summaryrefslogtreecommitdiff
path: root/protocols/Tox/libtox/src/toxcore/crypto_core.c
blob: 7bb5bb929fb381e1bc6a4fe1171b455627b43e28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/* SPDX-License-Identifier: GPL-3.0-or-later
 * Copyright © 2016-2024 The TokTok team.
 * Copyright © 2013 Tox project.
 */

#include "crypto_core.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include <sodium.h>

#include "attributes.h"
#include "ccompat.h"
#include "util.h"

static_assert(CRYPTO_PUBLIC_KEY_SIZE == crypto_box_PUBLICKEYBYTES,
              "CRYPTO_PUBLIC_KEY_SIZE should be equal to crypto_box_PUBLICKEYBYTES");
static_assert(CRYPTO_SECRET_KEY_SIZE == crypto_box_SECRETKEYBYTES,
              "CRYPTO_SECRET_KEY_SIZE should be equal to crypto_box_SECRETKEYBYTES");
static_assert(CRYPTO_SHARED_KEY_SIZE == crypto_box_BEFORENMBYTES,
              "CRYPTO_SHARED_KEY_SIZE should be equal to crypto_box_BEFORENMBYTES");
static_assert(CRYPTO_SYMMETRIC_KEY_SIZE == crypto_box_BEFORENMBYTES,
              "CRYPTO_SYMMETRIC_KEY_SIZE should be equal to crypto_box_BEFORENMBYTES");
static_assert(CRYPTO_MAC_SIZE == crypto_box_MACBYTES,
              "CRYPTO_MAC_SIZE should be equal to crypto_box_MACBYTES");
static_assert(CRYPTO_NONCE_SIZE == crypto_box_NONCEBYTES,
              "CRYPTO_NONCE_SIZE should be equal to crypto_box_NONCEBYTES");
static_assert(CRYPTO_HMAC_SIZE == crypto_auth_BYTES,
              "CRYPTO_HMAC_SIZE should be equal to crypto_auth_BYTES");
static_assert(CRYPTO_HMAC_KEY_SIZE == crypto_auth_KEYBYTES,
              "CRYPTO_HMAC_KEY_SIZE should be equal to crypto_auth_KEYBYTES");
static_assert(CRYPTO_SHA256_SIZE == crypto_hash_sha256_BYTES,
              "CRYPTO_SHA256_SIZE should be equal to crypto_hash_sha256_BYTES");
static_assert(CRYPTO_SHA512_SIZE == crypto_hash_sha512_BYTES,
              "CRYPTO_SHA512_SIZE should be equal to crypto_hash_sha512_BYTES");
static_assert(CRYPTO_PUBLIC_KEY_SIZE == 32,
              "CRYPTO_PUBLIC_KEY_SIZE is required to be 32 bytes for pk_equal to work");

static_assert(CRYPTO_SIGNATURE_SIZE == crypto_sign_BYTES,
              "CRYPTO_SIGNATURE_SIZE should be equal to crypto_sign_BYTES");
static_assert(CRYPTO_SIGN_PUBLIC_KEY_SIZE == crypto_sign_PUBLICKEYBYTES,
              "CRYPTO_SIGN_PUBLIC_KEY_SIZE should be equal to crypto_sign_PUBLICKEYBYTES");
static_assert(CRYPTO_SIGN_SECRET_KEY_SIZE == crypto_sign_SECRETKEYBYTES,
              "CRYPTO_SIGN_SECRET_KEY_SIZE should be equal to crypto_sign_SECRETKEYBYTES");

bool create_extended_keypair(Extended_Public_Key *pk, Extended_Secret_Key *sk, const Random *rng)
{
    /* create signature key pair */
    uint8_t seed[crypto_sign_SEEDBYTES];
    random_bytes(rng, seed, crypto_sign_SEEDBYTES);
    crypto_sign_seed_keypair(pk->sig, sk->sig, seed);
    crypto_memzero(seed, crypto_sign_SEEDBYTES);

