1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2024
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "memprof/memprof.h"
#include "td/utils/port/platform.h"
#if (TD_DARWIN || TD_LINUX) && defined(USE_MEMPROF)
#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <new>
#include <utility>
#include <vector>
#include <dlfcn.h>
#include <execinfo.h>
bool is_memprof_on() {
return true;
}
#define my_assert(f) \
if (!(f)) { \
std::abort(); \
}
#if USE_MEMPROF_SAFE
double get_fast_backtrace_success_rate() {
return 0;
}
#else
#if TD_LINUX
extern void *__libc_stack_end;
#endif
static void *get_bp() {
void *bp;
#if defined(__i386__)
__asm__ volatile("movl %%ebp, %[r]" : [r] "=r"(bp));
#elif defined(__x86_64__)
__asm__ volatile("movq %%rbp, %[r]" : [r] "=r"(bp));
#endif
return bp;
}
static int fast_backtrace(void **buffer, int size) {
struct stack_frame {
stack_frame *bp;
void *ip;
};
auto *bp = reinterpret_cast<stack_frame *>(get_bp());
int i = 0;
while (i < size &&
#if TD_LINUX
static_cast<void *>(bp) <= __libc_stack_end &&
#endif
!(reinterpret_cast<std::uintptr_t>(static_cast<void *>(bp)) & (sizeof(void *) - 1))) {
void *ip = bp->ip;
buffer[i++] = ip;
stack_frame *p = bp->bp;
if (p <= bp) {
break;
}
bp = p;
}
return i;
}
static std::atomic<std::size_t> fast_backtrace_failed_cnt;
static std::atomic<std::size_t> backtrace_total_cnt;
double get_fast_backtrace_success_rate() {
return 1 - static_cast<double>(fast_backtrace_failed_cnt.load(std::memory_order_relaxed)) /
static_cast<double>(std::max(std::size_t(1), backtrace_total_cnt.load(std::memory_order_relaxed)));
}
#endif
static Backtrace get_backtrace() {
static __thread bool in_backtrace; // static zero-initialized
Backtrace res{{nullptr}};
if (in_backtrace) {
return res;
}
in_backtrace = true;
std::array<void *, res.size() + BACKTRACE_SHIFT + 10> tmp{{nullptr}};
std::size_t n;
#if USE_MEMPROF_SAFE
n = backtrace(tmp.data(), static_cast<int>(tmp.size()));
#else
n = fast_backtrace(tmp.data(), static_cast<int>(tmp.size()));
auto from_shared = [](void *ptr) {
return reinterpret_cast<std::uintptr_t>(ptr) > static_cast<std::uintptr_t>(0x700000000000ull);
};
#if !USE_MEMPROF_FAST
auto end = tmp.begin() + std::min(res.size() + BACKTRACE_SHIFT, n);
if (std::find_if(tmp.begin(), end, from_shared) != end) {
fast_backtrace_failed_cnt.fetch_add(1, std::memory_order_relaxed);
n = backtrace(tmp.data(), static_cast<int>(tmp.size()));
}
backtrace_total_cnt.fetch_add(1, std::memory_order_relaxed);
#endif
n = std::remove_if(tmp.begin(), tmp.begin() + n, from_shared) - tmp.begin();
#endif
n = std::min(res.size() + BACKTRACE_SHIFT, n);
for (std::size_t i = BACKTRACE_SHIFT; i < n; i++) {
res[i - BACKTRACE_SHIFT] = tmp[i];
}
in_backtrace = false;
return res;
}
static constexpr std::size_t RESERVED_SIZE = 16;
static constexpr std::int32_t MALLOC_INFO_MAGIC = 0x27138373;
struct malloc_info {
std::int32_t magic;
std::int32_t size;
std::int32_t ht_pos;
};
static std::uint64_t get_hash(const Backtrace &bt) {
std::uint64_t h = 7;
for (std::size_t i = 0; i < bt.size() && i < BACKTRACE_HASHED_LENGTH; i++) {
h = h * 0x4372897893428797lu + reinterpret_cast<std::uintptr_t>(bt[i]);
}
return h;
}
struct HashtableNode {
std::atomic<std::uint64_t> hash;
Backtrace backtrace;
std::atomic<std::size_t> size;
};
static constexpr std::size_t HT_MAX_SIZE = 10000000;
static std::atomic<std::size_t> ht_size{0};
static std::array<HashtableNode, HT_MAX_SIZE> ht;
std::size_t get_ht_size() {
return ht_size.load();
}
std::int32_t get_ht_pos(const Backtrace &bt, bool force = false) {
auto hash = get_hash(bt);
auto pos = static_cast<std::int32_t>(hash % ht.size());
bool was_overflow = false;
while (true) {
auto pos_hash = ht[pos].hash.load();
if (pos_hash == 0) {
if (ht_size > HT_MAX_SIZE / 2) {
if (force) {
my_assert(ht_size * 10 < HT_MAX_SIZE * 7);
} else {
Backtrace unknown_bt{{nullptr}};
unknown_bt[0] = reinterpret_cast<void *>(1);
