summaryrefslogtreecommitdiff
path: root/protocols/Sametime/src/meanwhile/src/mpi/mpi.c
blob: ccdf5cf0f72c59fb376109d9083e3184955dc5c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
/*
  mpi.c
  
  by Michael J. Fromberger <http://www.dartmouth.edu/~sting/>
  Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
  
  Arbitrary precision integer arithmetic library

  modified for use in Meanwhile as a convenience library
*/

#include "mpi.h"
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#if MP_DEBUG
#include <stdio.h>

#define DIAG(T,V) {fprintf(stderr,T);mw_mp_print(V,stderr);fputc('\n',stderr);}
#else
#define DIAG(T,V)
#endif

/* 
   If MP_LOGTAB is not defined, use the math library to compute the
   logarithms on the fly.  Otherwise, use the static table below.
   Pick which works best for your system.
 */
#if MP_LOGTAB

/* {{{ s_logv_2[] - log table for 2 in various bases */

/*
  A table of the logs of 2 for various bases (the 0 and 1 entries of
  this table are meaningless and should not be referenced).  

  This table is used to compute output lengths for the mw_mp_toradix()
  function.  Since a number n in radix r takes up about log_r(n)
  digits, we estimate the output size by taking the least integer
  greater than log_r(n), where:

  log_r(n) = log_2(n) * log_r(2)

  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
  which are the output bases supported.  
 */

#include "logtab.h"

/* }}} */
#define LOG_V_2(R)  s_logv_2[(R)]

#else

#include <math.h>
#define LOG_V_2(R)  (log(2.0)/log(R))

#endif

/* Default precision for newly created mw_mp_int's      */
static unsigned int s_mw_mp_defprec = MP_DEFPREC;

/* {{{ Digit arithmetic macros */

/*
  When adding and multiplying digits, the results can be larger than
  can be contained in an mw_mp_digit.  Thus, an mw_mp_word is used.  These
  macros mask off the upper and lower digits of the mw_mp_word (the
  mw_mp_word may be more than 2 mw_mp_digits wide, but we only concern
  ourselves with the low-order 2 mw_mp_digits)

  If your mw_mp_word DOES have more than 2 mw_mp_digits, you need to
  uncomment the first line, and comment out the second.
 */

/* #define  CARRYOUT(W)  (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
#define  CARRYOUT(W)  ((W)>>DIGIT_BIT)
#define  ACCUM(W)     ((W)&MP_DIGIT_MAX)

/* }}} */

/* {{{ Comparison constants */

#define  MP_LT       -1
#define  MP_EQ        0
#define  MP_GT        1

/* }}} */

/* {{{ Constant strings */

/* Constant strings returned by mw_mp_strerror() */
static const char *mw_mp_err_string[] = {
  "unknown result code",     /* say what?            */
  "boolean true",            /* MP_OKAY, MP_YES      */
  "boolean false",           /* MP_NO                */
  "out of memory",           /* MP_MEM               */
  "argument out of range",   /* MP_RANGE             */
  "invalid input parameter", /* MP_BADARG            */
  "result is undefined"      /* MP_UNDEF             */
};

/* Value to digit maps for radix conversion   */

/* s_dmap_1 - standard digits and letters */
static const char *s_dmap_1 = 
  "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";

#if 0
/* s_dmap_2 - base64 ordering for digits  */
static const char *s_dmap_2 =
  "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
#endif

/* }}} */

/* {{{ Static function declarations */

/* 
   If MP_MACRO is false, these will be defined as actual functions;
   otherwise, suitable macro definitions will be used.  This works
   around the fact that ANSI C89 doesn't support an 'inline' keyword
   (although I hear C9x will ... about bloody time).  At present, the
   macro definitions are identical to the function bodies, but they'll
   expand in place, instead of generating a function call.

   I chose these particular functions to be made into macros because
   some profiling showed they are called a lot on a typical workload,
   and yet they are primarily housekeeping.
 */
#if MP_MACRO == 0
 void     s_mw_mp_setz(mw_mp_digit *dp, mw_mp_size count); /* zero digits           */
 void     s_mw_mp_copy(mw_mp_digit *sp, mw_mp_digit *dp, mw_mp_size count); /* copy    */
 void    *s_mw_mp_alloc(size_t nb, size_t ni);       /* general allocator     */
 void     s_mw_mp_free(void *ptr);                   /* general free function */
#else

 /* Even if these are defined as macros, we need to respect the settings
    of the MP_MEMSET and MP_MEMCPY configuration options...
  */
 #if MP_MEMSET == 0
  #define  s_mw_mp_setz(dp, count) \
       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
 #else
  #define  s_mw_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mw_mp_digit))
 #endif /* MP_MEMSET */

 #if MP_MEMCPY == 0
  #define  s_mw_mp_copy(sp, dp, count) \
       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
 #else
  #define  s_mw_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mw_mp_digit))
 #endif /* MP_MEMCPY */

 #define  s_mw_mp_alloc(nb, ni)  calloc(nb, ni)
 #define  s_mw_mp_free(ptr) {if(ptr) free(ptr);}
#endif /* MP_MACRO */

mw_mp_err   s_mw_mp_grow(mw_mp_int *mp, mw_mp_size min);   /* increase allocated size */
mw_mp_err   s_mw_mp_pad(mw_mp_int *mp, mw_mp_size min);    /* left pad with zeroes    */

void     s_mw_mp_clamp(mw_mp_int *mp);               /* clip leading zeroes     */

void     s_mw_mp_exch(mw_mp_int *a, mw_mp_int *b);      /* swap a and b in place   */

mw_mp_err   s_mw_mp_lshd(mw_mp_int *mp, mw_mp_size p);     /* left-shift by p digits  */
void     s_mw_mp_rshd(mw_mp_int *mp, mw_mp_size p);     /* right-shift by p digits */
void     s_mw_mp_div_2d(mw_mp_int *mp, mw_mp_digit d);  /* divide by 2^d in place  */
void     s_mw_mp_mod_2d(mw_mp_int *mp, mw_mp_digit d);  /* modulo 2^d in place     */
mw_mp_err   s_mw_mp_mul_2d(mw_mp_int *mp, mw_mp_digit d);  /* multiply by 2^d in place*/
void     s_mw_mp_div_2(mw_mp_int *mp);               /* divide by 2 in place    */
mw_mp_err   s_mw_mp_mul_2(mw_mp_int *mp);               /* multiply by 2 in place  */
mw_mp_digit s_mw_mp_norm(mw_mp_int *a, mw_mp_int *b);      /* normalize for division  */
mw_mp_err   s_mw_mp_add_d(mw_mp_int *mp, mw_mp_digit d);   /* unsigned digit addition */
mw_mp_err   s_mw_mp_sub_d(mw_mp_int *mp, mw_mp_digit d);   /* unsigned digit subtract */
mw_mp_err   s_mw_mp_mul_d(mw_mp_int *mp, mw_mp_digit d);   /* unsigned digit multiply */
mw_mp_err   s_mw_mp_div_d(mw_mp_int *mp, mw_mp_digit d, mw_mp_digit *r);
		                               /* unsigned digit divide   */
mw_mp_err   s_mw_mp_reduce(mw_mp_int *x, mw_mp_int *m, mw_mp_int *mu);
                                               /* Barrett reduction       */
mw_mp_err   s_mw_mp_add(mw_mp_int *a, mw_mp_int *b);       /* magnitude addition      */
mw_mp_err   s_mw_mp_sub(mw_mp_int *a, mw_mp_int *b);       /* magnitude subtract      */
mw_mp_err   s_mw_mp_mul(mw_mp_int *a, mw_mp_int *b);       /* magnitude multiply      */
#if 0
void     s_mw_mp_kmul(mw_mp_digit *a, mw_mp_digit *b, mw_mp_digit *out, mw_mp_size len);
                                               /* multiply buffers in place */
#endif
#if MP_SQUARE
mw_mp_err   s_mw_mp_sqr(mw_mp_int *a);                  /* magnitude square        */
#else
#define  s_mw_mp_sqr(a) s_mw_mp_mul(a, a)
#endif
mw_mp_err   s_mw_mp_div(mw_mp_int *a, mw_mp_int *b);       /* magnitude divide        */
mw_mp_err   s_mw_mp_2expt(mw_mp_int *a, mw_mp_digit k);    /* a = 2^k                 */
int      s_mw_mp_cmp(mw_mp_int *a, mw_mp_int *b);       /* magnitude comparison    */
int      s_mw_mp_cmw_mp_d(mw_mp_int *a, mw_mp_digit d);    /* magnitude digit compare */
int      s_mw_mp_ispow2(mw_mp_int *v);               /* is v a power of 2?      */
int      s_mw_mp_ispow2d(mw_mp_digit d);             /* is d a power of 2?      */

int      s_mw_mp_tovalue(char ch, int r);          /* convert ch to value    */
char     s_mw_mp_todigit(int val, int r, int low); /* convert val to digit   */
int      s_mw_mp_outlen(int bits, int r);          /* output length in bytes */

/* }}} */

/* {{{ Default precision manipulation */

unsigned int mw_mp_get_prec(void)
{
  return s_mw_mp_defprec;

} /* end mw_mp_get_prec() */

void         mw_mp_set_prec(unsigned int prec)
{
  if(prec == 0)
    s_mw_mp_defprec = MP_DEFPREC;
  else
    s_mw_mp_defprec = prec;

} /* end mw_mp_set_prec() */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ mw_mp_init(mp) */

/*
  mw_mp_init(mp)

  Initialize a new zero-valued mw_mp_int.  Returns MP_OKAY if successful,
  MP_MEM if memory could not be allocated for the structure.
 */

mw_mp_err mw_mp_init(mw_mp_int *mp)
{
  return mw_mp_init_size(mp, s_mw_mp_defprec);

} /* end mw_mp_init() */

/* }}} */

/* {{{ mw_mp_init_array(mp[], count) */

mw_mp_err mw_mp_init_array(mw_mp_int mp[], int count)
{
  mw_mp_err  res;
  int     pos;

  ARGCHK(mp !=NULL && count > 0, MP_BADARG);

  for(pos = 0; pos < count; ++pos) {
    if((res = mw_mp_init(&mp[pos])) != MP_OKAY)
      goto CLEANUP;
  }

  return MP_OKAY;

 CLEANUP:
  while(--pos >= 0) 
    mw_mp_clear(&mp[pos]);

  return res;

} /* end mw_mp_init_array() */

/* }}} */

/* {{{ mw_mp_init_size(mp, prec) */

/*
  mw_mp_init_size(mp, prec)

  Initialize a new zero-valued mw_mp_int with at least the given
  precision; returns MP_OKAY if successful, or MP_MEM if memory could
  not be allocated for the structure.
 */

mw_mp_err mw_mp_init_size(mw_mp_int *mp, mw_mp_size prec)
{
  ARGCHK(mp != NULL && prec > 0, MP_BADARG);

  if((DIGITS(mp) = s_mw_mp_alloc(prec, sizeof(mw_mp_digit))) == NULL)
    return MP_MEM;

  SIGN(mp) = MP_ZPOS;
  USED(mp) = 1;
  ALLOC(mp) = prec;

  return MP_OKAY;

} /* end mw_mp_init_size() */

/* }}} */

/* {{{ mw_mp_init_copy(mp, from) */

/*
  mw_mp_init_copy(mp, from)

  Initialize mp as an exact copy of from.  Returns MP_OKAY if
  successful, MP_MEM if memory could not be allocated for the new
  structure.
 */

mw_mp_err mw_mp_init_copy(mw_mp_int *mp, mw_mp_int *from)
{
  ARGCHK(mp != NULL && from != NULL, MP_BADARG);

  if(mp == from)
    return MP_OKAY;

  if((DIGITS(mp) = s_mw_mp_alloc(USED(from), sizeof(mw_mp_digit))) == NULL)
    return MP_MEM;

  s_mw_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
  USED(mp) = USED(from);
  ALLOC(mp) = USED(from);
  SIGN(mp) = SIGN(from);

  return MP_OKAY;

} /* end mw_mp_init_copy() */

/* }}} */

/* {{{ mw_mp_copy(from, to) */

/*
  mw_mp_copy(from, to)

  Copies the mw_mp_int 'from' to the mw_mp_int 'to'.  It is presumed that
  'to' has already been initialized (if not, use mw_mp_init_copy()
  instead). If 'from' and 'to' are identical, nothing happens.
 */

mw_mp_err mw_mp_copy(mw_mp_int *from, mw_mp_int *to)
{
  ARGCHK(from != NULL && to != NULL, MP_BADARG);

  if(from == to)
    return MP_OKAY;

  { /* copy */
    mw_mp_digit   *tmp;

    /*
      If the allocated buffer in 'to' already has enough space to hold
      all the used digits of 'from', we'll re-use it to avoid hitting
      the memory allocater more than necessary; otherwise, we'd have
      to grow anyway, so we just allocate a hunk and make the copy as
      usual
     */
    if(ALLOC(to) >= USED(from)) {
      s_mw_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
      s_mw_mp_copy(DIGITS(from), DIGITS(to), USED(from));
      
    } else {
      if((tmp = s_mw_mp_alloc(USED(from), sizeof(mw_mp_digit))) == NULL)
	return MP_MEM;

      s_mw_mp_copy(DIGITS(from), tmp, USED(from));

      if(DIGITS(to) != NULL) {
#if MP_CRYPTO
	s_mw_mp_setz(DIGITS(to), ALLOC(to));
#endif
	s_mw_mp_free(DIGITS(to));
      }

      DIGITS(to) = tmp;
      ALLOC(to) = USED(from);
    }

    /* Copy the precision and sign from the original */
    USED(to) = USED(from);
    SIGN(to) = SIGN(from);
  } /* end copy */

  return MP_OKAY;

