1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/*
WhatsApp plugin for Miranda NG
Copyright © 2019-22 George Hazan
WANoise class implementation
*/
#include "stdafx.h"
static uint8_t intro_header[] = {87, 65, 6, DICT_VERSION};
static uint8_t noise_init[] = "Noise_XX_25519_AESGCM_SHA256\0\0\0\0";
WANoise::WANoise(WhatsAppProto *_ppro) :
ppro(_ppro)
{
salt.assign(noise_init, 32);
encKey.assign(noise_init, 32);
decKey.assign(noise_init, 32);
// generate ephemeral keys: public & private
ec_key_pair *pKeys;
curve_generate_key_pair(ppro->m_signalStore.CTX(), &pKeys);
auto *pPubKey = ec_key_pair_get_public(pKeys);
ephemeral.pub.assign(pPubKey->data, sizeof(pPubKey->data));
auto *pPrivKey = ec_key_pair_get_private(pKeys);
ephemeral.priv.assign(pPrivKey->data, sizeof(pPrivKey->data));
ec_key_pair_destroy((signal_type_base*)pKeys);
// prepare hash
memcpy(hash, noise_init, 32);
updateHash(intro_header, 4);
updateHash(ephemeral.pub.data(), ephemeral.pub.length());
}
/////////////////////////////////////////////////////////////////////////////////////////
// libsignal data initialization
void WANoise::init()
{
// no data? generate them
if (ppro->getDword(DBKEY_REG_ID, 0xFFFF) == 0xFFFF) {
// generate registration id
uint32_t regId;
Utils_GetRandom(®Id, sizeof(regId));
ppro->setDword(DBKEY_REG_ID, regId & 0x3FFF);
// generate secret key
uint8_t secretKey[32];
Utils_GetRandom(secretKey, sizeof(secretKey));
db_set_blob(0, ppro->m_szModuleName, DBKEY_SECRET_KEY, secretKey, sizeof(secretKey));
// generate noise keys (private & public)
ec_key_pair *pKeys;
curve_generate_key_pair(ppro->m_signalStore.CTX(), &pKeys);
auto *pPubKey = ec_key_pair_get_public(pKeys);
db_set_blob(0, ppro->m_szModuleName, DBKEY_NOISE_PUB, pPubKey->data, sizeof(pPubKey->data));
auto *pPrivKey = ec_key_pair_get_private(pKeys);
db_set_blob(0, ppro->m_szModuleName, DBKEY_NOISE_PRIV, pPrivKey->data, sizeof(pPrivKey->data));
ec_key_pair_destroy((signal_type_base *)pKeys);
}
noiseKeys.pub = ppro->getBlob(DBKEY_NOISE_PUB);
noiseKeys.priv = ppro->getBlob(DBKEY_NOISE_PRIV);
}
void WANoise::finish()
{
deriveKey("", 0, encKey, decKey);
readCounter = writeCounter = 0;
memset(hash, 0, sizeof(hash));
bInitFinished = true;
}
void WANoise::deriveKey(const void *pData, size_t cbLen, MBinBuffer &write, MBinBuffer &read)
{
size_t outlen = 64;
uint8_t out[64];
HKDF(EVP_sha256(), salt.data(), (int)salt.length(), (BYTE *)pData, (int)cbLen, (BYTE *)"", 0, out, outlen);
write.assign(out, 32);
read.assign(out + 32, 32);
}
void WANoise::mixIntoKey(const void *n, const void *p)
{
uint8_t tmp[32];
curve25519_donna((unsigned char *)tmp, (const unsigned char *)n, (const unsigned char *)p);
deriveKey(tmp, sizeof(tmp), salt, encKey);
decKey.assign(encKey.data(), encKey.length());
readCounter = writeCounter = 0;
}
MBinBuffer WANoise::decrypt(const void *pData, size_t cbLen)
{
uint8_t iv[12];
generateIV(iv, (bInitFinished) ? readCounter : writeCounter);
MBinBuffer res;
if (!bInitFinished)
res = aesDecrypt(EVP_aes_256_gcm(), decKey.data(), iv, pData, cbLen, hash, sizeof(hash));
else
res = aesDecrypt(EVP_aes_256_gcm(), decKey.data(), iv, pData, cbLen);
updateHash(pData, cbLen);
return res;
}
size_t WANoise::decodeFrame(const uint8_t *&p, size_t &cbLen)
{
if (cbLen < 3)
return 0;
size_t payloadLen = 0;
for (int i = 0; i < 3; i++) {
payloadLen <<= 8;
payloadLen += p[i];
}
// ppro->debugLogA("got payload of size %d", payloadLen);
cbLen -= 3;
if (payloadLen > cbLen) {
ppro->debugLogA("payload length %d exceeds capacity %d", payloadLen, cbLen);
return 0;
}
p += 3;
return payloadLen;
}
MBinBuffer WANoise::encodeFrame(const void *pData, size_t cbLen)
{
MBinBuffer res;
if (!bSendIntro) {
bSendIntro = true;
res.append(intro_header, 4);
}
uint8_t buf[3];
size_t foo = cbLen;
for (int i = 0; i < 3; i++) {
buf[2 - i] = foo & 0xFF;
foo >>= 8;
}
res.append(buf, 3);
res.append(pData, cbLen);
return res;
}
MBinBuffer WANoise::encrypt(const void *pData, size_t cbLen)
{
uint8_t iv[12];
generateIV(iv, writeCounter);
MBinBuffer res;
uint8_t outbuf[1024 + 64];
int enc_len = 0, final_len = 0;
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, encKey.data(), iv);
if (!bInitFinished)
EVP_EncryptUpdate(ctx, NULL, &enc_len, hash, sizeof(hash));
for (size_t len = 0; len < cbLen; len += 1024) {
size_t portionSize = cbLen - len;
EVP_EncryptUpdate(ctx, outbuf, &enc_len, (BYTE *)pData + len, (int)min(portionSize, 1024));
res.append(outbuf, enc_len);
}
EVP_EncryptFinal_ex(ctx, outbuf, &final_len);
if (final_len)
res.append(outbuf, final_len);
uint8_t tag[16];
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, sizeof(tag), tag);
res.append(tag, sizeof(tag));
EVP_CIPHER_CTX_free(ctx);
updateHash(res.data(), res.length());
return res;
}
void WANoise::updateHash(const void *pData, size_t cbLen)
{
if (bInitFinished)
return;
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, hash, sizeof(hash));
SHA256_Update(&ctx, pData, cbLen);
SHA256_Final(hash, &ctx);
}
|