    /* convert public signature key to public encryption key */
    const int res1 = crypto_sign_ed25519_pk_to_curve25519(pk->enc, pk->sig);

    /* convert secret signature key to secret encryption key */
    const int res2 = crypto_sign_ed25519_sk_to_curve25519(sk->enc, sk->sig);

    return res1 == 0 && res2 == 0;
}

const uint8_t *get_enc_key(const Extended_Public_Key *key)
{
    return key->enc;
}

const uint8_t *get_sig_pk(const Extended_Public_Key *key)
{
    return key->sig;
}

void set_sig_pk(Extended_Public_Key *key, const uint8_t *sig_pk)
{
    memcpy(key->sig, sig_pk, SIG_PUBLIC_KEY_SIZE);
}

const uint8_t *get_sig_sk(const Extended_Secret_Key *key)
{
    return key->sig;
}

const uint8_t *get_chat_id(const Extended_Public_Key *key)
{
    return key->sig;
}

#if !defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
static uint8_t *crypto_malloc(size_t bytes)
{
    uint8_t *ptr = (uint8_t *)malloc(bytes);

    if (ptr != nullptr) {
        crypto_memlock(ptr, bytes);
    }

    return ptr;
}

nullable(1)
static void crypto_free(uint8_t *ptr, size_t bytes)
{
    if (ptr != nullptr) {
        crypto_memzero(ptr, bytes);
        crypto_memunlock(ptr, bytes);
    }

    free(ptr);
}
#endif /* !defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) */

void crypto_memzero(void *data, size_t length)
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
    memzero((uint8_t *)data, length);
#else
    sodium_memzero(data, length);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

bool crypto_memlock(void *data, size_t length)
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
    return false;
#else

    return sodium_mlock(data, length) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

bool crypto_memunlock(void *data, size_t length)
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
    return false;
#else

    return sodium_munlock(data, length) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

bool pk_equal(const uint8_t pk1[CRYPTO_PUBLIC_KEY_SIZE], const uint8_t pk2[CRYPTO_PUBLIC_KEY_SIZE])
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    // Hope that this is better for the fuzzer
    return memcmp(pk1, pk2, CRYPTO_PUBLIC_KEY_SIZE) == 0;
#else
    return crypto_verify_32(pk1, pk2) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

void pk_copy(uint8_t dest[CRYPTO_PUBLIC_KEY_SIZE], const uint8_t src[CRYPTO_PUBLIC_KEY_SIZE])
{
    memcpy(dest, src, CRYPTO_PUBLIC_KEY_SIZE);
}

bool crypto_sha512_eq(const uint8_t cksum1[CRYPTO_SHA512_SIZE], const uint8_t cksum2[CRYPTO_SHA512_SIZE])
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
    // Hope that this is better for the fuzzer
    return memcmp(cksum1, cksum2, CRYPTO_SHA512_SIZE) == 0;
#else
    return crypto_verify_64(cksum1, cksum2) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

bool crypto_sha256_eq(const uint8_t cksum1[CRYPTO_SHA256_SIZE], const uint8_t cksum2[CRYPTO_SHA256_SIZE])
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    // Hope that this is better for the fuzzer
    return memcmp(cksum1, cksum2, CRYPTO_SHA256_SIZE) == 0;
#else
    return crypto_verify_32(cksum1, cksum2) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

uint8_t random_u08(const Random *rng)
{
    uint8_t randnum;
    random_bytes(rng, &randnum, 1);
    return randnum;
}

uint16_t random_u16(const Random *rng)
{
    uint16_t randnum;
    random_bytes(rng, (uint8_t *)&randnum, sizeof(randnum));
    return randnum;
}

uint32_t random_u32(const Random *rng)
{
    uint32_t randnum;
    random_bytes(rng, (uint8_t *)&randnum, sizeof(randnum));
    return randnum;
}

uint64_t random_u64(const Random *rng)
{
    uint64_t randnum;
    random_bytes(rng, (uint8_t *)&randnum, sizeof(randnum));
    return randnum;
}