} /* end mw_mp_copy() */

/* }}} */

/* {{{ mw_mp_exch(mp1, mp2) */

/*
  mw_mp_exch(mp1, mp2)

  Exchange mp1 and mp2 without allocating any intermediate memory
  (well, unless you count the stack space needed for this call and the
  locals it creates...).  This cannot fail.
 */

void mw_mp_exch(mw_mp_int *mp1, mw_mp_int *mp2)
{
#if MP_ARGCHK == 2
  assert(mp1 != NULL && mp2 != NULL);
#else
  if(mp1 == NULL || mp2 == NULL)
    return;
#endif

  s_mw_mp_exch(mp1, mp2);

} /* end mw_mp_exch() */

/* }}} */

/* {{{ mw_mp_clear(mp) */

/*
  mw_mp_clear(mp)

  Release the storage used by an mw_mp_int, and void its fields so that
  if someone calls mw_mp_clear() again for the same int later, we won't
  get tollchocked.
 */

void   mw_mp_clear(mw_mp_int *mp)
{
  if(mp == NULL)
    return;

  if(DIGITS(mp) != NULL) {
#if MP_CRYPTO
    s_mw_mp_setz(DIGITS(mp), ALLOC(mp));
#endif
    s_mw_mp_free(DIGITS(mp));
    DIGITS(mp) = NULL;
  }

  USED(mp) = 0;
  ALLOC(mp) = 0;

} /* end mw_mp_clear() */

/* }}} */

/* {{{ mw_mp_clear_array(mp[], count) */

void   mw_mp_clear_array(mw_mp_int mp[], int count)
{
  ARGCHK(mp != NULL && count > 0, MP_BADARG);

  while(--count >= 0) 
    mw_mp_clear(&mp[count]);

} /* end mw_mp_clear_array() */

/* }}} */

/* {{{ mw_mp_zero(mp) */

/*
  mw_mp_zero(mp) 

  Set mp to zero.  Does not change the allocated size of the structure,
  and therefore cannot fail (except on a bad argument, which we ignore)
 */
void   mw_mp_zero(mw_mp_int *mp)
{
  if(mp == NULL)
    return;

  s_mw_mp_setz(DIGITS(mp), ALLOC(mp));
  USED(mp) = 1;
  SIGN(mp) = MP_ZPOS;

} /* end mw_mp_zero() */

/* }}} */

/* {{{ mw_mp_set(mp, d) */

void   mw_mp_set(mw_mp_int *mp, mw_mp_digit d)
{
  if(mp == NULL)
    return;

  mw_mp_zero(mp);
  DIGIT(mp, 0) = d;

} /* end mw_mp_set() */

/* }}} */

/* {{{ mw_mp_set_int(mp, z) */

mw_mp_err mw_mp_set_int(mw_mp_int *mp, long z)
{
  int            ix;
  unsigned long  v = abs(z);
  mw_mp_err         res;

  ARGCHK(mp != NULL, MP_BADARG);

  mw_mp_zero(mp);
  if(z == 0)
    return MP_OKAY;  /* shortcut for zero */

  for(ix = sizeof(long) - 1; ix >= 0; ix--) {

    if((res = s_mw_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
      return res;

    res = s_mw_mp_add_d(mp, 
		     (mw_mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
    if(res != MP_OKAY)
      return res;

  }

  if(z < 0)
    SIGN(mp) = MP_NEG;

  return MP_OKAY;

} /* end mw_mp_set_int() */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ Digit arithmetic */

/* {{{ mw_mp_add_d(a, d, b) */

/*
  mw_mp_add_d(a, d, b)

  Compute the sum b = a + d, for a single digit d.  Respects the sign of
  its primary addend (single digits are unsigned anyway).
 */

mw_mp_err mw_mp_add_d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *b)
{
  mw_mp_err   res = MP_OKAY;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, b)) != MP_OKAY)
    return res;

  if(SIGN(b) == MP_ZPOS) {
    res = s_mw_mp_add_d(b, d);
  } else if(s_mw_mp_cmw_mp_d(b, d) >= 0) {
    res = s_mw_mp_sub_d(b, d);
  } else {
    SIGN(b) = MP_ZPOS;

    DIGIT(b, 0) = d - DIGIT(b, 0);
  }

  return res;

} /* end mw_mp_add_d() */

/* }}} */

/* {{{ mw_mp_sub_d(a, d, b) */

/*
  mw_mp_sub_d(a, d, b)

  Compute the difference b = a - d, for a single digit d.  Respects the
  sign of its subtrahend (single digits are unsigned anyway).
 */

mw_mp_err mw_mp_sub_d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *b)
{
  mw_mp_err   res;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, b)) != MP_OKAY)
    return res;

  if(SIGN(b) == MP_NEG) {
    if((res = s_mw_mp_add_d(b, d)) != MP_OKAY)
      return res;

  } else if(s_mw_mp_cmw_mp_d(b, d) >= 0) {
    if((res = s_mw_mp_sub_d(b, d)) != MP_OKAY)
      return res;

  } else {
    mw_mp_neg(b, b);

    DIGIT(b, 0) = d - DIGIT(b, 0);
    SIGN(b) = MP_NEG;
  }

  if(s_mw_mp_cmw_mp_d(b, 0) == 0)
    SIGN(b) = MP_ZPOS;

  return MP_OKAY;

} /* end mw_mp_sub_d() */

/* }}} */

/* {{{ mw_mp_mul_d(a, d, b) */

/*
  mw_mp_mul_d(a, d, b)

  Compute the product b = a * d, for a single digit d.  Respects the sign
  of its multiplicand (single digits are unsigned anyway)
 */

mw_mp_err mw_mp_mul_d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *b)
{
  mw_mp_err  res;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  if(d == 0) {
    mw_mp_zero(b);
    return MP_OKAY;
  }

  if((res = mw_mp_copy(a, b)) != MP_OKAY)
    return res;

  res = s_mw_mp_mul_d(b, d);

  return res;

} /* end mw_mp_mul_d() */

/* }}} */

/* {{{ mw_mp_mul_2(a, c) */

mw_mp_err mw_mp_mul_2(mw_mp_int *a, mw_mp_int *c)
{
  mw_mp_err  res;

  ARGCHK(a != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, c)) != MP_OKAY)
    return res;

  return s_mw_mp_mul_2(c);

} /* end mw_mp_mul_2() */

/* }}} */

/* {{{ mw_mp_div_d(a, d, q, r) */

/*
  mw_mp_div_d(a, d, q, r)

  Compute the quotient q = a / d and remainder r = a mod d, for a
  single digit d.  Respects the sign of its divisor (single digits are
  unsigned anyway).
 */

mw_mp_err mw_mp_div_d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *q, mw_mp_digit *r)
{
  mw_mp_err   res;
  mw_mp_digit rem;
  int      pow;

  ARGCHK(a != NULL, MP_BADARG);

  if(d == 0)
    return MP_RANGE;

  /* Shortcut for powers of two ... */
  if((pow = s_mw_mp_ispow2d(d)) >= 0) {
    mw_mp_digit  mask;

    mask = (1 << pow) - 1;
    rem = DIGIT(a, 0) & mask;

    if(q) {
      mw_mp_copy(a, q);
      s_mw_mp_div_2d(q, pow);
    }

    if(r)
      *r = rem;

    return MP_OKAY;
  }

  /*
    If the quotient is actually going to be returned, we'll try to
    avoid hitting the memory allocator by copying the dividend into it
    and doing the division there.  This can't be any _worse_ than
    always copying, and will sometimes be better (since it won't make
    another copy)

    If it's not going to be returned, we need to allocate a temporary
    to hold the quotient, which will just be discarded.
   */
  if(q) {
    if((res = mw_mp_copy(a, q)) != MP_OKAY)
      return res;

    res = s_mw_mp_div_d(q, d, &rem);
    if(s_mw_mp_cmw_mp_d(q, 0) == MP_EQ)
      SIGN(q) = MP_ZPOS;

  } else {
    mw_mp_int  qp;

    if((res = mw_mp_init_copy(&qp, a)) != MP_OKAY)
      return res;

    res = s_mw_mp_div_d(&qp, d, &rem);
    if(s_mw_mp_cmw_mp_d(&qp, 0) == 0)
      SIGN(&qp) = MP_ZPOS;

    mw_mp_clear(&qp);
  }

  if(r)
    *r = rem;

  return res;

} /* end mw_mp_div_d() */

/* }}} */

/* {{{ mw_mp_div_2(a, c) */

/*
  mw_mp_div_2(a, c)

  Compute c = a / 2, disregarding the remainder.
 */

mw_mp_err mw_mp_div_2(mw_mp_int *a, mw_mp_int *c)
{
  mw_mp_err  res;

  ARGCHK(a != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, c)) != MP_OKAY)
    return res;

  s_mw_mp_div_2(c);

  return MP_OKAY;

} /* end mw_mp_div_2() */

/* }}} */

/* {{{ mw_mp_expt_d(a, d, b) */

mw_mp_err mw_mp_expt_d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *c)
{
  mw_mp_int   s, x;
  mw_mp_err   res;
  mw_mp_sign  cs = MP_ZPOS;

  ARGCHK(a != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_init(&s)) != MP_OKAY)
    return res;
  if((res = mw_mp_init_copy(&x, a)) != MP_OKAY)
    goto X;

  DIGIT(&s, 0) = 1;

  if((d % 2) == 1)
    cs = SIGN(a);

  while(d != 0) {
    if(d & 1) {
      if((res = s_mw_mp_mul(&s, &x)) != MP_OKAY)
	goto CLEANUP;
    }

    d >>= 1;

    if((res = s_mw_mp_sqr(&x)) != MP_OKAY)
      goto CLEANUP;
  }

  SIGN(&s) = cs;

  s_mw_mp_exch(&s, c);

CLEANUP:
  mw_mp_clear(&x);
X:
  mw_mp_clear(&s);

  return res;

} /* end mw_mp_expt_d() */

/* }}} */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ Full arithmetic */

/* {{{ mw_mp_abs(a, b) */

/*
  mw_mp_abs(a, b)

  Compute b = |a|.  'a' and 'b' may be identical.
 */

mw_mp_err mw_mp_abs(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_err   res;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, b)) != MP_OKAY)
    return res;

  SIGN(b) = MP_ZPOS;

  return MP_OKAY;

} /* end mw_mp_abs() */

/* }}} */

/* {{{ mw_mp_neg(a, b) */

/*
  mw_mp_neg(a, b)

  Compute b = -a.  'a' and 'b' may be identical.
 */

mw_mp_err mw_mp_neg(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_err   res;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, b)) != MP_OKAY)
    return res;

  if(s_mw_mp_cmw_mp_d(b, 0) == MP_EQ) 
    SIGN(b) = MP_ZPOS;
  else 
    SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;

  return MP_OKAY;

} /* end mw_mp_neg() */

/* }}} */

/* {{{ mw_mp_add(a, b, c) */

/*
  mw_mp_add(a, b, c)

  Compute c = a + b.  All parameters may be identical.
 */

mw_mp_err mw_mp_add(mw_mp_int *a, mw_mp_int *b, mw_mp_int *c)
{
  mw_mp_err  res;
  int     cmp;

  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

  if(SIGN(a) == SIGN(b)) { /* same sign:  add values, keep sign */

    /* Commutativity of addition lets us do this in either order,
       so we avoid having to use a temporary even if the result 
       is supposed to replace the output
     */
    if(c == b) {
      if((res = s_mw_mp_add(c, a)) != MP_OKAY)
	return res;
    } else {
      if(c != a && (res = mw_mp_copy(a, c)) != MP_OKAY)
	return res;

      if((res = s_mw_mp_add(c, b)) != MP_OKAY) 
	return res;
    }

  } else if((cmp = s_mw_mp_cmp(a, b)) > 0) {  /* different sign: a > b   */

    /* If the output is going to be clobbered, we will use a temporary
       variable; otherwise, we'll do it without touching the memory 
       allocator at all, if possible
     */
    if(c == b) {
      mw_mp_int  tmp;

      if((res = mw_mp_init_copy(&tmp, a)) != MP_OKAY)
	return res;
      if((res = s_mw_mp_sub(&tmp, b)) != MP_OKAY) {
	mw_mp_clear(&tmp);
	return res;
      }

      s_mw_mp_exch(&tmp, c);
      mw_mp_clear(&tmp);

    } else {

      if(c != a && (res = mw_mp_copy(a, c)) != MP_OKAY)
	return res;
      if((res = s_mw_mp_sub(c, b)) != MP_OKAY)
	return res;

    }

  } else if(cmp == 0) {             /* different sign, a == b   */

    mw_mp_zero(c);
    return MP_OKAY;

  } else {                          /* different sign: a < b    */

    /* See above... */
    if(c == a) {
      mw_mp_int  tmp;

      if((res = mw_mp_init_copy(&tmp, b)) != MP_OKAY)
	return res;
      if((res = s_mw_mp_sub(&tmp, a)) != MP_OKAY) {
	mw_mp_clear(&tmp);
	return res;
      }

      s_mw_mp_exch(&tmp, c);
      mw_mp_clear(&tmp);

    } else {

      if(c != b && (res = mw_mp_copy(b, c)) != MP_OKAY)
	return res;
      if((res = s_mw_mp_sub(c, a)) != MP_OKAY)
	return res;

    }
  }

  if(USED(c) == 1 && DIGIT(c, 0) == 0)
    SIGN(c) = MP_ZPOS;

  return MP_OKAY;

} /* end mw_mp_add() */

/* }}} */

/* {{{ mw_mp_sub(a, b, c) */

/*
  mw_mp_sub(a, b, c)

