
 * </example>
 **/

#ifndef G_ALLOC_AND_FREE

/**
 * GAllocator:
 *
 * The #GAllocator struct contains private data. and should only be
 * accessed using the following functions.
 **/
typedef struct _GAllocator GAllocator;

/**
 * GMemChunk:
 *
 * The #GMemChunk struct is an opaque data structure representing a
 * memory chunk. It should be accessed only through the use of the
 * following functions.
 **/
typedef struct _GMemChunk  GMemChunk;

/**
 * G_ALLOC_ONLY:
 *
 * Specifies the type of a #GMemChunk. Used in g_mem_chunk_new() and
 * g_mem_chunk_create() to specify that atoms will never be freed
 * individually.
 **/
#define G_ALLOC_ONLY	  1

/**
 * G_ALLOC_AND_FREE:
 *
 * Specifies the type of a #GMemChunk. Used in g_mem_chunk_new() and
 * g_mem_chunk_create() to specify that atoms will be freed
 * individually.
 **/
#define G_ALLOC_AND_FREE  2
#endif

struct _GMemChunk {
  guint alloc_size;           /* the size of an atom */
};

/**
 * g_mem_chunk_new:
 * @name: a string to identify the #GMemChunk. It is not copied so it
 *        should be valid for the lifetime of the #GMemChunk. It is
 *        only used in g_mem_chunk_print(), which is used for debugging.
 * @atom_size: the size, in bytes, of each element in the #GMemChunk.
 * @area_size: the size, in bytes, of each block of memory allocated to
 *             contain the atoms.
 * @type: the type of the #GMemChunk.  #G_ALLOC_AND_FREE is used if the
 *        atoms will be freed individually.  #G_ALLOC_ONLY should be
 *        used if atoms will never be freed individually.
 *        #G_ALLOC_ONLY is quicker, since it does not need to track
 *        free atoms, but it obviously wastes memory if you no longer
 *        need many of the atoms.
 * @Returns: the new #GMemChunk.
 *
 * Creates a new #GMemChunk.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
GMemChunk*
g_mem_chunk_new (const gchar  *name,
		 gint          atom_size,
		 gsize         area_size,
		 gint          type)
{
  GMemChunk *mem_chunk;
  g_return_val_if_fail (atom_size > 0, NULL);

  mem_chunk = g_slice_new (GMemChunk);
  mem_chunk->alloc_size = atom_size;
  return mem_chunk;
}

/**
 * g_mem_chunk_destroy:
 * @mem_chunk: a #GMemChunk.
 *
 * Frees all of the memory allocated for a #GMemChunk.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void
g_mem_chunk_destroy (GMemChunk *mem_chunk)
{
  g_return_if_fail (mem_chunk != NULL);
  
  g_slice_free (GMemChunk, mem_chunk);
}

/**
 * g_mem_chunk_alloc:
 * @mem_chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom.
 *
 * Allocates an atom of memory from a #GMemChunk.
 *
 * Deprecated:2.10: Use g_slice_alloc() instead
 **/
gpointer
g_mem_chunk_alloc (GMemChunk *mem_chunk)
{
  g_return_val_if_fail (mem_chunk != NULL, NULL);
  
  return g_slice_alloc (mem_chunk->alloc_size);
}

/**
 * g_mem_chunk_alloc0:
 * @mem_chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom.
 *
 * Allocates an atom of memory from a #GMemChunk, setting the memory to
 * 0.
 *
 * Deprecated:2.10: Use g_slice_alloc0() instead
 **/
gpointer
g_mem_chunk_alloc0 (GMemChunk *mem_chunk)
{
  g_return_val_if_fail (mem_chunk != NULL, NULL);
  
  return g_slice_alloc0 (mem_chunk->alloc_size);
}

/**
 * g_mem_chunk_free:
 * @mem_chunk: a #GMemChunk.
 * @mem: a pointer to the atom to free.
 *
 * Frees an atom in a #GMemChunk. This should only be called if the
 * #GMemChunk was created with #G_ALLOC_AND_FREE. Otherwise it will
 * simply return.
 *
 * Deprecated:2.10: Use g_slice_free1() instead
 **/
void
g_mem_chunk_free (GMemChunk *mem_chunk,
		  gpointer   mem)
{
  g_return_if_fail (mem_chunk != NULL);
  
  g_slice_free1 (mem_chunk->alloc_size, mem);
}

/**
 * g_mem_chunk_clean:
 * @mem_chunk: a #GMemChunk.
 *
 * Frees any blocks in a #GMemChunk which are no longer being used.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_clean	(GMemChunk *mem_chunk)	{}

/**
 * g_mem_chunk_reset:
 * @mem_chunk: a #GMemChunk.
 *
 * Resets a GMemChunk to its initial state. It frees all of the
 * currently allocated blocks of memory.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_reset	(GMemChunk *mem_chunk)	{}


/**
 * g_mem_chunk_print:
 * @mem_chunk: a #GMemChunk.
 *
 * Outputs debugging information for a #GMemChunk. It outputs the name
 * of the #GMemChunk (set with g_mem_chunk_new()), the number of bytes
 * used, and the number of blocks of memory allocated.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_print	(GMemChunk *mem_chunk)	{}