uint32_t random_range_u32(const Random *rng, uint32_t upper_bound)
{
    return rng->funcs->random_uniform(rng->obj, upper_bound);
}

bool crypto_signature_create(uint8_t signature[CRYPTO_SIGNATURE_SIZE],
                             const uint8_t *message, uint64_t message_length,
                             const uint8_t secret_key[SIG_SECRET_KEY_SIZE])
{
    return crypto_sign_detached(signature, nullptr, message, message_length, secret_key) == 0;
}

bool crypto_signature_verify(const uint8_t signature[CRYPTO_SIGNATURE_SIZE],
                             const uint8_t *message, uint64_t message_length,
                             const uint8_t public_key[SIG_PUBLIC_KEY_SIZE])
{
    return crypto_sign_verify_detached(signature, message, message_length, public_key) == 0;
}

bool public_key_valid(const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE])
{
    /* Last bit of key is always zero. */
    return public_key[31] < 128;
}

int32_t encrypt_precompute(const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
                           const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE],
                           uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE])
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    memcpy(shared_key, public_key, CRYPTO_SHARED_KEY_SIZE);
    return 0;
#else
    return crypto_box_beforenm(shared_key, public_key, secret_key);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

int32_t encrypt_data_symmetric(const uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE],
                               const uint8_t nonce[CRYPTO_NONCE_SIZE],
                               const uint8_t *plain, size_t length, uint8_t *encrypted)
{
    if (length == 0 || shared_key == nullptr || nonce == nullptr || plain == nullptr || encrypted == nullptr) {
        return -1;
    }

#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    // Don't encrypt anything.
    memcpy(encrypted, plain, length);
    // Zero MAC to avoid uninitialized memory reads.
    memzero(encrypted + length, crypto_box_MACBYTES);
#else

    const size_t size_temp_plain = length + crypto_box_ZEROBYTES;
    const size_t size_temp_encrypted = length + crypto_box_MACBYTES + crypto_box_BOXZEROBYTES;

    uint8_t *temp_plain = crypto_malloc(size_temp_plain);
    uint8_t *temp_encrypted = crypto_malloc(size_temp_encrypted);

    if (temp_plain == nullptr || temp_encrypted == nullptr) {
        crypto_free(temp_plain, size_temp_plain);
        crypto_free(temp_encrypted, size_temp_encrypted);
        return -1;
    }

    // crypto_box_afternm requires the entire range of the output array be
    // initialised with something. It doesn't matter what it's initialised with,
    // so we'll pick 0x00.
    memzero(temp_encrypted, size_temp_encrypted);

    memzero(temp_plain, crypto_box_ZEROBYTES);
    // Pad the message with 32 0 bytes.
    memcpy(temp_plain + crypto_box_ZEROBYTES, plain, length);

    if (crypto_box_afternm(temp_encrypted, temp_plain, length + crypto_box_ZEROBYTES, nonce,
                           shared_key) != 0) {
        crypto_free(temp_plain, size_temp_plain);
        crypto_free(temp_encrypted, size_temp_encrypted);
        return -1;
    }

    // Unpad the encrypted message.
    memcpy(encrypted, temp_encrypted + crypto_box_BOXZEROBYTES, length + crypto_box_MACBYTES);

    crypto_free(temp_plain, size_temp_plain);
    crypto_free(temp_encrypted, size_temp_encrypted);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
    assert(length < INT32_MAX - crypto_box_MACBYTES);
    return (int32_t)(length + crypto_box_MACBYTES);
}

int32_t decrypt_data_symmetric(const uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE],
                               const uint8_t nonce[CRYPTO_NONCE_SIZE],
                               const uint8_t *encrypted, size_t length, uint8_t *plain)
{
    if (length <= crypto_box_BOXZEROBYTES || shared_key == nullptr || nonce == nullptr || encrypted == nullptr
            || plain == nullptr) {
        return -1;
    }