  Compute c = a - b.  All parameters may be identical.
 */

mw_mp_err mw_mp_sub(mw_mp_int *a, mw_mp_int *b, mw_mp_int *c)
{
  mw_mp_err  res;
  int     cmp;

  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

  if(SIGN(a) != SIGN(b)) {
    if(c == a) {
      if((res = s_mw_mp_add(c, b)) != MP_OKAY)
	return res;
    } else {
      if(c != b && ((res = mw_mp_copy(b, c)) != MP_OKAY))
	return res;
      if((res = s_mw_mp_add(c, a)) != MP_OKAY)
	return res;
      SIGN(c) = SIGN(a);
    }

  } else if((cmp = s_mw_mp_cmp(a, b)) > 0) { /* Same sign, a > b */
    if(c == b) {
      mw_mp_int  tmp;

      if((res = mw_mp_init_copy(&tmp, a)) != MP_OKAY)
	return res;
      if((res = s_mw_mp_sub(&tmp, b)) != MP_OKAY) {
	mw_mp_clear(&tmp);
	return res;
      }
      s_mw_mp_exch(&tmp, c);
      mw_mp_clear(&tmp);

    } else {
      if(c != a && ((res = mw_mp_copy(a, c)) != MP_OKAY))
	return res;

      if((res = s_mw_mp_sub(c, b)) != MP_OKAY)
	return res;
    }

  } else if(cmp == 0) {  /* Same sign, equal magnitude */
    mw_mp_zero(c);
    return MP_OKAY;

  } else {               /* Same sign, b > a */
    if(c == a) {
      mw_mp_int  tmp;

      if((res = mw_mp_init_copy(&tmp, b)) != MP_OKAY)
	return res;

      if((res = s_mw_mp_sub(&tmp, a)) != MP_OKAY) {
	mw_mp_clear(&tmp);
	return res;
      }
      s_mw_mp_exch(&tmp, c);
      mw_mp_clear(&tmp);

    } else {
      if(c != b && ((res = mw_mp_copy(b, c)) != MP_OKAY)) 
	return res;

      if((res = s_mw_mp_sub(c, a)) != MP_OKAY)
	return res;
    }

    SIGN(c) = !SIGN(b);
  }

  if(USED(c) == 1 && DIGIT(c, 0) == 0)
    SIGN(c) = MP_ZPOS;

  return MP_OKAY;

} /* end mw_mp_sub() */

/* }}} */

/* {{{ mw_mp_mul(a, b, c) */

/*
  mw_mp_mul(a, b, c)

  Compute c = a * b.  All parameters may be identical.
 */

mw_mp_err mw_mp_mul(mw_mp_int *a, mw_mp_int *b, mw_mp_int *c)
{
  mw_mp_err   res;
  mw_mp_sign  sgn;

  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

  sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG;

  if(c == b) {
    if((res = s_mw_mp_mul(c, a)) != MP_OKAY)
      return res;

  } else {
    if((res = mw_mp_copy(a, c)) != MP_OKAY)
      return res;

    if((res = s_mw_mp_mul(c, b)) != MP_OKAY)
      return res;
  }
  
  if(sgn == MP_ZPOS || s_mw_mp_cmw_mp_d(c, 0) == MP_EQ)
    SIGN(c) = MP_ZPOS;
  else
    SIGN(c) = sgn;
  
  return MP_OKAY;

} /* end mw_mp_mul() */

/* }}} */

/* {{{ mw_mp_mul_2d(a, d, c) */

/*
  mw_mp_mul_2d(a, d, c)

  Compute c = a * 2^d.  a may be the same as c.
 */

mw_mp_err mw_mp_mul_2d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *c)
{
  mw_mp_err   res;

  ARGCHK(a != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, c)) != MP_OKAY)
    return res;

  if(d == 0)
    return MP_OKAY;

  return s_mw_mp_mul_2d(c, d);

} /* end mw_mp_mul() */

/* }}} */

/* {{{ mw_mp_sqr(a, b) */

#if MP_SQUARE
mw_mp_err mw_mp_sqr(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_err   res;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  if((res = mw_mp_copy(a, b)) != MP_OKAY)
    return res;

  if((res = s_mw_mp_sqr(b)) != MP_OKAY)
    return res;

  SIGN(b) = MP_ZPOS;

  return MP_OKAY;

} /* end mw_mp_sqr() */
#endif

/* }}} */

/* {{{ mw_mp_div(a, b, q, r) */

/*
  mw_mp_div(a, b, q, r)

  Compute q = a / b and r = a mod b.  Input parameters may be re-used
  as output parameters.  If q or r is NULL, that portion of the
  computation will be discarded (although it will still be computed)

  Pay no attention to the hacker behind the curtain.
 */

mw_mp_err mw_mp_div(mw_mp_int *a, mw_mp_int *b, mw_mp_int *q, mw_mp_int *r)
{
  mw_mp_err   res;
  mw_mp_int   qtmp, rtmp;
  int      cmp;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  if(mw_mp_cmw_mp_z(b) == MP_EQ)
    return MP_RANGE;

  /* If a <= b, we can compute the solution without division, and
     avoid any memory allocation
   */
  if((cmp = s_mw_mp_cmp(a, b)) < 0) {
    if(r) {
      if((res = mw_mp_copy(a, r)) != MP_OKAY)
	return res;
    }

    if(q) 
      mw_mp_zero(q);

    return MP_OKAY;

  } else if(cmp == 0) {

    /* Set quotient to 1, with appropriate sign */
    if(q) {
      int qneg = (SIGN(a) != SIGN(b));

      mw_mp_set(q, 1);
      if(qneg)
	SIGN(q) = MP_NEG;
    }

    if(r)
      mw_mp_zero(r);

    return MP_OKAY;
  }

  /* If we get here, it means we actually have to do some division */

  /* Set up some temporaries... */
  if((res = mw_mp_init_copy(&qtmp, a)) != MP_OKAY)
    return res;
  if((res = mw_mp_init_copy(&rtmp, b)) != MP_OKAY)
    goto CLEANUP;

  if((res = s_mw_mp_div(&qtmp, &rtmp)) != MP_OKAY)
    goto CLEANUP;

  /* Compute the signs for the output  */
  SIGN(&rtmp) = SIGN(a); /* Sr = Sa              */
  if(SIGN(a) == SIGN(b))
    SIGN(&qtmp) = MP_ZPOS;  /* Sq = MP_ZPOS if Sa = Sb */
  else
    SIGN(&qtmp) = MP_NEG;   /* Sq = MP_NEG if Sa != Sb */

  if(s_mw_mp_cmw_mp_d(&qtmp, 0) == MP_EQ)
    SIGN(&qtmp) = MP_ZPOS;
  if(s_mw_mp_cmw_mp_d(&rtmp, 0) == MP_EQ)
    SIGN(&rtmp) = MP_ZPOS;

  /* Copy output, if it is needed      */
  if(q) 
    s_mw_mp_exch(&qtmp, q);

  if(r) 
    s_mw_mp_exch(&rtmp, r);

CLEANUP:
  mw_mp_clear(&rtmp);
  mw_mp_clear(&qtmp);

  return res;

} /* end mw_mp_div() */

/* }}} */

/* {{{ mw_mp_div_2d(a, d, q, r) */

mw_mp_err mw_mp_div_2d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *q, mw_mp_int *r)
{
  mw_mp_err  res;

  ARGCHK(a != NULL, MP_BADARG);

  if(q) {
    if((res = mw_mp_copy(a, q)) != MP_OKAY)
      return res;

    s_mw_mp_div_2d(q, d);
  }

  if(r) {
    if((res = mw_mp_copy(a, r)) != MP_OKAY)
      return res;

    s_mw_mp_mod_2d(r, d);
  }

  return MP_OKAY;

} /* end mw_mp_div_2d() */

/* }}} */

/* {{{ mw_mp_expt(a, b, c) */

/*
  mw_mp_expt(a, b, c)

  Compute c = a ** b, that is, raise a to the b power.  Uses a
  standard iterative square-and-multiply technique.
 */

mw_mp_err mw_mp_expt(mw_mp_int *a, mw_mp_int *b, mw_mp_int *c)
{
  mw_mp_int   s, x;
  mw_mp_err   res;
  mw_mp_digit d;

  /// Miranda NG adaptation start - MSVC
  ///int      dig, bit;
  int bit;
  mw_mp_size dig;
  /// Miranda NG adaptation end

  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

  if(mw_mp_cmw_mp_z(b) < 0)
    return MP_RANGE;

  if((res = mw_mp_init(&s)) != MP_OKAY)
    return res;

  mw_mp_set(&s, 1);

  if((res = mw_mp_init_copy(&x, a)) != MP_OKAY)
    goto X;

  /* Loop over low-order digits in ascending order */
  for(dig = 0; dig < (USED(b) - 1); dig++) {
    d = DIGIT(b, dig);

    /* Loop over bits of each non-maximal digit */
    for(bit = 0; bit < DIGIT_BIT; bit++) {
      if(d & 1) {
	if((res = s_mw_mp_mul(&s, &x)) != MP_OKAY) 
	  goto CLEANUP;
      }

      d >>= 1;
      
      if((res = s_mw_mp_sqr(&x)) != MP_OKAY)
	goto CLEANUP;
    }
  }

  /* Consider now the last digit... */
  d = DIGIT(b, dig);

  while(d) {
    if(d & 1) {
      if((res = s_mw_mp_mul(&s, &x)) != MP_OKAY)
	goto CLEANUP;
    }

    d >>= 1;

    if((res = s_mw_mp_sqr(&x)) != MP_OKAY)
      goto CLEANUP;
  }
  
  if(mw_mp_iseven(b))
    SIGN(&s) = SIGN(a);

  res = mw_mp_copy(&s, c);

CLEANUP:
  mw_mp_clear(&x);
X:
  mw_mp_clear(&s);

  return res;

} /* end mw_mp_expt() */

/* }}} */

/* {{{ mw_mp_2expt(a, k) */

/* Compute a = 2^k */

mw_mp_err mw_mp_2expt(mw_mp_int *a, mw_mp_digit k)
{
  ARGCHK(a != NULL, MP_BADARG);

  return s_mw_mp_2expt(a, k);

} /* end mw_mp_2expt() */

/* }}} */

/* {{{ mw_mp_mod(a, m, c) */

/*
  mw_mp_mod(a, m, c)

  Compute c = a (mod m).  Result will always be 0 <= c < m.
 */

mw_mp_err mw_mp_mod(mw_mp_int *a, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_err  res;
  int     mag;

  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);

  if(SIGN(m) == MP_NEG)
    return MP_RANGE;

  /*
     If |a| > m, we need to divide to get the remainder and take the
     absolute value.  

     If |a| < m, we don't need to do any division, just copy and adjust
     the sign (if a is negative).

     If |a| == m, we can simply set the result to zero.

     This order is intended to minimize the average path length of the
     comparison chain on common workloads -- the most frequent cases are
     that |a| != m, so we do those first.
   */
  if((mag = s_mw_mp_cmp(a, m)) > 0) {
    if((res = mw_mp_div(a, m, NULL, c)) != MP_OKAY)
      return res;
    
    if(SIGN(c) == MP_NEG) {
      if((res = mw_mp_add(c, m, c)) != MP_OKAY)
	return res;
    }

  } else if(mag < 0) {
    if((res = mw_mp_copy(a, c)) != MP_OKAY)
      return res;

    if(mw_mp_cmw_mp_z(a) < 0) {
      if((res = mw_mp_add(c, m, c)) != MP_OKAY)
	return res;

    }
    
  } else {
    mw_mp_zero(c);

  }

  return MP_OKAY;

} /* end mw_mp_mod() */

/* }}} */

/* {{{ mw_mp_mod_d(a, d, c) */

/*
  mw_mp_mod_d(a, d, c)

  Compute c = a (mod d).  Result will always be 0 <= c < d
 */
mw_mp_err mw_mp_mod_d(mw_mp_int *a, mw_mp_digit d, mw_mp_digit *c)
{
  mw_mp_err   res;
  mw_mp_digit rem;

  ARGCHK(a != NULL && c != NULL, MP_BADARG);

  if(s_mw_mp_cmw_mp_d(a, d) > 0) {
    if((res = mw_mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
      return res;

  } else {
    if(SIGN(a) == MP_NEG)
      rem = d - DIGIT(a, 0);
    else
      rem = DIGIT(a, 0);
  }

  if(c)
    *c = rem;

  return MP_OKAY;

} /* end mw_mp_mod_d() */

/* }}} */

/* {{{ mw_mp_sqrt(a, b) */

/*
  mw_mp_sqrt(a, b)

  Compute the integer square root of a, and store the result in b.
  Uses an integer-arithmetic version of Newton's iterative linear
  approximation technique to determine this value; the result has the
  following two properties:

     b^2 <= a
     (b+1)^2 >= a

  It is a range error to pass a negative value.
 */
mw_mp_err mw_mp_sqrt(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_int   x, t;
  mw_mp_err   res;

  ARGCHK(a != NULL && b != NULL, MP_BADARG);

  /* Cannot take square root of a negative value */
  if(SIGN(a) == MP_NEG)
    return MP_RANGE;

  /* Special cases for zero and one, trivial     */
  if(mw_mp_cmw_mp_d(a, 0) == MP_EQ || mw_mp_cmw_mp_d(a, 1) == MP_EQ) 
    return mw_mp_copy(a, b);
    
  /* Initialize the temporaries we'll use below  */
  if((res = mw_mp_init_size(&t, USED(a))) != MP_OKAY)
    return res;