/**
 * g_mem_chunk_info:
 *
 * Outputs debugging information for all #GMemChunk objects currently
 * in use. It outputs the number of #GMemChunk objects currently
 * allocated, and calls g_mem_chunk_print() to output information on
 * each one.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_info	(void)			{}

/**
 * g_blow_chunks:
 *
 * Calls g_mem_chunk_clean() on all #GMemChunk objects.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_blow_chunks		(void)			{}

/**
 * g_chunk_new0:
 * @type: the type of the #GMemChunk atoms, typically a structure name.
 * @chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom, cast to a pointer to
 *           @type.
 *
 * A convenience macro to allocate an atom of memory from a #GMemChunk.
 * It calls g_mem_chunk_alloc0() and casts the returned atom to a
 * pointer to the given type, avoiding a type cast in the source code.
 *
 * Deprecated:2.10: Use g_slice_new0() instead
 **/

/**
 * g_chunk_free:
 * @mem: a pointer to the atom to be freed.
 * @mem_chunk: a #GMemChunk.
 *
 * A convenience macro to free an atom of memory from a #GMemChunk. It
 * simply switches the arguments and calls g_mem_chunk_free() It is
 * included simply to complement the other convenience macros,
 * g_chunk_new() and g_chunk_new0().
 *
 * Deprecated:2.10: Use g_slice_free() instead
 **/

/**
 * g_chunk_new:
 * @type: the type of the #GMemChunk atoms, typically a structure name.
 * @chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom, cast to a pointer to
 *           @type.
 *
 * A convenience macro to allocate an atom of memory from a #GMemChunk.
 * It calls g_mem_chunk_alloc() and casts the returned atom to a
 * pointer to the given type, avoiding a type cast in the source code.
 *
 * Deprecated:2.10: Use g_slice_new() instead
 **/

/**
 * g_mem_chunk_create:
 * @type: the type of the atoms, typically a structure name.
 * @pre_alloc: the number of atoms to store in each block of memory.
 * @alloc_type: the type of the #GMemChunk.  #G_ALLOC_AND_FREE is used
 *              if the atoms will be freed individually.  #G_ALLOC_ONLY
 *              should be used if atoms will never be freed
 *              individually.  #G_ALLOC_ONLY is quicker, since it does
 *              not need to track free atoms, but it obviously wastes
 *              memory if you no longer need many of the atoms.
 * @Returns: the new #GMemChunk.
 *
 * A convenience macro for creating a new #GMemChunk. It calls
 * g_mem_chunk_new(), using the given type to create the #GMemChunk
 * name. The atom size is determined using
 * <function>sizeof()</function>, and the area size is calculated by
 * multiplying the @pre_alloc parameter with the atom size.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/


/**
 * g_allocator_new:
 * @name: the name of the #GAllocator. This name is used to set the
 *        name of the #GMemChunk used by the #GAllocator, and is only
 *        used for debugging.
 * @n_preallocs: the number of elements in each block of memory
 *               allocated.  Larger blocks mean less calls to
 *               g_malloc(), but some memory may be wasted.  (GLib uses
 *               128 elements per block by default.) The value must be
 *               between 1 and 65535.
 * @Returns: a new #GAllocator.
 *
 * Creates a new #GAllocator.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
GAllocator*
g_allocator_new (const gchar *name,
		 guint        n_preallocs)
{
  static struct _GAllocator {
    gchar      *name;
    guint16     n_preallocs;
    guint       is_unused : 1;
    guint       type : 4;
    GAllocator *last;
    GMemChunk  *mem_chunk;
    gpointer    free_list;
  } dummy = {
    "GAllocator is deprecated", 1, TRUE, 0, NULL, NULL, NULL,
  };
  /* some (broken) GAllocator uses depend on non-NULL allocators */
  return (void*) &dummy;
}

/**
 * g_allocator_free:
 * @allocator: a #GAllocator.
 *
 * Frees all of the memory allocated by the #GAllocator.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void
g_allocator_free (GAllocator *allocator)
{
}

#ifdef ENABLE_GC_FRIENDLY_DEFAULT
gboolean g_mem_gc_friendly = TRUE;
#else
/**
 * g_mem_gc_friendly:
 * 
 * This variable is %TRUE if the <envar>G_DEBUG</envar> environment variable
 * includes the key <link linkend="G_DEBUG">gc-friendly</link>.
 */
gboolean g_mem_gc_friendly = FALSE;
#endif

static void
g_mem_init_nomessage (void)
{
  gchar buffer[1024];
  const gchar *val;
  const GDebugKey keys[] = {
    { "gc-friendly", 1 },
  };
  gint flags;
  if (g_mem_initialized)
    return;
  /* don't use g_malloc/g_message here */
  val = _g_getenv_nomalloc ("G_DEBUG", buffer);
  flags = !val ? 0 : g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
  if (flags & 1)        /* gc-friendly */
    {
      g_mem_gc_friendly = TRUE;
    }
  g_mem_initialized = TRUE;
}

void
_g_mem_thread_init_noprivate_nomessage (void)
{
  /* we may only create mutexes here, locking/
   * unlocking a mutex does not yet work.
   */
  g_mem_init_nomessage();
#ifndef G_DISABLE_CHECKS
  gmem_profile_mutex = g_mutex_new ();
#endif
}