#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    assert(length >= crypto_box_MACBYTES);
    memcpy(plain, encrypted, length - crypto_box_MACBYTES);  // Don't encrypt anything
#else

    const size_t size_temp_plain = length + crypto_box_ZEROBYTES;
    const size_t size_temp_encrypted = length + crypto_box_BOXZEROBYTES;

    uint8_t *temp_plain = crypto_malloc(size_temp_plain);
    uint8_t *temp_encrypted = crypto_malloc(size_temp_encrypted);

    if (temp_plain == nullptr || temp_encrypted == nullptr) {
        crypto_free(temp_plain, size_temp_plain);
        crypto_free(temp_encrypted, size_temp_encrypted);
        return -1;
    }

    // crypto_box_open_afternm requires the entire range of the output array be
    // initialised with something. It doesn't matter what it's initialised with,
    // so we'll pick 0x00.
    memzero(temp_plain, size_temp_plain);

    memzero(temp_encrypted, crypto_box_BOXZEROBYTES);
    // Pad the message with 16 0 bytes.
    memcpy(temp_encrypted + crypto_box_BOXZEROBYTES, encrypted, length);

    if (crypto_box_open_afternm(temp_plain, temp_encrypted, length + crypto_box_BOXZEROBYTES, nonce,
                                shared_key) != 0) {
        crypto_free(temp_plain, size_temp_plain);
        crypto_free(temp_encrypted, size_temp_encrypted);
        return -1;
    }

    memcpy(plain, temp_plain + crypto_box_ZEROBYTES, length - crypto_box_MACBYTES);

    crypto_free(temp_plain, size_temp_plain);
    crypto_free(temp_encrypted, size_temp_encrypted);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
    assert(length > crypto_box_MACBYTES);
    assert(length < INT32_MAX);
    return (int32_t)(length - crypto_box_MACBYTES);
}

int32_t encrypt_data(const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
                     const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE],
                     const uint8_t nonce[CRYPTO_NONCE_SIZE],
                     const uint8_t *plain, size_t length, uint8_t *encrypted)
{
    if (public_key == nullptr || secret_key == nullptr) {
        return -1;
    }

    uint8_t k[crypto_box_BEFORENMBYTES];
    encrypt_precompute(public_key, secret_key, k);
    const int ret = encrypt_data_symmetric(k, nonce, plain, length, encrypted);
    crypto_memzero(k, sizeof(k));
    return ret;
}

int32_t decrypt_data(const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
                     const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE],
                     const uint8_t nonce[CRYPTO_NONCE_SIZE],
                     const uint8_t *encrypted, size_t length, uint8_t *plain)
{
    if (public_key == nullptr || secret_key == nullptr) {
        return -1;
    }

    uint8_t k[crypto_box_BEFORENMBYTES];
    encrypt_precompute(public_key, secret_key, k);
    const int ret = decrypt_data_symmetric(k, nonce, encrypted, length, plain);
    crypto_memzero(k, sizeof(k));
    return ret;
}

void increment_nonce(uint8_t nonce[CRYPTO_NONCE_SIZE])
{
    /* TODO(irungentoo): use `increment_nonce_number(nonce, 1)` or
     * sodium_increment (change to little endian).
     *
     * NOTE don't use breaks inside this loop.
     * In particular, make sure, as far as possible,
     * that loop bounds and their potential underflow or overflow
     * are independent of user-controlled input (you may have heard of the Heartbleed bug).
     */
    uint_fast16_t carry = 1U;

    for (uint32_t i = crypto_box_NONCEBYTES; i != 0; --i) {
        carry += (uint_fast16_t)nonce[i - 1];
        nonce[i - 1] = (uint8_t)carry;
        carry >>= 8;
    }
}

void increment_nonce_number(uint8_t nonce[CRYPTO_NONCE_SIZE], uint32_t increment)
{
    /* NOTE don't use breaks inside this loop
     * In particular, make sure, as far as possible,
     * that loop bounds and their potential underflow or overflow
     * are independent of user-controlled input (you may have heard of the Heartbleed bug).
     */
    uint8_t num_as_nonce[crypto_box_NONCEBYTES] = {0};
    num_as_nonce[crypto_box_NONCEBYTES - 4] = increment >> 24;
    num_as_nonce[crypto_box_NONCEBYTES - 3] = increment >> 16;
    num_as_nonce[crypto_box_NONCEBYTES - 2] = increment >> 8;
    num_as_nonce[crypto_box_NONCEBYTES - 1] = increment;