  /* Compute an initial guess for the iteration as a itself */
  if((res = mw_mp_init_copy(&x, a)) != MP_OKAY)
    goto X;

  for(;;) {
    /* t = (x * x) - a */
    mw_mp_copy(&x, &t);      /* can't fail, t is big enough for original x */
    if((res = mw_mp_sqr(&t, &t)) != MP_OKAY ||
       (res = mw_mp_sub(&t, a, &t)) != MP_OKAY)
      goto CLEANUP;

    /* t = t / 2x       */
    s_mw_mp_mul_2(&x);
    if((res = mw_mp_div(&t, &x, &t, NULL)) != MP_OKAY)
      goto CLEANUP;
    s_mw_mp_div_2(&x);

    /* Terminate the loop, if the quotient is zero */
    if(mw_mp_cmw_mp_z(&t) == MP_EQ)
      break;

    /* x = x - t       */
    if((res = mw_mp_sub(&x, &t, &x)) != MP_OKAY)
      goto CLEANUP;

  }

  /* Copy result to output parameter */
  mw_mp_sub_d(&x, 1, &x);
  s_mw_mp_exch(&x, b);

 CLEANUP:
  mw_mp_clear(&x);
 X:
  mw_mp_clear(&t); 

  return res;

} /* end mw_mp_sqrt() */

/* }}} */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ Modular arithmetic */

#if MP_MODARITH
/* {{{ mw_mp_addmod(a, b, m, c) */

/*
  mw_mp_addmod(a, b, m, c)

  Compute c = (a + b) mod m
 */

mw_mp_err mw_mp_addmod(mw_mp_int *a, mw_mp_int *b, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_err  res;

  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_add(a, b, c)) != MP_OKAY)
    return res;
  if((res = mw_mp_mod(c, m, c)) != MP_OKAY)
    return res;

  return MP_OKAY;

}

/* }}} */

/* {{{ mw_mp_submod(a, b, m, c) */

/*
  mw_mp_submod(a, b, m, c)

  Compute c = (a - b) mod m
 */

mw_mp_err mw_mp_submod(mw_mp_int *a, mw_mp_int *b, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_err  res;

  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_sub(a, b, c)) != MP_OKAY)
    return res;
  if((res = mw_mp_mod(c, m, c)) != MP_OKAY)
    return res;

  return MP_OKAY;

}

/* }}} */

/* {{{ mw_mp_mulmod(a, b, m, c) */

/*
  mw_mp_mulmod(a, b, m, c)

  Compute c = (a * b) mod m
 */

mw_mp_err mw_mp_mulmod(mw_mp_int *a, mw_mp_int *b, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_err  res;

  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_mul(a, b, c)) != MP_OKAY)
    return res;
  if((res = mw_mp_mod(c, m, c)) != MP_OKAY)
    return res;

  return MP_OKAY;

}

/* }}} */

/* {{{ mw_mp_sqrmod(a, m, c) */

#if MP_SQUARE
mw_mp_err mw_mp_sqrmod(mw_mp_int *a, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_err  res;

  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_sqr(a, c)) != MP_OKAY)
    return res;
  if((res = mw_mp_mod(c, m, c)) != MP_OKAY)
    return res;

  return MP_OKAY;

} /* end mw_mp_sqrmod() */
#endif

/* }}} */

/* {{{ mw_mp_exptmod(a, b, m, c) */

/*
  mw_mp_exptmod(a, b, m, c)

  Compute c = (a ** b) mod m.  Uses a standard square-and-multiply
  method with modular reductions at each step. (This is basically the
  same code as mw_mp_expt(), except for the addition of the reductions)
  
  The modular reductions are done using Barrett's algorithm (see
  s_mw_mp_reduce() below for details)
 */

mw_mp_err mw_mp_exptmod(mw_mp_int *a, mw_mp_int *b, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_int   s, x, mu;
  mw_mp_err   res;
  mw_mp_digit d, *db;
  mw_mp_size  ub;
  /// Miranda NG adaptation start - MSVC
  ///int      dig, bit;
  int bit;
  mw_mp_size dig;
  /// Miranda NG adaptation end

  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

  if(mw_mp_cmw_mp_z(b) < 0 || mw_mp_cmw_mp_z(m) <= 0)
    return MP_RANGE;

  if((res = mw_mp_init(&s)) != MP_OKAY)
    return res;
  if((res = mw_mp_init_copy(&x, a)) != MP_OKAY)
    goto X;
  if((res = mw_mp_mod(&x, m, &x)) != MP_OKAY ||
     (res = mw_mp_init(&mu)) != MP_OKAY)
    goto MU;

  mw_mp_set(&s, 1);

  /* mu = b^2k / m */
  s_mw_mp_add_d(&mu, 1); 
  s_mw_mp_lshd(&mu, 2 * USED(m));
  if((res = mw_mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
    goto CLEANUP;

  /* Loop over digits of b in ascending order, except highest order */
  db = DIGITS(b);
  ub = USED(b);
  for(dig = 0; dig < (ub - 1); dig++) {
    d = *db++;

    /* Loop over the bits of the lower-order digits */
    for(bit = 0; bit < DIGIT_BIT; bit++) {
      if(d & 1) {
	if((res = s_mw_mp_mul(&s, &x)) != MP_OKAY)
	  goto CLEANUP;
	if((res = s_mw_mp_reduce(&s, m, &mu)) != MP_OKAY)
	  goto CLEANUP;
      }

      d >>= 1;

      if((res = s_mw_mp_sqr(&x)) != MP_OKAY)
	goto CLEANUP;
      if((res = s_mw_mp_reduce(&x, m, &mu)) != MP_OKAY)
	goto CLEANUP;
    }
  }

  /* Now do the last digit... */
  d = *db;

  while(d) {
    if(d & 1) {
      if((res = s_mw_mp_mul(&s, &x)) != MP_OKAY)
	goto CLEANUP;
      if((res = s_mw_mp_reduce(&s, m, &mu)) != MP_OKAY)
	goto CLEANUP;
    }

    d >>= 1;

    if((res = s_mw_mp_sqr(&x)) != MP_OKAY)
      goto CLEANUP;
    if((res = s_mw_mp_reduce(&x, m, &mu)) != MP_OKAY)
      goto CLEANUP;
  }

  s_mw_mp_exch(&s, c);

 CLEANUP:
  mw_mp_clear(&mu);
 MU:
  mw_mp_clear(&x);
 X:
  mw_mp_clear(&s);

  return res;

} /* end mw_mp_exptmod() */

/* }}} */

/* {{{ mw_mp_exptmod_d(a, d, m, c) */

mw_mp_err mw_mp_exptmod_d(mw_mp_int *a, mw_mp_digit d, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_int   s, x;
  mw_mp_err   res;

  ARGCHK(a != NULL && c != NULL, MP_BADARG);

  if((res = mw_mp_init(&s)) != MP_OKAY)
    return res;
  if((res = mw_mp_init_copy(&x, a)) != MP_OKAY)
    goto X;

  mw_mp_set(&s, 1);

  while(d != 0) {
    if(d & 1) {
      if((res = s_mw_mp_mul(&s, &x)) != MP_OKAY ||
	 (res = mw_mp_mod(&s, m, &s)) != MP_OKAY)
	goto CLEANUP;
    }

    d /= 2;

    if((res = s_mw_mp_sqr(&x)) != MP_OKAY ||
       (res = mw_mp_mod(&x, m, &x)) != MP_OKAY)
      goto CLEANUP;
  }

  s_mw_mp_exch(&s, c);

CLEANUP:
  mw_mp_clear(&x);
X:
  mw_mp_clear(&s);

  return res;

} /* end mw_mp_exptmod_d() */

/* }}} */
#endif /* if MP_MODARITH */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ Comparison functions */

/* {{{ mw_mp_cmw_mp_z(a) */

/*
  mw_mp_cmw_mp_z(a)

  Compare a <=> 0.  Returns <0 if a<0, 0 if a=0, >0 if a>0.
 */

int    mw_mp_cmw_mp_z(mw_mp_int *a)
{
  if(SIGN(a) == MP_NEG)
    return MP_LT;
  else if(USED(a) == 1 && DIGIT(a, 0) == 0)
    return MP_EQ;
  else
    return MP_GT;

} /* end mw_mp_cmw_mp_z() */

/* }}} */

/* {{{ mw_mp_cmw_mp_d(a, d) */

/*
  mw_mp_cmw_mp_d(a, d)

  Compare a <=> d.  Returns <0 if a<d, 0 if a=d, >0 if a>d
 */

int    mw_mp_cmw_mp_d(mw_mp_int *a, mw_mp_digit d)
{
  ARGCHK(a != NULL, MP_EQ);

  if(SIGN(a) == MP_NEG)
    return MP_LT;

  return s_mw_mp_cmw_mp_d(a, d);

} /* end mw_mp_cmw_mp_d() */

/* }}} */

/* {{{ mw_mp_cmp(a, b) */

int    mw_mp_cmp(mw_mp_int *a, mw_mp_int *b)
{
  ARGCHK(a != NULL && b != NULL, MP_EQ);

  if(SIGN(a) == SIGN(b)) {
    int  mag;

    if((mag = s_mw_mp_cmp(a, b)) == MP_EQ)
      return MP_EQ;

    if(SIGN(a) == MP_ZPOS)
      return mag;
    else
      return -mag;

  } else if(SIGN(a) == MP_ZPOS) {
    return MP_GT;
  } else {
    return MP_LT;
  }

} /* end mw_mp_cmp() */

/* }}} */

/* {{{ mw_mp_cmw_mp_mag(a, b) */

/*
  mw_mp_cmw_mp_mag(a, b)

  Compares |a| <=> |b|, and returns an appropriate comparison result
 */

int    mw_mp_cmw_mp_mag(mw_mp_int *a, mw_mp_int *b)
{
  ARGCHK(a != NULL && b != NULL, MP_EQ);

  return s_mw_mp_cmp(a, b);

} /* end mw_mp_cmw_mp_mag() */

/* }}} */

/* {{{ mw_mp_cmw_mp_int(a, z) */

/*
  This just converts z to an mw_mp_int, and uses the existing comparison
  routines.  This is sort of inefficient, but it's not clear to me how
  frequently this wil get used anyway.  For small positive constants,
  you can always use mw_mp_cmw_mp_d(), and for zero, there is mw_mp_cmw_mp_z().
 */
int    mw_mp_cmw_mp_int(mw_mp_int *a, long z)
{
  mw_mp_int  tmp;
  int     out;

  ARGCHK(a != NULL, MP_EQ);
  
  mw_mp_init(&tmp); mw_mp_set_int(&tmp, z);
  out = mw_mp_cmp(a, &tmp);
  mw_mp_clear(&tmp);

  return out;

} /* end mw_mp_cmw_mp_int() */

/* }}} */

/* {{{ mw_mp_isodd(a) */

/*
  mw_mp_isodd(a)

  Returns a true (non-zero) value if a is odd, false (zero) otherwise.
 */
int    mw_mp_isodd(mw_mp_int *a)
{
  ARGCHK(a != NULL, 0);

  return (DIGIT(a, 0) & 1);

} /* end mw_mp_isodd() */

/* }}} */

/* {{{ mw_mp_iseven(a) */

int    mw_mp_iseven(mw_mp_int *a)
{
  return !mw_mp_isodd(a);

} /* end mw_mp_iseven() */

/* }}} */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ Number theoretic functions */

#if MP_NUMTH
/* {{{ mw_mp_gcd(a, b, c) */

/*
  Like the old mw_mp_gcd() function, except computes the GCD using the
  binary algorithm due to Josef Stein in 1961 (via Knuth).
 */
mw_mp_err mw_mp_gcd(mw_mp_int *a, mw_mp_int *b, mw_mp_int *c)
{
  mw_mp_err   res;
  mw_mp_int   u, v, t;
  mw_mp_size  k = 0;

  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

  if(mw_mp_cmw_mp_z(a) == MP_EQ && mw_mp_cmw_mp_z(b) == MP_EQ)
      return MP_RANGE;
  if(mw_mp_cmw_mp_z(a) == MP_EQ) {
    if((res = mw_mp_copy(b, c)) != MP_OKAY)
      return res;
    SIGN(c) = MP_ZPOS; return MP_OKAY;
  } else if(mw_mp_cmw_mp_z(b) == MP_EQ) {
    if((res = mw_mp_copy(a, c)) != MP_OKAY)
      return res;
    SIGN(c) = MP_ZPOS; return MP_OKAY;
  }

  if((res = mw_mp_init(&t)) != MP_OKAY)
    return res;
  if((res = mw_mp_init_copy(&u, a)) != MP_OKAY)
    goto U;
  if((res = mw_mp_init_copy(&v, b)) != MP_OKAY)
    goto V;

  SIGN(&u) = MP_ZPOS;
  SIGN(&v) = MP_ZPOS;

  /* Divide out common factors of 2 until at least 1 of a, b is even */
  while(mw_mp_iseven(&u) && mw_mp_iseven(&v)) {
    s_mw_mp_div_2(&u);
    s_mw_mp_div_2(&v);
    ++k;
  }

  /* Initialize t */
  if(mw_mp_isodd(&u)) {
    if((res = mw_mp_copy(&v, &t)) != MP_OKAY)
      goto CLEANUP;
    
    /* t = -v */
    if(SIGN(&v) == MP_ZPOS)
      SIGN(&t) = MP_NEG;
    else
      SIGN(&t) = MP_ZPOS;
    
  } else {
    if((res = mw_mp_copy(&u, &t)) != MP_OKAY)
      goto CLEANUP;

  }

  for(;;) {
    while(mw_mp_iseven(&t)) {
      s_mw_mp_div_2(&t);
    }

    if(mw_mp_cmw_mp_z(&t) == MP_GT) {
      if((res = mw_mp_copy(&t, &u)) != MP_OKAY)
	goto CLEANUP;

    } else {
      if((res = mw_mp_copy(&t, &v)) != MP_OKAY)
	goto CLEANUP;