return get_ht_pos(unknown_bt, true);
}
}
std::uint64_t expected = 0;
if (ht[pos].hash.compare_exchange_strong(expected, hash)) {
ht[pos].backtrace = bt;
++ht_size;
return pos;
}
} else if (pos_hash == hash) {
return pos;
} else {
pos++;
if (pos == static_cast<std::int32_t>(ht.size())) {
pos = 0;
if (was_overflow) {
// unreachable
std::abort();
}
was_overflow = true;
}
}
}
}
void dump_alloc(const std::function<void(const AllocInfo &)> &func) {
for (auto &node : ht) {
auto size = node.size.load(std::memory_order_relaxed);
if (size == 0) {
continue;
}
func(AllocInfo{node.backtrace, size});
}
}
void register_xalloc(malloc_info *info, std::int32_t diff) {
my_assert(info->size >= 0);
if (diff > 0) {
ht[info->ht_pos].size.fetch_add(info->size, std::memory_order_relaxed);
} else {
auto old_value = ht[info->ht_pos].size.fetch_sub(info->size, std::memory_order_relaxed);
my_assert(old_value >= static_cast<std::size_t>(info->size));
}
}
extern "C" {
static void *malloc_with_frame(std::size_t size, const Backtrace &frame) {
static_assert(RESERVED_SIZE % alignof(std::max_align_t) == 0, "fail");
static_assert(RESERVED_SIZE >= sizeof(malloc_info), "fail");
#if TD_DARWIN
static void *malloc_void = dlsym(RTLD_NEXT, "malloc");
static auto malloc_old = *reinterpret_cast<decltype(malloc) **>(&malloc_void);
#else
extern decltype(malloc) __libc_malloc;
static auto malloc_old = __libc_malloc;
#endif
auto *info = static_cast<malloc_info *>(malloc_old(size + RESERVED_SIZE));
auto *buf = reinterpret_cast<char *>(info);
info->magic = MALLOC_INFO_MAGIC;
info->size = static_cast<std::int32_t>(size);
info->ht_pos = get_ht_pos(frame);
register_xalloc(info, +1);
void *data = buf + RESERVED_SIZE;
return data;
}
static malloc_info *get_info(void *data_void) {
auto *data = static_cast<char *>(data_void);
auto *buf = data - RESERVED_SIZE;
auto *info = reinterpret_cast<malloc_info *>(buf);
my_assert(info->magic == MALLOC_INFO_MAGIC);
return info;
}
void *malloc(std::size_t size) {
return malloc_with_frame(size, get_backtrace());
}
void free(void *data_void) {
if (data_void == nullptr) {
return;
}
auto *info = get_info(data_void);
register_xalloc(info, -1);
#if TD_DARWIN
static void *free_void = dlsym(RTLD_NEXT, "free");
static auto free_old = *reinterpret_cast<decltype(free) **>(&free_void);
#else
extern decltype(free) __libc_free;
static auto free_old = __libc_free;
#endif
return free_old(info);
}
void *calloc(std::size_t size_a, std::size_t size_b) {
auto size = size_a * size_b;
void *res = malloc_with_frame(size, get_backtrace());
std::memset(res, 0, size);
return res;
}
void *realloc(void *ptr, std::size_t size) {
if (ptr == nullptr) {
return malloc_with_frame(size, get_backtrace());
}
auto *info = get_info(ptr);
auto *new_ptr = malloc_with_frame(size, get_backtrace());
auto to_copy = std::min(static_cast<std::int32_t>(size), info->size);
std::memcpy(new_ptr, ptr, to_copy);
free(ptr);
return new_ptr;
}
void *memalign(std::size_t aligment, std::size_t size) {
my_assert(false && "Memalign is unsupported");
return nullptr;
}
}
// c++14 guarantees that it is enough to override these two operators.
void *operator new(std::size_t count) {
return malloc_with_frame(count, get_backtrace());
}
void operator delete(void *ptr) noexcept(true) {
free(ptr);
}
// because of gcc warning: the program should also define 'void operator delete(void*, std::size_t)'
void operator delete(void *ptr, std::size_t) noexcept(true) {
free(ptr);
}
// c++17
// void *operator new(std::size_t count, std::align_val_t al);
// void operator delete(void *ptr, std::align_val_t al);
#else
bool is_memprof_on() {
return false;
}
void dump_alloc(const std::function<void(const AllocInfo &)> &func) {
}
double get_fast_backtrace_success_rate() {
return 0;
}
std::size_t get_ht_size() {
return 0;
}
#endif
std::size_t get_used_memory_size() {
std::size_t res = 0;
dump_alloc([&](const auto info) { res += info.size; });
return res;
}
|