    uint_fast16_t carry = 0U;

    for (uint32_t i = crypto_box_NONCEBYTES; i != 0; --i) {
        carry += (uint_fast16_t)nonce[i - 1] + (uint_fast16_t)num_as_nonce[i - 1];
        nonce[i - 1] = (uint8_t)carry;
        carry >>= 8;
    }
}

void random_nonce(const Random *rng, uint8_t nonce[CRYPTO_NONCE_SIZE])
{
    random_bytes(rng, nonce, crypto_box_NONCEBYTES);
}

void new_symmetric_key(const Random *rng, uint8_t key[CRYPTO_SYMMETRIC_KEY_SIZE])
{
    random_bytes(rng, key, CRYPTO_SYMMETRIC_KEY_SIZE);
}

int32_t crypto_new_keypair(const Random *rng,
                           uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
                           uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE])
{
    random_bytes(rng, secret_key, CRYPTO_SECRET_KEY_SIZE);
    memzero(public_key, CRYPTO_PUBLIC_KEY_SIZE);  // Make MSAN happy
    crypto_derive_public_key(public_key, secret_key);
    return 0;
}

void crypto_derive_public_key(uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
                              const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE])
{
    crypto_scalarmult_curve25519_base(public_key, secret_key);
}

void new_hmac_key(const Random *rng, uint8_t key[CRYPTO_HMAC_KEY_SIZE])
{
    random_bytes(rng, key, CRYPTO_HMAC_KEY_SIZE);
}

void crypto_hmac(uint8_t auth[CRYPTO_HMAC_SIZE], const uint8_t key[CRYPTO_HMAC_KEY_SIZE],
                 const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    memcpy(auth, key, 16);
    memcpy(auth + 16, data, length < 16 ? length : 16);
#else
    crypto_auth(auth, data, length, key);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

bool crypto_hmac_verify(const uint8_t auth[CRYPTO_HMAC_SIZE], const uint8_t key[CRYPTO_HMAC_KEY_SIZE],
                        const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    return memcmp(auth, key, 16) == 0 && memcmp(auth + 16, data, length < 16 ? length : 16) == 0;
#else
    return crypto_auth_verify(auth, data, length, key) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

void crypto_sha256(uint8_t hash[CRYPTO_SHA256_SIZE], const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    memzero(hash, CRYPTO_SHA256_SIZE);
    memcpy(hash, data, length < CRYPTO_SHA256_SIZE ? length : CRYPTO_SHA256_SIZE);
#else
    crypto_hash_sha256(hash, data, length);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

void crypto_sha512(uint8_t hash[CRYPTO_SHA512_SIZE], const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    memzero(hash, CRYPTO_SHA512_SIZE);
    memcpy(hash, data, length < CRYPTO_SHA512_SIZE ? length : CRYPTO_SHA512_SIZE);
#else
    crypto_hash_sha512(hash, data, length);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}

non_null()
static void sys_random_bytes(void *obj, uint8_t *bytes, size_t length)
{
    randombytes(bytes, length);
}

non_null()
static uint32_t sys_random_uniform(void *obj, uint32_t upper_bound)
{
    return randombytes_uniform(upper_bound);
}

static const Random_Funcs os_random_funcs = {
    sys_random_bytes,
    sys_random_uniform,
};

static const Random os_random_obj = {&os_random_funcs};

const Random *os_random(void)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    if ((true)) {
        return nullptr;
    }
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
    // It is safe to call this function more than once and from different
    // threads -- subsequent calls won't have any effects.
    if (sodium_init() == -1) {
        return nullptr;
    }
    return &os_random_obj;
}

void random_bytes(const Random *rng, uint8_t *bytes, size_t length)
{
    rng->funcs->random_bytes(rng->obj, bytes, length);
}