      /* v = -t */
      if(SIGN(&t) == MP_ZPOS)
	SIGN(&v) = MP_NEG;
      else
	SIGN(&v) = MP_ZPOS;
    }

    if((res = mw_mp_sub(&u, &v, &t)) != MP_OKAY)
      goto CLEANUP;

    if(s_mw_mp_cmw_mp_d(&t, 0) == MP_EQ)
      break;
  }

  s_mw_mp_2expt(&v, k);       /* v = 2^k   */
  res = mw_mp_mul(&u, &v, c); /* c = u * v */

 CLEANUP:
  mw_mp_clear(&v);
 V:
  mw_mp_clear(&u);
 U:
  mw_mp_clear(&t);

  return res;

} /* end mw_mp_bgcd() */

/* }}} */

/* {{{ mw_mp_lcm(a, b, c) */

/* We compute the least common multiple using the rule:

   ab = [a, b](a, b)

   ... by computing the product, and dividing out the gcd.
 */

mw_mp_err mw_mp_lcm(mw_mp_int *a, mw_mp_int *b, mw_mp_int *c)
{
  mw_mp_int  gcd, prod;
  mw_mp_err  res;

  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

  /* Set up temporaries */
  if((res = mw_mp_init(&gcd)) != MP_OKAY)
    return res;
  if((res = mw_mp_init(&prod)) != MP_OKAY)
    goto GCD;

  if((res = mw_mp_mul(a, b, &prod)) != MP_OKAY)
    goto CLEANUP;
  if((res = mw_mp_gcd(a, b, &gcd)) != MP_OKAY)
    goto CLEANUP;

  res = mw_mp_div(&prod, &gcd, c, NULL);

 CLEANUP:
  mw_mp_clear(&prod);
 GCD:
  mw_mp_clear(&gcd);

  return res;

} /* end mw_mp_lcm() */

/* }}} */

/* {{{ mw_mp_xgcd(a, b, g, x, y) */

/*
  mw_mp_xgcd(a, b, g, x, y)

  Compute g = (a, b) and values x and y satisfying Bezout's identity
  (that is, ax + by = g).  This uses the extended binary GCD algorithm
  based on the Stein algorithm used for mw_mp_gcd()
 */

mw_mp_err mw_mp_xgcd(mw_mp_int *a, mw_mp_int *b, mw_mp_int *g, mw_mp_int *x, mw_mp_int *y)
{
  mw_mp_int   gx, xc, yc, u, v, A, B, C, D;
  mw_mp_int  *clean[9];
  mw_mp_err   res;
  int      last = -1;

  if(mw_mp_cmw_mp_z(b) == 0)
    return MP_RANGE;

  /* Initialize all these variables we need */
  if((res = mw_mp_init(&u)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &u;
  if((res = mw_mp_init(&v)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &v;
  if((res = mw_mp_init(&gx)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &gx;
  if((res = mw_mp_init(&A)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &A;
  if((res = mw_mp_init(&B)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &B;
  if((res = mw_mp_init(&C)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &C;
  if((res = mw_mp_init(&D)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &D;
  if((res = mw_mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &xc;
  mw_mp_abs(&xc, &xc);
  if((res = mw_mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP;
  clean[++last] = &yc;
  mw_mp_abs(&yc, &yc);

  mw_mp_set(&gx, 1);

  /* Divide by two until at least one of them is even */
  while(mw_mp_iseven(&xc) && mw_mp_iseven(&yc)) {
    s_mw_mp_div_2(&xc);
    s_mw_mp_div_2(&yc);
    if((res = s_mw_mp_mul_2(&gx)) != MP_OKAY)
      goto CLEANUP;
  }

  mw_mp_copy(&xc, &u);
  mw_mp_copy(&yc, &v);
  mw_mp_set(&A, 1); mw_mp_set(&D, 1);

  /* Loop through binary GCD algorithm */
  for(;;) {
    while(mw_mp_iseven(&u)) {
      s_mw_mp_div_2(&u);

      if(mw_mp_iseven(&A) && mw_mp_iseven(&B)) {
	s_mw_mp_div_2(&A); s_mw_mp_div_2(&B);
      } else {
	if((res = mw_mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP;
	s_mw_mp_div_2(&A);
	if((res = mw_mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP;
	s_mw_mp_div_2(&B);
      }
    }

    while(mw_mp_iseven(&v)) {
      s_mw_mp_div_2(&v);

      if(mw_mp_iseven(&C) && mw_mp_iseven(&D)) {
	s_mw_mp_div_2(&C); s_mw_mp_div_2(&D);
      } else {
	if((res = mw_mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP;
	s_mw_mp_div_2(&C);
	if((res = mw_mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP;
	s_mw_mp_div_2(&D);
      }
    }

    if(mw_mp_cmp(&u, &v) >= 0) {
      if((res = mw_mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP;
      if((res = mw_mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP;
      if((res = mw_mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP;

    } else {
      if((res = mw_mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP;
      if((res = mw_mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP;
      if((res = mw_mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP;

    }

    /* If we're done, copy results to output */
    if(mw_mp_cmw_mp_z(&u) == 0) {
      if(x)
	if((res = mw_mp_copy(&C, x)) != MP_OKAY) goto CLEANUP;

      if(y)
	if((res = mw_mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
      
      if(g)
	if((res = mw_mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;

      break;
    }
  }

 CLEANUP:
  while(last >= 0)
    mw_mp_clear(clean[last--]);

  return res;

} /* end mw_mp_xgcd() */

/* }}} */

/* {{{ mw_mp_invmod(a, m, c) */

/*
  mw_mp_invmod(a, m, c)

  Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
  This is equivalent to the question of whether (a, m) = 1.  If not,
  MP_UNDEF is returned, and there is no inverse.
 */

mw_mp_err mw_mp_invmod(mw_mp_int *a, mw_mp_int *m, mw_mp_int *c)
{
  mw_mp_int  g, x;
  mw_mp_sign sa;
  mw_mp_err  res;

  ARGCHK(a && m && c, MP_BADARG);

  if(mw_mp_cmw_mp_z(a) == 0 || mw_mp_cmw_mp_z(m) == 0)
    return MP_RANGE;

  sa = SIGN(a);

  if((res = mw_mp_init(&g)) != MP_OKAY)
    return res;
  if((res = mw_mp_init(&x)) != MP_OKAY)
    goto X;

  if((res = mw_mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY)
    goto CLEANUP;

  if(mw_mp_cmw_mp_d(&g, 1) != MP_EQ) {
    res = MP_UNDEF;
    goto CLEANUP;
  }

  res = mw_mp_mod(&x, m, c);
  SIGN(c) = sa;

CLEANUP:
  mw_mp_clear(&x);
X:
  mw_mp_clear(&g);

  return res;

} /* end mw_mp_invmod() */

/* }}} */
#endif /* if MP_NUMTH */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ mw_mp_print(mp, ofp) */

#if MP_IOFUNC
/*
  mw_mp_print(mp, ofp)

  Print a textual representation of the given mw_mp_int on the output
  stream 'ofp'.  Output is generated using the internal radix.
 */

void   mw_mp_print(mw_mp_int *mp, FILE *ofp)
{
  int   ix;

  if(mp == NULL || ofp == NULL)
    return;

  fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp);

  for(ix = USED(mp) - 1; ix >= 0; ix--) {
    fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
  }

} /* end mw_mp_print() */

#endif /* if MP_IOFUNC */

/* }}} */

/*------------------------------------------------------------------------*/
/* {{{ More I/O Functions */

/* {{{ mw_mp_read_signed_bin(mp, str, len) */

/* 
   mw_mp_read_signed_bin(mp, str, len)

   Read in a raw value (base 256) into the given mw_mp_int
 */

mw_mp_err  mw_mp_read_signed_bin(mw_mp_int *mp, unsigned char *str, int len)
{
  mw_mp_err         res;

  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);

  if((res = mw_mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) {
    /* Get sign from first byte */
    if(str[0])
      SIGN(mp) = MP_NEG;
    else
      SIGN(mp) = MP_ZPOS;
  }

  return res;

} /* end mw_mp_read_signed_bin() */

/* }}} */

/* {{{ mw_mp_signed_bin_size(mp) */

int    mw_mp_signed_bin_size(mw_mp_int *mp)
{
  ARGCHK(mp != NULL, 0);

  return mw_mp_unsigned_bin_size(mp) + 1;

} /* end mw_mp_signed_bin_size() */

/* }}} */

/* {{{ mw_mp_to_signed_bin(mp, str) */

mw_mp_err mw_mp_to_signed_bin(mw_mp_int *mp, unsigned char *str)
{
  ARGCHK(mp != NULL && str != NULL, MP_BADARG);

  /* Caller responsible for allocating enough memory (use mw_mp_raw_size(mp)) */
  str[0] = (char)SIGN(mp);

  return mw_mp_to_unsigned_bin(mp, str + 1);

} /* end mw_mp_to_signed_bin() */

/* }}} */

/* {{{ mw_mp_read_unsigned_bin(mp, str, len) */

/*
  mw_mp_read_unsigned_bin(mp, str, len)

  Read in an unsigned value (base 256) into the given mw_mp_int
 */

mw_mp_err  mw_mp_read_unsigned_bin(mw_mp_int *mp, unsigned char *str, int len)
{
  int     ix;
  mw_mp_err  res;

  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);

  mw_mp_zero(mp);

  for(ix = 0; ix < len; ix++) {
    if((res = s_mw_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
      return res;

    if((res = mw_mp_add_d(mp, str[ix], mp)) != MP_OKAY)
      return res;
  }
  
  return MP_OKAY;
  
} /* end mw_mp_read_unsigned_bin() */

/* }}} */

/* {{{ mw_mp_unsigned_bin_size(mp) */

int     mw_mp_unsigned_bin_size(mw_mp_int *mp) 
{
  mw_mp_digit   topdig;
  int        count;

  ARGCHK(mp != NULL, 0);

  /* Special case for the value zero */
  if(USED(mp) == 1 && DIGIT(mp, 0) == 0)
    return 1;

  count = (USED(mp) - 1) * sizeof(mw_mp_digit);
  topdig = DIGIT(mp, USED(mp) - 1);

  while(topdig != 0) {
    ++count;
    topdig >>= CHAR_BIT;
  }

  return count;

} /* end mw_mp_unsigned_bin_size() */

/* }}} */

/* {{{ mw_mp_to_unsigned_bin(mp, str) */

mw_mp_err mw_mp_to_unsigned_bin(mw_mp_int *mp, unsigned char *str)
{
  mw_mp_digit      *dp, *end, d;
  unsigned char *spos;

  ARGCHK(mp != NULL && str != NULL, MP_BADARG);

  dp = DIGITS(mp);
  end = dp + USED(mp) - 1;
  spos = str;

  /* Special case for zero, quick test */
  if(dp == end && *dp == 0) {
    *str = '\0';
    return MP_OKAY;
  }

  /* Generate digits in reverse order */
  while(dp < end) {
    int      ix;

    d = *dp;
    for(ix = 0; ix < sizeof(mw_mp_digit); ++ix) {
      *spos = d & UCHAR_MAX;
      d >>= CHAR_BIT;
      ++spos;
    }

    ++dp;
  }

  /* Now handle last digit specially, high order zeroes are not written */
  d = *end;
  while(d != 0) {
    *spos = d & UCHAR_MAX;
    d >>= CHAR_BIT;
    ++spos;
  }

  /* Reverse everything to get digits in the correct order */
  while(--spos > str) {
    unsigned char t = *str;
    *str = *spos;
    *spos = t;

    ++str;
  }

  return MP_OKAY;

} /* end mw_mp_to_unsigned_bin() */

/* }}} */

/* {{{ mw_mp_count_bits(mp) */

int    mw_mp_count_bits(mw_mp_int *mp)
{
  int      len;
  mw_mp_digit d;

  ARGCHK(mp != NULL, MP_BADARG);

  len = DIGIT_BIT * (USED(mp) - 1);
  d = DIGIT(mp, USED(mp) - 1);

  while(d != 0) {
    ++len;
    d >>= 1;
  }

  return len;
  
} /* end mw_mp_count_bits() */

/* }}} */

/* {{{ mw_mp_read_radix(mp, str, radix) */

/*
  mw_mp_read_radix(mp, str, radix)

  Read an integer from the given string, and set mp to the resulting
  value.  The input is presumed to be in base 10.  Leading non-digit
  characters are ignored, and the function reads until a non-digit
  character or the end of the string.
 */

mw_mp_err  mw_mp_read_radix(mw_mp_int *mp, unsigned char *str, int radix)
{
  int     ix = 0, val = 0;
  mw_mp_err  res;
  mw_mp_sign sig = MP_ZPOS;

  ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, 
	 MP_BADARG);

  mw_mp_zero(mp);

  /* Skip leading non-digit characters until a digit or '-' or '+' */
  while(str[ix] && 
	(s_mw_mp_tovalue(str[ix], radix) < 0) && 
	str[ix] != '-' &&
	str[ix] != '+') {
    ++ix;
  }

  if(str[ix] == '-') {
    sig = MP_NEG;
    ++ix;
  } else if(str[ix] == '+') {
    sig = MP_ZPOS; /* this is the default anyway... */
    ++ix;
  }

  while((val = s_mw_mp_tovalue(str[ix], radix)) >= 0) {
    if((res = s_mw_mp_mul_d(mp, radix)) != MP_OKAY)
      return res;
    if((res = s_mw_mp_add_d(mp, val)) != MP_OKAY)
      return res;
    ++ix;
  }

  if(s_mw_mp_cmw_mp_d(mp, 0) == MP_EQ)
    SIGN(mp) = MP_ZPOS;
  else
    SIGN(mp) = sig;

  return MP_OKAY;

