1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2016-2020 The TokTok team.
* Copyright © 2014 Tox project.
*/
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600
#endif
#if !defined(OS_WIN32) && (defined(_WIN32) || defined(__WIN32__) || defined(WIN32))
#define OS_WIN32
#endif
#include "mono_time.h"
#ifdef OS_WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#ifdef __APPLE__
#include <mach/clock.h>
#include <mach/mach.h>
#endif
#ifndef OS_WIN32
#include <sys/time.h>
#endif
#include <assert.h>
#include <pthread.h>
#include <stdlib.h>
#include <time.h>
#include "ccompat.h"
/** don't call into system billions of times for no reason */
struct Mono_Time {
uint64_t cur_time;
uint64_t base_time;
#ifdef OS_WIN32
/* protect `last_clock_update` and `last_clock_mono` from concurrent access */
pthread_mutex_t last_clock_lock;
uint32_t last_clock_mono;
bool last_clock_update;
#endif
#ifndef ESP_PLATFORM
/* protect `time` from concurrent access */
pthread_rwlock_t *time_update_lock;
#endif
mono_time_current_time_cb *current_time_callback;
void *user_data;
};
#ifdef OS_WIN32
non_null()
static uint64_t current_time_monotonic_default(void *user_data)
{
Mono_Time *const mono_time = (Mono_Time *)user_data;
/* Must hold mono_time->last_clock_lock here */
/* GetTickCount provides only a 32 bit counter, but we can't use
* GetTickCount64 for backwards compatibility, so we handle wraparound
* ourselves.
*/
const uint32_t ticks = GetTickCount();
/* the higher 32 bits count the number of wrap arounds */
uint64_t old_ovf = mono_time->cur_time & ~((uint64_t)UINT32_MAX);
/* Check if time has decreased because of 32 bit wrap from GetTickCount() */
if (ticks < mono_time->last_clock_mono) {
/* account for overflow */
old_ovf += UINT32_MAX + UINT64_C(1);
}
if (mono_time->last_clock_update) {
mono_time->last_clock_mono = ticks;
mono_time->last_clock_update = false;
}
/* splice the low and high bits back together */
return old_ovf + ticks;
}
#else // !OS_WIN32
static uint64_t timespec_to_u64(struct timespec clock_mono)
{
return 1000ULL * clock_mono.tv_sec + (clock_mono.tv_nsec / 1000000ULL);
}
#ifdef __APPLE__
non_null()
static uint64_t current_time_monotonic_default(void *user_data)
{
struct timespec clock_mono;
clock_serv_t muhclock;
mach_timespec_t machtime;
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &muhclock);
clock_get_time(muhclock, &machtime);
mach_port_deallocate(mach_task_self(), muhclock);
clock_mono.tv_sec = machtime.tv_sec;
clock_mono.tv_nsec = machtime.tv_nsec;
return timespec_to_u64(clock_mono);
}
#else // !__APPLE__
non_null()
static uint64_t current_time_monotonic_default(void *user_data)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// This assert should always fail. If it does, the fuzzing harness didn't
// override the mono time callback.
assert(user_data == nullptr);
#endif
struct timespec clock_mono;
clock_gettime(CLOCK_MONOTONIC, &clock_mono);
return timespec_to_u64(clock_mono);
}
#endif // !__APPLE__
#endif // !OS_WIN32
Mono_Time *mono_time_new(mono_time_current_time_cb *current_time_callback, void *user_data)
{
Mono_Time *mono_time = (Mono_Time *)calloc(1, sizeof(Mono_Time));
if (mono_time == nullptr) {
return nullptr;
}
#ifndef ESP_PLATFORM
mono_time->time_update_lock = (pthread_rwlock_t *)calloc(1, sizeof(pthread_rwlock_t));
if (mono_time->time_update_lock == nullptr) {
free(mono_time);
return nullptr;
}
if (pthread_rwlock_init(mono_time->time_update_lock, nullptr) < 0) {
free(mono_time->time_update_lock);
free(mono_time);
return nullptr;
}
#endif
mono_time_set_current_time_callback(mono_time, current_time_callback, user_data);
#ifdef OS_WIN32
mono_time->last_clock_mono = 0;
mono_time->last_clock_update = false;
if (pthread_mutex_init(&mono_time->last_clock_lock, nullptr) < 0) {
free(mono_time->time_update_lock);
free(mono_time);
return nullptr;
}
#endif
mono_time->cur_time = 0;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// Maximum reproducibility. Never return time = 0.
mono_time->base_time = 1;
#else
mono_time->base_time = (uint64_t)time(nullptr) - (current_time_monotonic(mono_time) / 1000ULL);
#endif
mono_time_update(mono_time);
return mono_time;
}
void mono_time_free(Mono_Time *mono_time)
{
if (mono_time == nullptr) {
return;
}
#ifdef OS_WIN32
pthread_mutex_destroy(&mono_time->last_clock_lock);
#endif
#ifndef ESP_PLATFORM
pthread_rwlock_destroy(mono_time->time_update_lock);
free(mono_time->time_update_lock);
#endif
free(mono_time);
}
void mono_time_update(Mono_Time *mono_time)
{
uint64_t cur_time = 0;
#ifdef OS_WIN32
/* we actually want to update the overflow state of mono_time here */
pthread_mutex_lock(&mono_time->last_clock_lock);
mono_time->last_clock_update = true;
#endif
cur_time = mono_time->current_time_callback(mono_time->user_data) / 1000ULL;
cur_time += mono_time->base_time;
#ifdef OS_WIN32
pthread_mutex_unlock(&mono_time->last_clock_lock);
#endif
#ifndef ESP_PLATFORM
pthread_rwlock_wrlock(mono_time->time_update_lock);
#endif
mono_time->cur_time = cur_time;
#ifndef ESP_PLATFORM
pthread_rwlock_unlock(mono_time->time_update_lock);
#endif
}
uint64_t mono_time_get(const Mono_Time *mono_time)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// Fuzzing is only single thread for now, no locking needed */
return mono_time->cur_time;
#else
#ifndef ESP_PLATFORM
pthread_rwlock_rdlock(mono_time->time_update_lock);
#endif
const uint64_t cur_time = mono_time->cur_time;
#ifndef ESP_PLATFORM
pthread_rwlock_unlock(mono_time->time_update_lock);
#endif
return cur_time;
#endif
}
bool mono_time_is_timeout(const Mono_Time *mono_time, uint64_t timestamp, uint64_t timeout)
{
return timestamp + timeout <= mono_time_get(mono_time);
}
void mono_time_set_current_time_callback(Mono_Time *mono_time,
mono_time_current_time_cb *current_time_callback, void *user_data)
{
if (current_time_callback == nullptr) {
mono_time->current_time_callback = current_time_monotonic_default;
mono_time->user_data = mono_time;
} else {
mono_time->current_time_callback = current_time_callback;
mono_time->user_data = user_data;
}
}
/**
* Return current monotonic time in milliseconds (ms). The starting point is
* unspecified.
*/
uint64_t current_time_monotonic(Mono_Time *mono_time)
{
/* For WIN32 we don't want to change overflow state of mono_time here */
#ifdef OS_WIN32
/* We don't want to update the overflow state of mono_time here,
* but must protect against other threads */
pthread_mutex_lock(&mono_time->last_clock_lock);
#endif
const uint64_t cur_time = mono_time->current_time_callback(mono_time->user_data);
#ifdef OS_WIN32
pthread_mutex_unlock(&mono_time->last_clock_lock);
#endif
return cur_time;
}
|