} /* end mw_mp_read_radix() */

/* }}} */

/* {{{ mw_mp_radix_size(mp, radix) */

int    mw_mp_radix_size(mw_mp_int *mp, int radix)
{
  int  len;
  ARGCHK(mp != NULL, 0);

  len = s_mw_mp_outlen(mw_mp_count_bits(mp), radix) + 1; /* for NUL terminator */

  if(mw_mp_cmw_mp_z(mp) < 0)
    ++len; /* for sign */

  return len;

} /* end mw_mp_radix_size() */

/* }}} */

/* {{{ mw_mp_value_radix_size(num, qty, radix) */

/* num = number of digits
   qty = number of bits per digit
   radix = target base
   
   Return the number of digits in the specified radix that would be
   needed to express 'num' digits of 'qty' bits each.
 */
int    mw_mp_value_radix_size(int num, int qty, int radix)
{
  ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0);

  return s_mw_mp_outlen(num * qty, radix);

} /* end mw_mp_value_radix_size() */

/* }}} */

/* {{{ mw_mp_toradix(mp, str, radix) */

mw_mp_err mw_mp_toradix(mw_mp_int *mp, unsigned char *str, int radix)
{
  int  ix, pos = 0;

  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
  ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);

  if(mw_mp_cmw_mp_z(mp) == MP_EQ) {
    str[0] = '0';
    str[1] = '\0';
  } else {
    mw_mp_err   res;
    mw_mp_int   tmp;
    mw_mp_sign  sgn;
    mw_mp_digit rem, rdx = (mw_mp_digit)radix;
    char     ch;

    if((res = mw_mp_init_copy(&tmp, mp)) != MP_OKAY)
      return res;

    /* Save sign for later, and take absolute value */
    sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS;

    /* Generate output digits in reverse order      */
    while(mw_mp_cmw_mp_z(&tmp) != 0) {
      if((res = s_mw_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) {
	mw_mp_clear(&tmp);
	return res;
      }

      /* Generate digits, use capital letters */
      ch = s_mw_mp_todigit(rem, radix, 0);

      str[pos++] = ch;
    }

    /* Add - sign if original value was negative */
    if(sgn == MP_NEG)
      str[pos++] = '-';

    /* Add trailing NUL to end the string        */
    str[pos--] = '\0';

    /* Reverse the digits and sign indicator     */
    ix = 0;
    while(ix < pos) {
      char tmp = str[ix];

      str[ix] = str[pos];
      str[pos] = tmp;
      ++ix;
      --pos;
    }
    
    mw_mp_clear(&tmp);
  }

  return MP_OKAY;

} /* end mw_mp_toradix() */

/* }}} */

/* {{{ mw_mp_char2value(ch, r) */

int    mw_mp_char2value(char ch, int r)
{
  return s_mw_mp_tovalue(ch, r);

} /* end mw_mp_tovalue() */

/* }}} */

/* }}} */

/* {{{ mw_mp_strerror(ec) */

/*
  mw_mp_strerror(ec)

  Return a string describing the meaning of error code 'ec'.  The
  string returned is allocated in static memory, so the caller should
  not attempt to modify or free the memory associated with this
  string.
 */
const char  *mw_mp_strerror(mw_mp_err ec)
{
  int   aec = (ec < 0) ? -ec : ec;

  /* Code values are negative, so the senses of these comparisons
     are accurate */
  if(ec < MP_LAST_CODE || ec > MP_OKAY) {
    return mw_mp_err_string[0];  /* unknown error code */
  } else {
    return mw_mp_err_string[aec + 1];
  }

} /* end mw_mp_strerror() */

/* }}} */

/*========================================================================*/
/*------------------------------------------------------------------------*/
/* Static function definitions (internal use only)                        */

/* {{{ Memory management */

/* {{{ s_mw_mp_grow(mp, min) */

/* Make sure there are at least 'min' digits allocated to mp              */
mw_mp_err   s_mw_mp_grow(mw_mp_int *mp, mw_mp_size min)
{
  if(min > ALLOC(mp)) {
    mw_mp_digit   *tmp;

    /* Set min to next nearest default precision block size */
    min = ((min + (s_mw_mp_defprec - 1)) / s_mw_mp_defprec) * s_mw_mp_defprec;

    if((tmp = s_mw_mp_alloc(min, sizeof(mw_mp_digit))) == NULL)
      return MP_MEM;

    s_mw_mp_copy(DIGITS(mp), tmp, USED(mp));

#if MP_CRYPTO
    s_mw_mp_setz(DIGITS(mp), ALLOC(mp));
#endif
    s_mw_mp_free(DIGITS(mp));
    DIGITS(mp) = tmp;
    ALLOC(mp) = min;
  }

  return MP_OKAY;

} /* end s_mw_mp_grow() */

/* }}} */

/* {{{ s_mw_mp_pad(mp, min) */

/* Make sure the used size of mp is at least 'min', growing if needed     */
mw_mp_err   s_mw_mp_pad(mw_mp_int *mp, mw_mp_size min)
{
  if(min > USED(mp)) {
    mw_mp_err  res;

    /* Make sure there is room to increase precision  */
    if(min > ALLOC(mp) && (res = s_mw_mp_grow(mp, min)) != MP_OKAY)
      return res;

    /* Increase precision; should already be 0-filled */
    USED(mp) = min;
  }

  return MP_OKAY;

} /* end s_mw_mp_pad() */

/* }}} */

/* {{{ s_mw_mp_setz(dp, count) */

#if MP_MACRO == 0
/* Set 'count' digits pointed to by dp to be zeroes                       */
void s_mw_mp_setz(mw_mp_digit *dp, mw_mp_size count)
{
#if MP_MEMSET == 0
  int  ix;

  for(ix = 0; ix < count; ix++)
    dp[ix] = 0;
#else
  memset(dp, 0, count * sizeof(mw_mp_digit));
#endif

} /* end s_mw_mp_setz() */
#endif

/* }}} */

/* {{{ s_mw_mp_copy(sp, dp, count) */

#if MP_MACRO == 0
/* Copy 'count' digits from sp to dp                                      */
void s_mw_mp_copy(mw_mp_digit *sp, mw_mp_digit *dp, mw_mp_size count)
{
#if MP_MEMCPY == 0
  int  ix;

  for(ix = 0; ix < count; ix++)
    dp[ix] = sp[ix];
#else
  memcpy(dp, sp, count * sizeof(mw_mp_digit));
#endif

} /* end s_mw_mp_copy() */
#endif

/* }}} */

/* {{{ s_mw_mp_alloc(nb, ni) */

#if MP_MACRO == 0
/* Allocate ni records of nb bytes each, and return a pointer to that     */
void    *s_mw_mp_alloc(size_t nb, size_t ni)
{
  return calloc(nb, ni);

} /* end s_mw_mp_alloc() */
#endif

/* }}} */

/* {{{ s_mw_mp_free(ptr) */

#if MP_MACRO == 0
/* Free the memory pointed to by ptr                                      */
void     s_mw_mp_free(void *ptr)
{
  if(ptr)
    free(ptr);

} /* end s_mw_mp_free() */
#endif

/* }}} */

/* {{{ s_mw_mp_clamp(mp) */

/* Remove leading zeroes from the given value                             */
void     s_mw_mp_clamp(mw_mp_int *mp)
{
  mw_mp_size   du = USED(mp);
  mw_mp_digit *zp = DIGITS(mp) + du - 1;

  while(du > 1 && !*zp--)
    --du;

  if(du == 1 && *zp == 0)
    SIGN(mp) = MP_ZPOS;

  USED(mp) = du;

} /* end s_mw_mp_clamp() */


/* }}} */

/* {{{ s_mw_mp_exch(a, b) */

/* Exchange the data for a and b; (b, a) = (a, b)                         */
void     s_mw_mp_exch(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_int   tmp;

  tmp = *a;
  *a = *b;
  *b = tmp;

} /* end s_mw_mp_exch() */

/* }}} */

/* }}} */

/* {{{ Arithmetic helpers */

/* {{{ s_mw_mp_lshd(mp, p) */

/* 
   Shift mp leftward by p digits, growing if needed, and zero-filling
   the in-shifted digits at the right end.  This is a convenient
   alternative to multiplication by powers of the radix
 */   

mw_mp_err   s_mw_mp_lshd(mw_mp_int *mp, mw_mp_size p)
{
  mw_mp_err   res;
  mw_mp_size  pos;
  mw_mp_digit *dp;
  int     ix;

  if(p == 0)
    return MP_OKAY;

  if((res = s_mw_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
    return res;

  pos = USED(mp) - 1;
  dp = DIGITS(mp);

  /* Shift all the significant figures over as needed */
  /// Miranda NG adaptation start - MSVC
  ///for(ix = pos - p; ix >= 0; ix--) 
  for(ix = (int)(pos - p); ix >= 0; ix--) 
  /// Miranda NG adaptation end
    dp[ix + p] = dp[ix];

  /* Fill the bottom digits with zeroes */
  /// Miranda NG adaptation start - MSVC
  ///for(ix = 0; ix < p; ix++)
  for(ix = 0; ix < (int)p; ix++) 
  /// Miranda NG adaptation end
    dp[ix] = 0;

  return MP_OKAY;

} /* end s_mw_mp_lshd() */

/* }}} */

/* {{{ s_mw_mp_rshd(mp, p) */

/* 
   Shift mp rightward by p digits.  Maintains the invariant that
   digits above the precision are all zero.  Digits shifted off the
   end are lost.  Cannot fail.
 */

void     s_mw_mp_rshd(mw_mp_int *mp, mw_mp_size p)
{
  mw_mp_size  ix;
  mw_mp_digit *dp;

  if(p == 0)
    return;

  /* Shortcut when all digits are to be shifted off */
  if(p >= USED(mp)) {
    s_mw_mp_setz(DIGITS(mp), ALLOC(mp));
    USED(mp) = 1;
    SIGN(mp) = MP_ZPOS;
    return;
  }

  /* Shift all the significant figures over as needed */
  dp = DIGITS(mp);
  for(ix = p; ix < USED(mp); ix++)
    dp[ix - p] = dp[ix];

  /* Fill the top digits with zeroes */
  ix -= p;
  while(ix < USED(mp))
    dp[ix++] = 0;

  /* Strip off any leading zeroes    */
  s_mw_mp_clamp(mp);

} /* end s_mw_mp_rshd() */

/* }}} */

/* {{{ s_mw_mp_div_2(mp) */

/* Divide by two -- take advantage of radix properties to do it fast      */
void     s_mw_mp_div_2(mw_mp_int *mp)
{
  s_mw_mp_div_2d(mp, 1);

} /* end s_mw_mp_div_2() */

/* }}} */

/* {{{ s_mw_mp_mul_2(mp) */

mw_mp_err s_mw_mp_mul_2(mw_mp_int *mp)
{
  /// Miranda NG adaptation start - MSVC
  //int      ix;
  mw_mp_size ix;
  /// Miranda NG adaptation end
  mw_mp_digit kin = 0, kout, *dp = DIGITS(mp);
  mw_mp_err   res;

  /* Shift digits leftward by 1 bit */
  for(ix = 0; ix < USED(mp); ix++) {
    kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1;
    dp[ix] = (dp[ix] << 1) | kin;

    kin = kout;
  }

  /* Deal with rollover from last digit */
  if(kin) {
    if(ix >= ALLOC(mp)) {
      if((res = s_mw_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
	return res;
      dp = DIGITS(mp);
    }

    dp[ix] = kin;
    USED(mp) += 1;
  }

  return MP_OKAY;

} /* end s_mw_mp_mul_2() */

/* }}} */

/* {{{ s_mw_mp_mod_2d(mp, d) */

/*
  Remainder the integer by 2^d, where d is a number of bits.  This
  amounts to a bitwise AND of the value, and does not require the full
  division code
 */
void     s_mw_mp_mod_2d(mw_mp_int *mp, mw_mp_digit d)
{
  unsigned int  ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
  unsigned int  ix;
  mw_mp_digit      dmask, *dp = DIGITS(mp);

  if(ndig >= USED(mp))
    return;

  /* Flush all the bits above 2^d in its digit */
  dmask = (1 << nbit) - 1;
  dp[ndig] &= dmask;

  /* Flush all digits above the one with 2^d in it */
  for(ix = ndig + 1; ix < USED(mp); ix++)
    dp[ix] = 0;

  s_mw_mp_clamp(mp);

} /* end s_mw_mp_mod_2d() */

/* }}} */

/* {{{ s_mw_mp_mul_2d(mp, d) */

/*
  Multiply by the integer 2^d, where d is a number of bits.  This
  amounts to a bitwise shift of the value, and does not require the
  full multiplication code.
 */
mw_mp_err    s_mw_mp_mul_2d(mw_mp_int *mp, mw_mp_digit d)
{
  mw_mp_err   res;
  mw_mp_digit save, next, mask, *dp;
  mw_mp_size  used;
  /// Miranda NG adaptation start - MSVC
  ///int      ix;
  mw_mp_size ix;
  /// Miranda NG adaptation end

  if((res = s_mw_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
    return res;

  dp = DIGITS(mp); used = USED(mp);
  d %= DIGIT_BIT;

  mask = (1 << d) - 1;

  /* If the shift requires another digit, make sure we've got one to
     work with */
  if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) {
    if((res = s_mw_mp_grow(mp, used + 1)) != MP_OKAY)
      return res;
    dp = DIGITS(mp);
  }

  /* Do the shifting... */
  save = 0;
  for(ix = 0; ix < used; ix++) {
    next = (dp[ix] >> (DIGIT_BIT - d)) & mask;
    dp[ix] = (dp[ix] << d) | save;
    save = next;
  }

  /* If, at this point, we have a nonzero carryout into the next
     digit, we'll increase the size by one digit, and store it...
   */
  if(save) {
    dp[used] = save;
    USED(mp) += 1;
  }

  s_mw_mp_clamp(mp);
  return MP_OKAY;

} /* end s_mw_mp_mul_2d() */

/* }}} */

/* {{{ s_mw_mp_div_2d(mp, d) */

/*
  Divide the integer by 2^d, where d is a number of bits.  This
  amounts to a bitwise shift of the value, and does not require the
  full division code (used in Barrett reduction, see below)
 */
void     s_mw_mp_div_2d(mw_mp_int *mp, mw_mp_digit d)
{
  int       ix;
  mw_mp_digit  save, next, mask, *dp = DIGITS(mp);

  s_mw_mp_rshd(mp, d / DIGIT_BIT);
  d %= DIGIT_BIT;

  mask = (1 << d) - 1;

  save = 0;
  for(ix = USED(mp) - 1; ix >= 0; ix--) {
    next = dp[ix] & mask;
    dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d));
    save = next;
  }

  s_mw_mp_clamp(mp);

} /* end s_mw_mp_div_2d() */

/* }}} */

/* {{{ s_mw_mp_norm(a, b) */

/*
  s_mw_mp_norm(a, b)

  Normalize a and b for division, where b is the divisor.  In order
  that we might make good guesses for quotient digits, we want the
  leading digit of b to be at least half the radix, which we
  accomplish by multiplying a and b by a constant.  This constant is
  returned (so that it can be divided back out of the remainder at the
  end of the division process).

  We multiply by the smallest power of 2 that gives us a leading digit
  at least half the radix.  By choosing a power of 2, we simplify the 
  multiplication and division steps to simple shifts.
 */
mw_mp_digit s_mw_mp_norm(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_digit  t, d = 0;

  t = DIGIT(b, USED(b) - 1);
  while(t < (RADIX / 2)) {
    t <<= 1;
    ++d;
  }
    
  if(d != 0) {
    s_mw_mp_mul_2d(a, d);
    s_mw_mp_mul_2d(b, d);
  }

  return d;

} /* end s_mw_mp_norm() */

/* }}} */

/* }}} */

/* {{{ Primitive digit arithmetic */

/* {{{ s_mw_mp_add_d(mp, d) */

/* Add d to |mp| in place                                                 */
mw_mp_err   s_mw_mp_add_d(mw_mp_int *mp, mw_mp_digit d)    /* unsigned digit addition */
{
  mw_mp_word   w, k = 0;
  mw_mp_size   ix = 1, used = USED(mp);
  mw_mp_digit *dp = DIGITS(mp);

  w = dp[0] + d;
  dp[0] = ACCUM(w);
  k = CARRYOUT(w);

  while(ix < used && k) {
    w = dp[ix] + k;
    dp[ix] = ACCUM(w);
    k = CARRYOUT(w);
    ++ix;
  }

  if(k != 0) {
    mw_mp_err  res;

    if((res = s_mw_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
      return res;

    DIGIT(mp, ix) = k;
  }

  return MP_OKAY;

} /* end s_mw_mp_add_d() */

/* }}} */

/* {{{ s_mw_mp_sub_d(mp, d) */

/* Subtract d from |mp| in place, assumes |mp| > d                        */
mw_mp_err   s_mw_mp_sub_d(mw_mp_int *mp, mw_mp_digit d)    /* unsigned digit subtract */
{
  mw_mp_word   w, b = 0;
  mw_mp_size   ix = 1, used = USED(mp);
  mw_mp_digit *dp = DIGITS(mp);

  /* Compute initial subtraction    */
  w = (RADIX + dp[0]) - d;
  b = CARRYOUT(w) ? 0 : 1;
  dp[0] = ACCUM(w);

  /* Propagate borrows leftward     */
  while(b && ix < used) {
    w = (RADIX + dp[ix]) - b;
    b = CARRYOUT(w) ? 0 : 1;
    dp[ix] = ACCUM(w);
    ++ix;
  }

  /* Remove leading zeroes          */
  s_mw_mp_clamp(mp);

  /* If we have a borrow out, it's a violation of the input invariant */
  if(b)
    return MP_RANGE;
  else
    return MP_OKAY;

} /* end s_mw_mp_sub_d() */

/* }}} */

/* {{{ s_mw_mp_mul_d(a, d) */

/* Compute a = a * d, single digit multiplication                         */
mw_mp_err   s_mw_mp_mul_d(mw_mp_int *a, mw_mp_digit d)
{
  mw_mp_word w, k = 0;
  mw_mp_size ix, max;
  mw_mp_err  res;
  mw_mp_digit *dp = DIGITS(a);

  /*
    Single-digit multiplication will increase the precision of the
    output by at most one digit.  However, we can detect when this
    will happen -- if the high-order digit of a, times d, gives a
    two-digit result, then the precision of the result will increase;
    otherwise it won't.  We use this fact to avoid calling s_mw_mp_pad()
    unless absolutely necessary.
   */
  max = USED(a);
  w = dp[max - 1] * d;
  if(CARRYOUT(w) != 0) {
    if((res = s_mw_mp_pad(a, max + 1)) != MP_OKAY)
      return res;
    dp = DIGITS(a);
  }

  for(ix = 0; ix < max; ix++) {
    w = (dp[ix] * d) + k;
    dp[ix] = ACCUM(w);
    k = CARRYOUT(w);
  }

  /* If there is a precision increase, take care of it here; the above
     test guarantees we have enough storage to do this safely.
   */
  if(k) {
    dp[max] = k; 
    USED(a) = max + 1;
  }

  s_mw_mp_clamp(a);

  return MP_OKAY;
  
} /* end s_mw_mp_mul_d() */

/* }}} */

/* {{{ s_mw_mp_div_d(mp, d, r) */

/*
  s_mw_mp_div_d(mp, d, r)

  Compute the quotient mp = mp / d and remainder r = mp mod d, for a
  single digit d.  If r is null, the remainder will be discarded.
 */

mw_mp_err   s_mw_mp_div_d(mw_mp_int *mp, mw_mp_digit d, mw_mp_digit *r)
{
  mw_mp_word   w = 0, t;
  mw_mp_int    quot;
  mw_mp_err    res;
  mw_mp_digit *dp = DIGITS(mp), *qp;
  int       ix;

  if(d == 0)
    return MP_RANGE;

  /* Make room for the quotient */
  if((res = mw_mp_init_size(&quot, USED(mp))) != MP_OKAY)
    return res;

  USED(&quot) = USED(mp); /* so clamping will work below */
  qp = DIGITS(&quot);

  /* Divide without subtraction */
  for(ix = USED(mp) - 1; ix >= 0; ix--) {
    w = (w << DIGIT_BIT) | dp[ix];

    if(w >= d) {
      t = w / d;
      w = w % d;
    } else {
      t = 0;
    }

    qp[ix] = t;
  }

  /* Deliver the remainder, if desired */
  if(r)
    *r = w;

  s_mw_mp_clamp(&quot);
  mw_mp_exch(&quot, mp);
  mw_mp_clear(&quot);

  return MP_OKAY;

} /* end s_mw_mp_div_d() */

/* }}} */

/* }}} */

/* {{{ Primitive full arithmetic */

/* {{{ s_mw_mp_add(a, b) */

/* Compute a = |a| + |b|                                                  */
mw_mp_err   s_mw_mp_add(mw_mp_int *a, mw_mp_int *b)        /* magnitude addition      */
{
  mw_mp_word   w = 0;
  mw_mp_digit *pa, *pb;
  mw_mp_size   ix, used = USED(b);
  mw_mp_err    res;

  /* Make sure a has enough precision for the output value */
  if((used > USED(a)) && (res = s_mw_mp_pad(a, used)) != MP_OKAY)
    return res;

  /*
    Add up all digits up to the precision of b.  If b had initially
    the same precision as a, or greater, we took care of it by the
    padding step above, so there is no problem.  If b had initially
    less precision, we'll have to make sure the carry out is duly
    propagated upward among the higher-order digits of the sum.
   */
  pa = DIGITS(a);
  pb = DIGITS(b);
  for(ix = 0; ix < used; ++ix) {
    w += *pa + *pb++;
    *pa++ = ACCUM(w);
    w = CARRYOUT(w);
  }

  /* If we run out of 'b' digits before we're actually done, make
     sure the carries get propagated upward...  
   */
  used = USED(a);
  while(w && ix < used) {
    w += *pa;
    *pa++ = ACCUM(w);
    w = CARRYOUT(w);
    ++ix;
  }

  /* If there's an overall carry out, increase precision and include
     it.  We could have done this initially, but why touch the memory
     allocator unless we're sure we have to?
   */
  if(w) {
    if((res = s_mw_mp_pad(a, used + 1)) != MP_OKAY)
      return res;

    DIGIT(a, ix) = w;  /* pa may not be valid after s_mw_mp_pad() call */
  }

  return MP_OKAY;

} /* end s_mw_mp_add() */

/* }}} */

/* {{{ s_mw_mp_sub(a, b) */

/* Compute a = |a| - |b|, assumes |a| >= |b|                              */
mw_mp_err   s_mw_mp_sub(mw_mp_int *a, mw_mp_int *b)        /* magnitude subtract      */
{
  mw_mp_word   w = 0;
  mw_mp_digit *pa, *pb;
  mw_mp_size   ix, used = USED(b);

  /*
    Subtract and propagate borrow.  Up to the precision of b, this
    accounts for the digits of b; after that, we just make sure the
    carries get to the right place.  This saves having to pad b out to
    the precision of a just to make the loops work right...
   */
  pa = DIGITS(a);
  pb = DIGITS(b);

  for(ix = 0; ix < used; ++ix) {
    w = (RADIX + *pa) - w - *pb++;
    *pa++ = ACCUM(w);
    w = CARRYOUT(w) ? 0 : 1;
  }

  used = USED(a);
  while(ix < used) {
    w = RADIX + *pa - w;
    *pa++ = ACCUM(w);
    w = CARRYOUT(w) ? 0 : 1;
    ++ix;
  }

  /* Clobber any leading zeroes we created    */
  s_mw_mp_clamp(a);

  /* 
     If there was a borrow out, then |b| > |a| in violation
     of our input invariant.  We've already done the work,
     but we'll at least complain about it...
   */
  if(w)
    return MP_RANGE;
  else
    return MP_OKAY;

} /* end s_mw_mp_sub() */

/* }}} */

/* {{{ s_mw_mp_mul(a, b) */

/* Compute a = |a| * |b|                                                  */
mw_mp_err   s_mw_mp_mul(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_word   w, k = 0;
  mw_mp_int    tmp;
  mw_mp_err    res;
  mw_mp_size   ix, jx, ua = USED(a), ub = USED(b);
  mw_mp_digit *pa, *pb, *pt, *pbt;

  if((res = mw_mp_init_size(&tmp, ua + ub)) != MP_OKAY)
    return res;

  /* This has the effect of left-padding with zeroes... */
  USED(&tmp) = ua + ub;

  /* We're going to need the base value each iteration */
  pbt = DIGITS(&tmp);

  /* Outer loop:  Digits of b */

  pb = DIGITS(b);
  for(ix = 0; ix < ub; ++ix, ++pb) {
    if(*pb == 0) 
      continue;

    /* Inner product:  Digits of a */
    pa = DIGITS(a);
    for(jx = 0; jx < ua; ++jx, ++pa) {
      pt = pbt + ix + jx;
      w = *pb * *pa + k + *pt;
      *pt = ACCUM(w);
      k = CARRYOUT(w);
    }

    pbt[ix + jx] = k;
    k = 0;
  }

  s_mw_mp_clamp(&tmp);
  s_mw_mp_exch(&tmp, a);

  mw_mp_clear(&tmp);

  return MP_OKAY;

} /* end s_mw_mp_mul() */

/* }}} */

/* {{{ s_mw_mp_kmul(a, b, out, len) */

#if 0
void   s_mw_mp_kmul(mw_mp_digit *a, mw_mp_digit *b, mw_mp_digit *out, mw_mp_size len)
{
  mw_mp_word   w, k = 0;
  mw_mp_size   ix, jx;
  mw_mp_digit *pa, *pt;

  for(ix = 0; ix < len; ++ix, ++b) {
    if(*b == 0)
      continue;
    
    pa = a;
    for(jx = 0; jx < len; ++jx, ++pa) {
      pt = out + ix + jx;
      w = *b * *pa + k + *pt;
      *pt = ACCUM(w);
      k = CARRYOUT(w);
    }

    out[ix + jx] = k;
    k = 0;
  }

} /* end s_mw_mp_kmul() */
#endif

/* }}} */

/* {{{ s_mw_mp_sqr(a) */

/*
  Computes the square of a, in place.  This can be done more
  efficiently than a general multiplication, because many of the
  computation steps are redundant when squaring.  The inner product
  step is a bit more complicated, but we save a fair number of
  iterations of the multiplication loop.
 */
#if MP_SQUARE
mw_mp_err   s_mw_mp_sqr(mw_mp_int *a)
{
  mw_mp_word  w, k = 0;
  mw_mp_int   tmp;
  mw_mp_err   res;
  mw_mp_size  ix, jx, kx, used = USED(a);
  mw_mp_digit *pa1, *pa2, *pt, *pbt;

  if((res = mw_mp_init_size(&tmp, 2 * used)) != MP_OKAY)
    return res;

  /* Left-pad with zeroes */
  USED(&tmp) = 2 * used;

  /* We need the base value each time through the loop */
  pbt = DIGITS(&tmp);

  pa1 = DIGITS(a);
  for(ix = 0; ix < used; ++ix, ++pa1) {
    if(*pa1 == 0)
      continue;

    w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1);

    pbt[ix + ix] = ACCUM(w);
    k = CARRYOUT(w);

    /*
      The inner product is computed as:

         (C, S) = t[i,j] + 2 a[i] a[j] + C

      This can overflow what can be represented in an mw_mp_word, and
      since C arithmetic does not provide any way to check for
      overflow, we have to check explicitly for overflow conditions
      before they happen.
     */
    for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
      mw_mp_word  u = 0, v;
      
      /* Store this in a temporary to avoid indirections later */
      pt = pbt + ix + jx;

      /* Compute the multiplicative step */
      w = *pa1 * *pa2;

      /* If w is more than half MP_WORD_MAX, the doubling will
	 overflow, and we need to record a carry out into the next
	 word */
      u = (w >> (MP_WORD_BIT - 1)) & 1;

      /* Double what we've got, overflow will be ignored as defined
	 for C arithmetic (we've already noted if it is to occur)
       */
      w *= 2;

      /* Compute the additive step */
      v = *pt + k;

      /* If we do not already have an overflow carry, check to see
	 if the addition will cause one, and set the carry out if so 
       */
      u |= ((MP_WORD_MAX - v) < w);

      /* Add in the rest, again ignoring overflow */
      w += v;

      /* Set the i,j digit of the output */
      *pt = ACCUM(w);

      /* Save carry information for the next iteration of the loop.
	 This is why k must be an mw_mp_word, instead of an mw_mp_digit */
      k = CARRYOUT(w) | (u << DIGIT_BIT);

    } /* for(jx ...) */

    /* Set the last digit in the cycle and reset the carry */
    k = DIGIT(&tmp, ix + jx) + k;
    pbt[ix + jx] = ACCUM(k);
    k = CARRYOUT(k);

    /* If we are carrying out, propagate the carry to the next digit
       in the output.  This may cascade, so we have to be somewhat
       circumspect -- but we will have enough precision in the output
       that we won't overflow 
     */
    kx = 1;
    while(k) {
      k = pbt[ix + jx + kx] + 1;
      pbt[ix + jx + kx] = ACCUM(k);
      k = CARRYOUT(k);
      ++kx;
    }
  } /* for(ix ...) */

  s_mw_mp_clamp(&tmp);
  s_mw_mp_exch(&tmp, a);

  mw_mp_clear(&tmp);

  return MP_OKAY;

} /* end s_mw_mp_sqr() */
#endif

/* }}} */

/* {{{ s_mw_mp_div(a, b) */

/*
  s_mw_mp_div(a, b)

  Compute a = a / b and b = a mod b.  Assumes b > a.
 */

mw_mp_err   s_mw_mp_div(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_int   quot, rem, t;
  mw_mp_word  q;
  mw_mp_err   res;
  mw_mp_digit d;
  int      ix;

  if(mw_mp_cmw_mp_z(b) == 0)
    return MP_RANGE;

  /* Shortcut if b is power of two */
  if((ix = s_mw_mp_ispow2(b)) >= 0) {
    mw_mp_copy(a, b);  /* need this for remainder */
    s_mw_mp_div_2d(a, (mw_mp_digit)ix);
    s_mw_mp_mod_2d(b, (mw_mp_digit)ix);

    return MP_OKAY;
  }

  /* Allocate space to store the quotient */
  if((res = mw_mp_init_size(&quot, USED(a))) != MP_OKAY)
    return res;

  /* A working temporary for division     */
  if((res = mw_mp_init_size(&t, USED(a))) != MP_OKAY)
    goto T;

  /* Allocate space for the remainder     */
  if((res = mw_mp_init_size(&rem, USED(a))) != MP_OKAY)
    goto REM;

  /* Normalize to optimize guessing       */
  d = s_mw_mp_norm(a, b);

  /* Perform the division itself...woo!   */
  ix = USED(a) - 1;

  while(ix >= 0) {
    /* Find a partial substring of a which is at least b */
    while(s_mw_mp_cmp(&rem, b) < 0 && ix >= 0) {
      if((res = s_mw_mp_lshd(&rem, 1)) != MP_OKAY) 
	goto CLEANUP;

      if((res = s_mw_mp_lshd(&quot, 1)) != MP_OKAY)
	goto CLEANUP;

      DIGIT(&rem, 0) = DIGIT(a, ix);
      s_mw_mp_clamp(&rem);
      --ix;
    }

    /* If we didn't find one, we're finished dividing    */
    if(s_mw_mp_cmp(&rem, b) < 0) 
      break;    

    /* Compute a guess for the next quotient digit       */
    q = DIGIT(&rem, USED(&rem) - 1);
    if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1)
      q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);

    q /= DIGIT(b, USED(b) - 1);

    /* The guess can be as much as RADIX + 1 */
    if(q >= RADIX)
      q = RADIX - 1;

    /* See what that multiplies out to                   */
    mw_mp_copy(b, &t);
    if((res = s_mw_mp_mul_d(&t, q)) != MP_OKAY)
      goto CLEANUP;

    /* 
       If it's too big, back it off.  We should not have to do this
       more than once, or, in rare cases, twice.  Knuth describes a
       method by which this could be reduced to a maximum of once, but
       I didn't implement that here.
     */
    while(s_mw_mp_cmp(&t, &rem) > 0) {
      --q;
      s_mw_mp_sub(&t, b);
    }

    /* At this point, q should be the right next digit   */
    if((res = s_mw_mp_sub(&rem, &t)) != MP_OKAY)
      goto CLEANUP;

    /*
      Include the digit in the quotient.  We allocated enough memory
      for any quotient we could ever possibly get, so we should not
      have to check for failures here
     */
    DIGIT(&quot, 0) = q;
  }

  /* Denormalize remainder                */
  if(d != 0) 
    s_mw_mp_div_2d(&rem, d);

  s_mw_mp_clamp(&quot);
  s_mw_mp_clamp(&rem);

  /* Copy quotient back to output         */
  s_mw_mp_exch(&quot, a);
  
  /* Copy remainder back to output        */
  s_mw_mp_exch(&rem, b);

CLEANUP:
  mw_mp_clear(&rem);
REM:
  mw_mp_clear(&t);
T:
  mw_mp_clear(&quot);

  return res;

} /* end s_mw_mp_div() */

/* }}} */

/* {{{ s_mw_mp_2expt(a, k) */

mw_mp_err   s_mw_mp_2expt(mw_mp_int *a, mw_mp_digit k)
{
  mw_mp_err    res;
  mw_mp_size   dig, bit;

  dig = k / DIGIT_BIT;
  bit = k % DIGIT_BIT;

  mw_mp_zero(a);
  if((res = s_mw_mp_pad(a, dig + 1)) != MP_OKAY)
    return res;
  
  DIGIT(a, dig) |= (1 << bit);

  return MP_OKAY;

} /* end s_mw_mp_2expt() */

/* }}} */

/* {{{ s_mw_mp_reduce(x, m, mu) */

/*
  Compute Barrett reduction, x (mod m), given a precomputed value for
  mu = b^2k / m, where b = RADIX and k = #digits(m).  This should be
  faster than straight division, when many reductions by the same
  value of m are required (such as in modular exponentiation).  This
  can nearly halve the time required to do modular exponentiation,
  as compared to using the full integer divide to reduce.

  This algorithm was derived from the _Handbook of Applied
  Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14,
  pp. 603-604.  
 */

mw_mp_err   s_mw_mp_reduce(mw_mp_int *x, mw_mp_int *m, mw_mp_int *mu)
{
  mw_mp_int   q;
  mw_mp_err   res;
  mw_mp_size  um = USED(m);

  if((res = mw_mp_init_copy(&q, x)) != MP_OKAY)
    return res;

  s_mw_mp_rshd(&q, um - 1);       /* q1 = x / b^(k-1)  */
  s_mw_mp_mul(&q, mu);            /* q2 = q1 * mu      */
  s_mw_mp_rshd(&q, um + 1);       /* q3 = q2 / b^(k+1) */

  /* x = x mod b^(k+1), quick (no division) */
  s_mw_mp_mod_2d(x, DIGIT_BIT * (um + 1));

  /* q = q * m mod b^(k+1), quick (no division) */
  s_mw_mp_mul(&q, m);
  s_mw_mp_mod_2d(&q, DIGIT_BIT * (um + 1));

  /* x = x - q */
  if((res = mw_mp_sub(x, &q, x)) != MP_OKAY)
    goto CLEANUP;

  /* If x < 0, add b^(k+1) to it */
  if(mw_mp_cmw_mp_z(x) < 0) {
    mw_mp_set(&q, 1);
    if((res = s_mw_mp_lshd(&q, um + 1)) != MP_OKAY)
      goto CLEANUP;
    if((res = mw_mp_add(x, &q, x)) != MP_OKAY)
      goto CLEANUP;
  }

  /* Back off if it's too big */
  while(mw_mp_cmp(x, m) >= 0) {
    if((res = s_mw_mp_sub(x, m)) != MP_OKAY)
      break;
  }

 CLEANUP:
  mw_mp_clear(&q);

  return res;

} /* end s_mw_mp_reduce() */

/* }}} */

/* }}} */

/* {{{ Primitive comparisons */

/* {{{ s_mw_mp_cmp(a, b) */

/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b           */
int      s_mw_mp_cmp(mw_mp_int *a, mw_mp_int *b)
{
  mw_mp_size   ua = USED(a), ub = USED(b);

  if(ua > ub)
    return MP_GT;
  else if(ua < ub)
    return MP_LT;
  else {
    int      ix = ua - 1;
    mw_mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix;

    while(ix >= 0) {
      if(*ap > *bp)
	return MP_GT;
      else if(*ap < *bp)
	return MP_LT;

      --ap; --bp; --ix;
    }

    return MP_EQ;
  }

} /* end s_mw_mp_cmp() */

/* }}} */

/* {{{ s_mw_mp_cmw_mp_d(a, d) */

/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d             */
int      s_mw_mp_cmw_mp_d(mw_mp_int *a, mw_mp_digit d)
{
  mw_mp_size  ua = USED(a);
  mw_mp_digit *ap = DIGITS(a);

  if(ua > 1)
    return MP_GT;

  if(*ap < d) 
    return MP_LT;
  else if(*ap > d)
    return MP_GT;
  else
    return MP_EQ;

} /* end s_mw_mp_cmw_mp_d() */

/* }}} */

/* {{{ s_mw_mp_ispow2(v) */

/*
  Returns -1 if the value is not a power of two; otherwise, it returns
  k such that v = 2^k, i.e. lg(v).
 */
int      s_mw_mp_ispow2(mw_mp_int *v)
{
  mw_mp_digit d, *dp;
  mw_mp_size  uv = USED(v);
  int      extra = 0, ix;

  d = DIGIT(v, uv - 1); /* most significant digit of v */

  while(d && ((d & 1) == 0)) {
    d >>= 1;
    ++extra;
  }

  if(d == 1) {
    ix = uv - 2;
    dp = DIGITS(v) + ix;

    while(ix >= 0) {
      if(*dp)
	return -1; /* not a power of two */

      --dp; --ix;
    }

    return ((uv - 1) * DIGIT_BIT) + extra;
  } 

  return -1;

} /* end s_mw_mp_ispow2() */

/* }}} */

/* {{{ s_mw_mp_ispow2d(d) */

int      s_mw_mp_ispow2d(mw_mp_digit d)
{
  int   pow = 0;

  while((d & 1) == 0) {
    ++pow; d >>= 1;
  }

  if(d == 1)
    return pow;

  return -1;

} /* end s_mw_mp_ispow2d() */

/* }}} */

/* }}} */

/* {{{ Primitive I/O helpers */

/* {{{ s_mw_mp_tovalue(ch, r) */

/*
  Convert the given character to its digit value, in the given radix.
  If the given character is not understood in the given radix, -1 is
  returned.  Otherwise the digit's numeric value is returned.

  The results will be odd if you use a radix < 2 or > 62, you are
  expected to know what you're up to.
 */
int      s_mw_mp_tovalue(char ch, int r)
{
  int    val, xch;
  
  if(r > 36)
    xch = ch;
  else
    xch = toupper(ch);

  if(isdigit(xch))
    val = xch - '0';
  else if(isupper(xch))
    val = xch - 'A' + 10;
  else if(islower(xch))
    val = xch - 'a' + 36;
  else if(xch == '+')
    val = 62;
  else if(xch == '/')
    val = 63;
  else 
    return -1;

  if(val < 0 || val >= r)
    return -1;

  return val;

} /* end s_mw_mp_tovalue() */

/* }}} */

/* {{{ s_mw_mp_todigit(val, r, low) */

/*
  Convert val to a radix-r digit, if possible.  If val is out of range
  for r, returns zero.  Otherwise, returns an ASCII character denoting
  the value in the given radix.

  The results may be odd if you use a radix < 2 or > 64, you are
  expected to know what you're doing.
 */
  
char     s_mw_mp_todigit(int val, int r, int low)
{
  char   ch;

  if(val < 0 || val >= r)
    return 0;

  ch = s_dmap_1[val];

  if(r <= 36 && low)
    ch = tolower(ch);

  return ch;

} /* end s_mw_mp_todigit() */

/* }}} */

/* {{{ s_mw_mp_outlen(bits, radix) */

/* 
   Return an estimate for how long a string is needed to hold a radix
   r representation of a number with 'bits' significant bits.

   Does not include space for a sign or a NUL terminator.
 */
int      s_mw_mp_outlen(int bits, int r)
{
  return (int)((double)bits * LOG_V_2(r) + 0.5);

} /* end s_mw_mp_outlen() */

/* }}} */

/* }}} */

/*------------------------------------------------------------------------*/
/* HERE THERE BE DRAGONS                                                  */